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Machine Learning in Multiple Sclerosis 
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Abstract 

Multiple sclerosis (MS) is characterized by inflammatory activity and neurodegeneration, leading to the 
accumulation of damage to the central nervous system resulting in the accumulation of disability. MRI 
depicts an important part of the pathology of this disease and therefore plays a key part in diagnosis and 
disease monitoring. Still, major challenges exist with regard to the differential diagnosis, adequate moni-
toring of disease progression, quantification of CNS damage, and prediction of disease progression. 
Machine learning techniques have been employed in an attempt to overcome these challenges. This chapter 
aims to give an overview of how machine learning techniques are employed in MS with applications for 
diagnostic classification, lesion segmentation, improved visualization of relevant brain pathology, charac-
terization of neurodegeneration, and prognostic subtyping. 
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1 Introduction to MS 

Multiple sclerosis (MS) is a neuroinflammatory disease of the cen-
tral nervous system (CNS) affecting women more than men, usu-
ally starting in young adulthood with a prevalence of >100 per 
100,000 individuals in the Western world and rising [1]. 

1.1 Disease 

Characteristics 

The most striking feature is the appearance of focal inflammatory 
lesions in the CNS visible on MR imaging of the brain (Fig. 1) 
and/or spinal cord that may give rise to partially reversible loss of 
motor, sensory, and cognitive function depending on lesion loca-
tion and the magnitude of damage to local nerve tissue. As the 
disease and resulting damage to the central nervous system accu-
mulate, irreversible disability progresses over time. Although 
tempting, not all of the accumulated disability can be explained 
by focal inflammatory lesions [2]. Diffuse neurodegeneration in the 
CNS is another histopathological feature deemed responsible for 
gradually accumulating disability, especially in the later stages of the 
disease. This neurodegeneration is thought to result from a process
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that is partially separate from focal inflammation and can be visua-
lized as initially subtle progressive brain atrophy on conventional 
MRI (Fig. 1) or by advanced MRI techniques that measure brain 
tissue integrity.
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Fig. 1 PD-weighted MR images (top row) showing the occurrence of MS typical T2/PD hyperintense lesions 
over time. T1-weighted images (bottom row) showing enlargement of sulci and ventricles over time consistent 
with brain atrophy and hypointensity of multiple lesions due to local tissue loss. (Figure kindly provided by 
Dr. Alex Rovira (Hospital Universitari Vall d’Hebron, Barcelona)) 

Fig. 2 MS subtypes based on the development of disability over time 

Based on the clinical course, MS is categorized in three main 
subtypes (Fig. 2). The most common subtype is relapsing remitting 
MS (RRMS), characterized by relapsing and remitting bouts of 
symptoms and limited disability. The RRMS subtype gradually 
transitions into the secondary progressive subtype (SPMS), char-
acterized by gradually accumulating disability. Primary progressive 
MS (PPMS) is characterized by the gradual accumulation of dis-
ability from disease onset and is a common subtype in (male) 
patients with an older age at onset.
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1.2 Treatment of MS Suppression of CNS inflammation is the main target of treatment 
and has greatly improved over the past three decades. The earlier 
treatments are mainly based on molecules that suppress the CNS 
inflammatory response by interfering with cell signaling molecules 
that regulate the immune response (immunomodulation). 

Interferon was the first immunomodulatory molecule to be 
approved for the treatment of RRMS in the last decade of the 
previous century, reducing relapse rate with approximately 30% as 
well as reducing the occurrence of inflammatory lesions on MRI 
[3, 4]. Other immunomodulatory molecules with similar efficacy 
have been developed and approved for the treatment of RRMS 
since the beginning of this century and include glatiramer acetate, 
dimethyl fumarate, and teriflunomide [5, 6]. These therapies are 
mostly well-tolerated with a low risk of serious adverse events. 

