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Abstract 

Brain disorders are a leading cause of global disability. With the increasing global proliferation of smart 
devices and connected objects, the use of these technologies applied to research and clinical trials for brain 
disorders has the potential to improve their understanding and create applications aimed at preventing, 
early diagnosing, monitoring, and creating tailored help for patients. This chapter provides an overview of 
the data these technologies offer, examples of how the same sensors are applied in different applications 
across different brain disorders, and the limitations and considerations that should be taken into account 
when designing a solution using smart devices, connected objects, and sensors. 
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1 Introduction 

Sensors are devices that detect events or significant changes in their 
environment and send the information to other electronic devices 
for signal processing. Since they surround us continuously, we have 
integrated them so naturally into our lives that we are mostly 
unaware of their continuous functioning. They exist in everyday 
objects, from the motion unit installed in your mobile phone that 
allows you to switch from landscape to portrait view by simply 
rotating it to the presence detector sensor in your building that 
switches the light on and off. Indeed, there is a good chance that 
you are using one or multiple sensors right now without noticing. 
They provide various means to measure characteristics related to a 
person’s physiology or behavior either in a laboratory/healthcare 
unit or in their daily life. They have thus raised a major interest in 
medicine in the past years. They are particularly interesting in the 
context of brain disorders because they allow monitoring of clini-
cally relevant characteristics such as movement, behavior, cogni-
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tions, etc. This chapter provides an introduction to the use of 
sensors in the context of brain disorders. The remainder of this 
chapter is organized as follows.
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Subheading 2 presents an overview of the various data types 
collected using mobile devices, connected objects, and sensors that 
are relevant to brain disorder research and related clinical applica-
tions, in particular for machine learning (ML) processing. The 
relevance of these ubiquitous sensors comes from the possibility 
of collecting large amounts of data, allowing the continuous docu-
mentation of the user’s daily life, an often critical issue with ML 
applications. Subheading 3 describes how these technologies might 
serve such applications in brain disorder research and clinics. 
Because of the strategic importance of ML in the on-device experi-
ence, mobile manufacturers have recently started to design and 
include specially designed microprocessors for ML calculations in 
smartphones and tablets, benefiting the third-party app develop-
ment community. A different approach consists of cloud offload 
processing allowing lighter wearables and handheld devices. The 
main public interest in current applications of ML is to help guess 
what is expected by the user, eliminating the number of actions and 
decisions we make each day (facial recognition for security instead 
of remembering a password, classification in your picture gallery 
according to names or faces, recommending songs to listen based 
on your history and ratings, etc.). Although decision support might 
not necessarily be its first goal, the scholar community interested in 
brain disorders must be familiarized with this ongoing ML revolu-
tion since the technology is already there, opening the way to 
unprecedented opportunities in research and clinics. Subheading 
4 describes limitations, caveats, and challenges that researchers 
willing to use such technologies and data need to be aware of. 

2 Data Available from Mobile Device, Sensors, and Connected Objects for Brain 
Disorders 

Far from presenting an extensive list of available sensors and 
devices, we aim to introduce the type of data one can exploit and 
sketch possible applications relevant to brain disorder research. The 
kind of data that we present here comes from sensors that are 
typically used for human activity recognition (HAR) or that we 
deemed relevant for the scope of this book. In particular, we have 
purposely omitted connected technologies that are used by health 
practitioners or in healthcare units and that require medical or 
specific training for their use and interpretation and that are there-
fore not commonly available to the public, such as wireless electro-
encephalographer (EEG—but see Chapter 9 for in-depth coverage 
of ML applied to EEG). We also set aside mobile technologies that
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are not directly aimed at probing brain and behavioral functions, 
such as blood pressure monitor devices, glucometers, etc. (see [1] 
for a review). 
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We present these data types in two groups according to the role 
that the user (e.g., the patient) takes in acquiring the data: 
active vs. passive. In this context, we mainly describe typical appli-
cations, but we also point the readers to specific applications for 
which active or passive data can be used. For instance, vocal record-
ings can be actively collected by instructing the user to self-record 
(e.g., when completing a survey), but a microphone may also 
passively and continuously record the sound environment without 
the user triggering it (e.g., automatic handwashing recognition 
using the microphone of the Apple watch to detect water sound 
[2]). To explore the possibilities in data collection, we distinguish 
three interconnected elements: the person of interest, the device 
(including its potential interface), and the environment. According 
to the dimension of interest, we can focus on the data obtained 
from the interaction between these three elements (see Fig. 1). 

Fig. 1 Active and passive sensing. Mobile devices and wearable sensors provide 
metrics on various aspects of the mental and behavioral states through active 
(requiring an action from the user, often following a prompt) or passive (auto-
matically without intentional action from the user) data collection. This is 
possible through (a) direct interaction with the device, (b) active use of a device 
for assessment of internal insight, (c) passive use of inertial and positioning 
systems, (d) passive interaction with sensors embedded in the environment, and 
(e) passive or active interaction between users through devices
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2.1 Active Data 

Probing 

In active data probing, the person of interest must execute a specific 
action to supply the data, meaning that the quantity and the quality 
of acquired data directly depend on the user’s compliance. These 
actions usually involve direct interaction with the device. To maxi-
mize compliance, the subject needs to spend time and energy 
collecting the data; therefore, the number of action steps necessary 
to enter the data must be optimized to avoid user fatigue. It is also 
essential to care for feature overload by focusing on usability instead 
of utility and thoughtfully circumscribing the scope of questions or 
inputs. The amount of information requested and the response 
frequency are essential aspects to think ahead to maximize the 
continuous use of the device. If there is an intermediate user 
interface, following standard UX/UI (user experience/user inter-
face) guidelines is a good starting point for optimization but might 
not be sufficient according to the target population group. It is 
crucial to design without making assumptions but by getting 
patients’ early feedback through co-construction or participatory 
design [3–5]. In summary, there are several considerations that one 
needs to plan before deploying a solution-using active probing that 
involves the device itself but also how the user interacts with it. 

2.1.1 Interaction with the 

User 

Recording the subject’s response can provide unique information 
about the occurrence of experiences and the cognitive processes 
that unfold over time. We can record the user’s feedback at specific 
points in time or continuously by taking advantage of the interac-
tion between the user and a device (see Fig. 1a). 

Manual devices: response buttons, switches, and touchscreens. 
These devices capture conventional key or screen presses via 
switches or touchscreens, usually operated by hand. A switch con-
nects or disconnects the conducting path in an electrical circuit, 
allowing the current to pass through contacts. They allow a subject 
to send a control or log signal to a system. They have been largely 
used, for several decades, in computer-based experiments for psy