Newer treatments are generally based on monoclonal antibo-
dies that can directly block receptors on immune cells (immuno-
suppressive), disabling them to cause inflammation in the CNS, and 
include fingolimod, alemtuzumab, ocrelizumab, natalizumab, and 
siponimod [7–11]. These treatments are generally more effective 
than aforementioned immunomodulatory treatments with a reduc-
tion of the number of relapses with 50–80% and a more effective 
reduction of new active lesions on MRI. The downside of the latter 
treatments is the increased occurrence of more serious adverse 
events that include cardiovascular disease, autoimmune disease, 
and especially progressive multifocal leukoencephalopathy (PML). 
PML is caused by an infection of the CNS with the JC virus and the 
most dramatic and potentially lethal adverse event associated with 
the use of natalizumab, fingolimod, and, in very rare cases, 
dimethyl fumarate. Although comparatively less effective, the 
“immunomodulatory” treatments are recommended as “first-
line” treatments due to their more favorable profile with regard to 
serious adverse events. 

The quest for more effective and tolerable MS treatments that 
are also effective in patients with progressive MS is ongoing. New 
treatments that are currently being evaluated include vidofludimus 
calcium/IMU-838 [12], a dihydroorotate dehydrogenase inhibi-
tor that attenuates pro-inflammatory cytokine release by B- and 
T-cells, and tolebrutinib, an inhibitor of the enzyme “Bruton’s 
tyrosine kinase” that drives CNS inflammation [13]. 

1.3 Diagnosis of MS Proof of dissemination of inflammatory activity within the CNS in 
time and space is the underlying principle for diagnosing MS. This 
follows the successive bouts of focal inflammation in different parts 
of the CNS unique to the disease. Initially, these two criteria were 
fulfilled based on clinical course, in which at least two separate 
episodes of clinical disability (dissemination in time) related to 
separate locations in the CNS (dissemination in space) needed to 
be proven [14]. A first or multiple episodes of symptoms/signs



related to one location in the CNS is referred to as a clinically 
isolated syndrome (CIS). When a second episode occurs related 
to another location of the CNS, clinically definite MS (CDMS) can 
be diagnosed. Using this clinical diagnostic scheme, a definite 
diagnosis of MS could take years to be made and would take too 
long in the current era of effective treatment that need to be 
considered at an early stage of the disease. This has led to the 
incorporation of brain MRI findings in the diagnostic criteria fol-
lowing the same principles [15, 16]. In the diagnostic setting, the 
MR imaging protocol should at least include a FLAIR and T2 
sequence of the brain to adequately detect and locate inflammatory 
lesions and a T1-weighted sequence of the brain after intravenous 
gadolinium contrast administration to detect active inflammatory 
lesions exhibiting leakage of contrast material into the local brain 
parenchyma. A T1 without contrast and DWI sequences of the 
brain is usually included for differential diagnostic purposes. T2-/ 
PD-weighted and post-contrast T1-weighted sequences of the spi-
nal cord are optional, when brain imaging is insufficient to make the 
diagnosis [17]. See Table 1 for an overview of the most frequently 
used MRI sequences for the diagnosis and monitoring of MS. 
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To fulfill the MRI criterion for dissemination in space, multiple 
inflammatory lesions should be demonstrated on brain or spinal 
cord MRI in two out of four typical CNS locations (i.e., juxta-/ 
intra-cortical, periventricular, infratentorial, spinal cord). The dis-
semination in time criterion is fulfilled by demonstrating one or 
more new lesions on subsequent MRI scans and/or the simulta-
neous presence of lesions that do and do not enhance after gado-
linium administration on any single scan. Further refinement of the 
diagnostic criteria has made it possible to make a diagnosis within 
3–12 months of symptom onset for the vast majority cases with 
typical MS [18, 19]. 

1.4 Disease 

Monitoring 

Disease progression is monitored by self-reporting of 
MS-associated symptoms, neurological assessment for 
MS-associated signs, and the detection of new lesions on MRI of 
the brain and/or spinal cord. Routine brain MRI is usually acquired 
each year and includes T2/PD and FLAIR sequences for the detec-
tion of new lesions. A DWI sequence of the brain is included to 
differentiate potential PML from MS lesions depending on the 
initiated treatment. More frequent MR imaging, T1-weighted 
post-contrast brain sequences, and imaging of the spinal cord are 
optional depending on clinical signs and symptoms and timing of 
treatment initiation [17]. See Table 1 for an overview of MRI 
sequences that are typically acquired for the monitoring of disease 
activity.
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Table 1 
Brief overview of sequences that are typically used in clinical practice for the diagnosis and 
monitoring of MS 

Diagnosis/purpose Monitoring/purpose 

Brain MRI 

Ax T1 (<3 mm 2D or 3D) Optional 
Detection of T1 hypointense lesions 

Optional 
Detection of T1 hypointense 

lesions 

Ax T2 and PD (<3 mm) Recommended 
Detection and localization of lesions 
(dissemination in space) 

Recommended 
Detection of new lesions 

FLAIR 
(preferably 3D with FS) 

Recommended 
Detection and localization of lesions 
(dissemination in space) 

Recommended 
Detection of new lesions 

Ax T1 after contrast 
(<3 mm  2D or 3D)  

Recommended 
Detection of (in)active inflammation 
(dissemination in time) 

Optional 
Detection of new active 

inflammation 

DIR Optional 
Improve detection of (juxta)cortical 
lesions 

Optional 
Detection of new lesions 

Ax DWI Optional 
Characterization of lesions 
(differential diagnosis) 

Optional 
Differentiation of MS versus PML 

lesions 

Optic nerve MRI 

Ax/cor T2 FS or STIR 
(≤3 mm) 

Optional 
Detection of optic neuritis 

Not required 

Ax/cor T1 after contrast 
(≤3 mm) 

Optional 
Detection of active optic neuritis 

Not required 

Spinal cord MRI 

Sag T2 and PD (≤3 mm) Optional 
Detection of spinal cord lesions 
(dissemination in space) 

Optional 
Detection of new spinal cord 

lesions 

Sag T1 after contrast 
(≤3 mm) 

Optional 
Detection of active inflammation 
(dissemination in time) 

Optional 
Detection of new active 

inflammation 

For a detailed description see the 2021 MAGNIMS recommendations [17]. (Note: local preferences may vary) 
Ax axial orientation, Sag sagittal orientation, Cor coronal orientation, FS fat suppression, DWI diffusion-weighted 
imaging, PML progressive multifocal leukoencephalopathy 

1.5 Advanced MR 

Imaging Techniques 

More advanced MRI techniques, like magnetic transfer ratio 
(MTR), diffusion tensor imaging (DTI), and resting state func-
tional MRI (rsFMRI), are generally not used for the diagnosis and 
monitoring of MS patients in clinical practice as clinically relevant 
changes are hard to determine due to considerable biological and



technical (inter-/intra-scanner or inter-/intra-sequence) variability. 
These advanced sequences have been successfully used in controlled 
research settings to gain knowledge on the functional and struc-
tural dynamics of the MS disease process. MTR and DTI are mainly 
used to quantify microstructural integrity by measuring spin relax-
ation times and diffusion of protons within, in general, white 
matter tracts respectively. RsFMRI uses the BOLD effect to mea-
sure functional brain activity in the resting brain and/or in relation 
to specific tasks. 
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2 Machine Learning to Aid in the Differential Diagnosis of MS 

Although the current diagnostic criteria are highly accurate and 
efficient in most cases of suspected MS, diagnostic challenges arise 
when atypical clinical and/or radiological findings occur that may 
represent other diseases that mimic multiple sclerosis. To aid in 
these diagnostic challenges, machine learning techniques have 
been employed in an attempt to distinguish MS from other 
diseases. 

2.1 Differentiation of 

MS from Neuromyelitis 

Optica Spectrum 

Disorder 

Neuromyelitis optica spectrum disorder (NMOSD) has previously 
been considered a variant of multiple sclerosis due to similarities in 
clinical presentation and presence of inflammatory lesions in the 
optic nerve, the spinal cord, and, especially in later stages, the brain. 
NMOSD has only recently been identified as a separate disease 
entity [20], especially with the identification of elevated antibodies 
against aquaporin-4, a water channel involved in water homeostasis 
in the CNS, and antibodies against myelin oligodendrocyte glyco-
protein (MOG), a constituent of the normal myelin sheath. 
Although the clinical and radiological differences are known, the 
differential diagnosis remains a challenge due to the considerable 
overlap with MS. 

Various machine learning models have been developed to dif-
ferentiate between MS and NMOSD using decision trees based on 
expert findings of MRI of the orbits, brain, and spine [21], random 
forest analysis on radiomic features of brain lesions [22], CNN on 
brain MR images [23, 24], and LASSO binary logistic regression 
on the combination of radiomic features from spinal cord scans and 
clinical variables [25]. Performance of these models had AUCs 
varying between 0.712 and 0.935. 

2.2 Differentiating 

MS from Other 

Diseases 

A variety of other inflammatory autoimmune diseases and vascular 
diseases can present with similar brain MRI findings as MS. These 
diseases are usually easier to distinguish from MS using clinical 
variables such as age and disease course. However, MRI findings 
of the brain and spinal cord can still pose a challenge for radiologists 
who are not experienced with these pathologies.
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Using support vector machine analysis on MRI-based radiomic 
features of brain lesions, Luo et al. created a model able to distin-
guish brain lesions in RRMS from systemic lupus erythematosus 
patient with an AUC of 0.967 [26]. 

In a broader effort, Rauschecker et al. [27] have created a 
machine learning model to provide a neuroradiological differential 
diagnosis for a range of brain diseases including MS. In their 
approach, they first detected and segmented brain lesions from 
brain MRI scans using a U-Net-based deep learning algorithm. 
They subsequently extracted 18 location-, spatial-, and signal-
based quantitative imaging features using multiple pulse 
sequences from the segmented lesions. A Bayesian classifier was 
then used to combine these 18 image features with 5 clinical 
features for the prediction of the underlying brain disease. This 
classifier was able to make an accurate top three differential diag-
nosis in 91% of cases, with a similar performance as specialized 
academic neuroradiologists (86%, P = 0.20). More interestingly, 
this classifier outperformed neuroradiology fellows (77%, 
P = 0.003), general radiologists (57%, P < 0.001), and radiology 
residents (56%, P < 0.001). However, the datasets used were 
small (total N = 86 for training and N = 92 for testing, with 
N typically around 5 for each diagnostic class), and the perfor-
mance for MS and related disorders like migraine was less 
favorable. 

2.3 Future 

Considerations 

Taken together, these studies show that machine learning has the 
capability to assist in the differential diagnosis of MS and can be 
especially helpful for radiologists that are not specialized in 
neuroradiology. 

Most of the aforementioned ML models that could aid in 
differential diagnosis have focused on the differentiation between 
MS and NMOSD. Although interesting from a scientific point of 
view, this distinction is not the only diagnostic challenge from a 
clinical point of view. The main challenge for radiologists that are 
not experienced with these disease entities is the distinction 
between demyelinating lesions due to MS and vascular lesions and 
should be the focus of future studies. 

Generalizability to the general population and MRI scanners 
is clearly the most important hurdle before these models can be 
introduced in clinical practice. In addition, these studies are gen-
erally limited to a small subset of differential diagnoses, which 
could lead to tunnel vision when relying on these tools in clinical 
practice.
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3 Machine Learning for Lesion Segmentation and Quantification 

Although lesions do not fully relate to the accumulation of clinical 
disability over time [2], lesion volume is still regarded as an impor-
tant outcome measure in MS research and clinical trials, requiring 
accurate lesion segmentation. Manual lesion segmentation on MR 
images is highly labor-intensive and time-consuming, for which 
automated segmentation is an obvious solution, especially for 3D 
scans. Over the years, many (semi-)automated lesion segmentation 
techniques have been developed, including semi-automated seed 
growing and unsupervised K-means clustering techniques. In the 
recent years, convolutional neural networks have been shown to 
work particularly well in lesion segmentation tasks [28]. 

3.1 Cross-Sectional 

Lesion Segmentation 

A large number of ML-based models have been developed that 
provide cross-sectional automated lesion segmentation in MS 
[29–38] using a variety of ML architecture designs. Critical evalua-
tion and comparison of these large and increasing number of lesion 
segmentation methods is necessary to determine the best 
performing methods and their added value to existing methods 
using large test datasets made available in various challenges 
organized by the Medical Image Computing and Computer 
Assisted Intervention Society (MICCAI http://www.miccai.org/) 
and the International Symposium on Biomedical Imaging (ISBI, 
https://biomedicalimaging.org/) [28, 39]. Previous MS lesion 
segmentation challenges showed that segmentation algorithms 
could attain an average Dice score of 0.59 and an average surface 
distance of 0.91 for the segmentation of cross-sectional images in 
the MICCAI 2016 challenge [28] and an average Dice score of 
0.670 and average symmetric surface distance of 2.16 for the 
segmentation of longitudinal MR images in the ISBI 2015 chal-
lenge [39]. Most of these algorithms required multiple input 
sequences, including T1, T2, PD, and/or FLAIR sequences, 
whereas only three algorithms required a single FLAIR sequence 
as input. 

Besides segmentation performance, these methods need to be 
validated in real-world scenario with subjects scanned on MRI 
machines different from the original training dataset. To achieve 
this, some level of adjustment/optimization prior to implementa-
tion on a given dataset is generally needed. Weeda et al. [40] have 
compared methods with and without local optimization for cross-
sectional segmentation of MS lesions using several freely available 
tools including LST [33], NicMSlesions [41], and BIANCA [31] 
(Fig. 3). Optimization to the local dataset improved performance 
for all these methods, while retraining with manually labelled rep-
resentative MR images provided the best performance.

http://www.miccai.org/
https://biomedicalimaging.org/
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Fig. 3 Output examples of four lesion segmentation algorithms and manual segmentation overlaid over FLAIR 
images of the brain. (Figure adapted from Weeda et al. [40], reprinted with permission from Elsevier) 

3.2 Detection of New 

MS Lesions 

The detection of new lesions longitudinally is a highly important 
clinical monitoring task to demonstrate new inflammatory activity 
in the CNS that may prompt initiation or change of treatment for 
an individual MS patient. This requires tedious and time-
consuming visual comparison of FLAIR images, especially in 
patients with a high number of confluent lesions. Initially, the aim 
of any treatment was to have no evidence of disease activity 
(NEDA). This proved to be unrealistic, as a low number of new 
lesions over time could be observed in patients treated with various 
treatment modalities [42]. Additional studies have shown that 
long-term clinical disability does not increase with two or less new 
lesions within 1 year and no contrast-enhancing lesions (minimal 
evidence of disease activity (MEDA)). 

Various machine learning models have been created to detect 
new MS lesions on subsequent MR images based on fusion or 
subtraction of subsequent segmentation maps [33, 43–48]  o  
end-to-end training of a combined registration and segmentation 
network on serial MRI scans [48]. Evaluation of these and new 
machine learning tools are expected following the recent MICCAI 
challenge (https://portal.fli-iam.irisa.fr/msseg-2/).

https://portal.fli-iam.irisa.fr/msseg-2/
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A recent study has compared the number of new lesions 
detected by visual assessment (highest sensitivity/accuracy: 
69/67), automated assessment (highest sensitivity/accuracy: 
84/64), and visual verification of the automated assessments (sen-
sitivity/accuracy: 86/NA) on a single-center cohort of 100 MS 
patients [49]. The automated methods detected a higher number 
of new MS lesions than visual assessment. Visual verification of 
automated assessments revealed a high number of false positive 
new lesions when using automated assessments only and a high 
number of false negative new MS lesions with only visual assess-
ments. Evidently, automated tools for new lesion detection require 
further development before they can be implemented in clinical 
practice without supervision. More importantly, this study showed 
that visually supervised automated methods are currently able to 
improve the detection of new MS lesions in current clinical practice. 
This would warrant clinical implementation, provided that the 
clinical tool allows swift and efficient visual supervision and correc-
tion and has a reasonable tradeoff between false negative and false 
positive rates erring slightly to the false positive side. 

3.3 Clinical 

Implementation of ML 

Tools for Lesion 

Segmentation and 

Detection 

Commercial image analysis packages meant for implementation in 
clinical care have incorporated automated lesion segmentation 
algorithms to provide cross-sectional and longitudinal assessments 
of lesion volume rather than (new) lesion counts. Although this 
may provide more precise monitoring of the patient’s overall lesion 
burden, the utility of these tools should be critically evaluated on at 
least the following points: (1) knowledge of the robustness of the 
lesion segmentation algorithm to inter-scanner variability and vari-
ous MR artifacts; (2) proven clinically relevant cut-off points of the 
provided measurements that are related to relevant future disability 
progression; and (3) implementation of a mandatory visual check of 
provided lesion counts and volumes. 

4 Machine Learning to Improve Detection of Tissue Properties from Conventional 
MRI Sequences 

MR imaging is the modality of choice for the diagnosis and moni-
toring of MS patients in clinical trials and daily clinical practice, due 
to its availability. Scan protocols in daily clinical practice are usually 
limited to the most essential conventional sequences to limit bur-
den on patients and to limit financial cost. Machine learning can be 
employed to enhance these conventional sequences to visualize 
initially inconspicuous relevant tissue properties.
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4.1 Synthetic DIR 

Sequences 

Cortical lesions are an important part of MS pathology, specific to 
the disease, associated with disease progression [50, 51] and have 
recently been included in the radiological diagnostic criteria 
[52]. These cortical lesions are generally inconspicuous on com-
monly used FLAIR and T2-/PD-weighted MR images. The dou-
ble inversion recovery MRI sequence (DIR) is uniquely capable of 
visualizing these cortical lesions by combined suppression of the 
MR signal from cerebrospinal fluid and white matter [53]. DIR 
sequences are generally not used in daily clinical practice or clinical 
trials due to the long acquisition time and lack of availability on 
most MR systems. Models based on generative adversarial networks 
have been trained to generate synthetic DIR images from conven-
tional and routinely acquired T1, T2, and FLAIR images [54] and 
T1 and PD/T2 [55]. These synthetic DIR images were able to 
improve the detection of juxtacortical lesions (12.3 ± 10.8 vs 
7.2 ± 5.6, P < 0.001) [54] and cortical lesions (N = 626 vs 696) 
[56] compared to conventional MRI sequences. Although not as 
sensitive as the original DIR images, synthetic DIR images are 
sensitive enough to improve diagnosis and prognostication in rou-
tine clinical setting. 

4.2 Prediction of 

Contrast-Enhancing 

Lesions 

Besides a very low risk of nephrogenic systemic fibrosis [57], 
gadolinium-based contrast agents are generally safe when used for 
imaging purposes. However, gadolinium is known to accumulate in 
the brain after repeated IV gadolinium administrations. Although 
no adverse effects have been demonstrated to date, this is a cause 
for concern in the medical community as the long-term effects are 
still unknown. Because of this, prediction of the presence of active 
inflammatory contrast-enhancing lesions without the use of con-
trast agents is desirable. Using a large multicenter dataset, Narayana 
et al. have developed a deep learning model capable of predicting 
contrast-enhancing lesions using T1, T2, and FLAIR images with 
sensitivity and specificity of 78% and 73%, respectively, for patient-
wise detection of enhancement using fivefold cross-validation [58]. 

4.3 Visualization of 

Tissue Myelin Content 

from MR Images 

Demyelination is one of the pathological hallmarks of MS that 
cannot be directly quantified by MR imaging. In vivo quantification 
can be useful for monitoring inflicted damage by inflammation and 
the efficacy of myelin repair mechanisms. PET imaging is capable of 
visualizing and quantifying myelin using the radiotracer [(11)C] 
PIB [59], but is not generally available, expensive, and invasive. A 
recent study has used [(11)C]PIB PET images from MS patients to 
train a CF-SAGAN-based model to successfully predict myelin 
content changes from MTR, DTI, T2, and T1 MRI sequences 
[60] (Fig. 4).
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Fig. 4 Examples of lesional myelin content changes showing T1-weighted images (left column), the predicted 
change in myelin content by the MR-based model proposed by Wei et al. (middle column), and the ground truth 
change in myelin content based on [(11)C]PIB PET imaging (right column). Demyelinating (red) and remye-
linating (in blue) voxels are indicated on top of the lesion mask (white). (Figure adapted from Wei et al. [60], 
reprinted with permission from Elsevier) 

5 Machine Learning to Characterize Neurodegeneration in MS 

In daily clinical practice, treatment changes in the course of the 
disease are mainly based on new inflammatory/demyelinating 
activity visible as new or enhancing lesions on brain MRI scans. In 
contrast, the partially unrelated but clinically relevant neurodegen-
erative aspect of the MS disease process is generally



underappreciated in monitoring and treatment decisions. The rea-
son for this is the absence of simple, reliable, and easily interpretable 
measures that reflect the degree of neurodegeneration in individual 
patients. 
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Overall brain volume measured on MR images is currently the 
most important tool to quantify neurodegeneration in 
MS. However, brain volume measurements have not been imple-
mented in routine clinical care as universal clinically relevant cut-off 
points for brain volume loss have not been identified due to con-
siderable technical, biological, and, specifically, age-related 
variations [61]. 

5.1 Brain Age 

Determination from 

MR Images 

Neurodegenerative processes are known to change the macroscopic 
structure of the brain with increasing age. Similar brain structure 
changes are observed as a result of various neurodegenerative brain 
diseases, including MS. Such MS-related atrophic changes occur at 
a faster pace as would be expected in normal aging individuals. This 
has given rise to the “brain age” paradigm, in which accelerated 
aging of the brain is considered as a marker of MS-related neuro-
degeneration [62]. Machine learning models based on large popu-
lations of healthy aging individuals have been developed to 
determine biological brain age from T1-weighted MR images of 
the brain [63–65]. Subtraction of this predicted brain age from the 
actual calendar age results in the brain-predicted age difference 
(brain-PAD) or brain age gap (BAG) as an indicator of premature 
aging of the brain. Key advantages of brain-PAD/BAG over brain 
volume measurement are that these measures incorporate image 
characteristics across the entire brain (not only the segmented brain 
tissue as in brain volume measurement), provide an intuitive easily 
interpretable metric, are more robust to acquisition-related image 
variations, and, most importantly, are specific for the individual 
patient by inherently adjusting for age. Initial studies on brain age 
in MS found that the estimated brain age is between 4 and 6 years 
higher than chronological age in comparison to healthy controls 
and that a higher relative brain age is associated with a higher 
degree of disability [65, 66]. A large retrospective multicenter 
study of brain age in MS showed that brain age is approximately 
10 years higher than chronological age in MS, is increased in MS 
compared to HC, predicts current as well as future disability, and is 
mainly driven by brain atrophy [67] (Fig. 5). Recent developments 
in brain age models were made to reliably predict brain age using 
FLAIR sequences instead of the usual T1-weighted sequences 
(Colman et al., 2021; ISMRM 2022), ensuring flexible implemen-
tation in retrospective research settings and general clinical practice. 
Further studies are needed to further elucidate changes in brain age 
over time, the relationship of brain age with a wider range of 
measures of cognitive and physical disability, the influence of non-
MS-related factors on brain age, the pathological substrate of brain



age in MS, and the effect of treatment on brain age. In the future, 
these brain age models may provide a useful clinical tool to quantify 
and monitor neurodegeneration in routine clinical care of MS 
patients. 
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Fig. 5 Examples of increasing differences between brain-predicted age and chronological age (brain-PAD) in a 
healthy control, three RRMS onset patients with increasing disease durations, and a PPMS patient with a very 
high brain-PAD with relatively short time since diagnosis. (Figure adapted from Cole et al. [67], CC BY 4.0) 

5.2 Evolution of 

Brain Atrophy Over 

Time 

Although overall progressive WM and GM atrophy is a well-known 
feature of MS, less is known on the evolution of atrophy in different 
brain regions over time. Event-based modelling [68, 69] has been 
used to elucidate the sequence in which GM atrophy affects various 
brain structures in repeated MRIs of 1417 subjects including 
healthy controls and all subtypes of MS [70, 71]. The posterior 
cingulate cortex and precuneus were the first regions to become 
atrophic, followed by the middle cingulate cortex, brainstem, and 
thalamus in patients with clinically isolated syndrome and relapse-
onset MS. A similar pattern of sequential atrophy was found in 
PPMS with the involvement of the thalamus, cuneus, precuneus, 
and pallidum, followed by the brainstem and posterior cingulate 
cortex. Patients were then categorized according to the event stage 
defined by their individual atrophy pattern. Using a linear mixed 
effect model, progression of event stages was found to be related to 
the rate of disability progression proving that these atrophy stages 
represent clinically relevant GM pathology. 

6 Machine Learning to Predict Disease Progression 

The efficacy in reducing inflammatory activity, and thus preventing 
disability, varies across treatments and is generally speaking 
inversely related to side effects. Choosing the treatment with the



right tradeoff between efficacy and side effects is challenging as the 
disability accumulation over time can vary greatly among patients. 
Demographic variables, presence of oligoclonal bands, and the 
number of, especially infratentorial, T2 lesions at baseline brain 
MRI are known to be predictive of future disability progression 
and the likelihood of clinical relapse in the future [72]. Still, predic-
tion of future disease progression remains a challenge in daily 
clinical practice especially when these risk factors are not unequivo-
cally present. Several definitions of disease progression exist and 
include demonstration of short-term inflammatory activity (predic-
tion of time to next relapse or progression from CIS to CDMS), 
changes in disability status using standardized clinical evaluations 
(EDSS progression or time to a certain clinical threshold), or 
progression from RRMS to SPMS. 
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6.1 Prediction of 

Disease Progression 

ML techniques have successfully created models to predict worsen-
ing of disability based on CNN-based analysis of lesion maps, MR 
images, and age at baseline [73] and by combining clinical disability 
status and MRI-derived lesion volume and brain atrophy using 
SVM classifiers [74]. The latter study showed that the predictive 
properties of the SVM model improved when adding changes in 
MRI measurements over the first year. 

A number of studies have successfully predicted a second 
relapse or conversion from CIS to CDMS by analyzing clinical 
and demographic data, lesion-specific quantitative geometric fea-
tures, and gray matter-to-whole brain volume ratios using support 
vector machines [75]; clinical characteristics as well as global and 
local measures of GM/WM volume, lesion volume, and cortical 
thickness using support vector machines in combination with 
recursive feature elimination [76]; and lesion shape features derived 
from computer-assisted manual segmentation using a random for-
est classifier [77]. Pareto et al. created a model based on regional 
gray matter volume and T1 hypointensities obtained from the 
baseline T1-weighted MR images, but were not able to accurately 
predict conversion from CIS to CDMS [78]. 

6.2 Stratification of 

Patients at Risk of 

Disease Progression 

Although the aforementioned models provide valuable insights 
into the predictive properties of clinical and radiological variables, 
the value to individual patients in daily clinical practice is still 
limited. An important downside of these models is the assumption 
that the predictive properties of baseline variables are monotonous 
among patients, whereas these predictive properties may well vary 
over time and between patients. Recent studies have applied the 
SuStaIn model [79] to identify MS subtypes based on clinical and 
radiological variables with the underlying assumption that these 
variables evolve over time. Using this technique on MRI-derived 
GM volumes in various brain regions, white matter volume, total 
brain lesion volume, and T1/T2 ratio within brain structures of



6322 MS patients, Eshaghi et al. were able to define “cortex-led,”
“normal-appearing white matter-led,” and “lesion-led MS” sub-
types in the earliest stages of the disease [ , ] (Fig. ). Further
analysis in the validation dataset (N = 3068) revealed that the
lesion-led subtype had a significantly higher risk of disability pro-
gression, relapse rate, and treatment response in the following
24 weeks compared to the other two subtypes. Similar findings
were made in a separate study on 425 MS patients analyzing GW
matter volume in various brain regions, and T2 lesion volume using
SuStaIn revealed a subtype characterized by early deep GM atrophy
and lesion appearance and a subtype characterized by early cortical
GM volume loss that were consistent over time [ ]. The subtype
with early deep GM atrophy was associated with earlier disability
progression and cognitive impairment compared to the subtype
with earlier cortical volume loss. Taken together, these studies
show that SuStaIn modelling can reveal previously unknown sub-
types ofMS that are biologically and clinically relevant. The SuStaIn
models can be used to stratify individual patients and therefore has
the potential for implementation in daily clinical practice after
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Fig. 6 Evolution of MRI abnormalities in each of the three MRI-based subtypes revealed by the SuStaIn 
analysis by Eshaghi et al. For each subtype, the left two columns depict the probability of regional brain 
atrophy, and the right column depicts the probability of lesion occurrence in the various stages of MRI 
abnormality progression. (Figure adapted from Eshaghi et al. [81], CC BY 4.0)



adaptation of the model to include robust measurements that can 
be derived from MRI scans acquired in daily clinical practice.
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7 Concluding Remarks 

As covered in this chapter, ML techniques provide new insights and 
possibilities with regard to differential diagnosis, lesion segmenta-
tion and quantification, enhanced detection of relevant pathology 
on MRI, characterization of neurodegeneration, and prediction of 
disease progression in MS. In general, challenges still exist with 
regard to generalizability to the general population, robustness 
across images acquired from different MRI scanners, and validation 
that the ML technique provides biologically and clinically relevant 
information. Implementation of various ML tools in clinical prac-
tice is ongoing, but should provide insight in their robustness 
across scanners, clearly defined clinically relevant cut-off points for 
each provided outcome, and an efficient interface that allows the 
user to check the quality of the analyses when appropriate. 
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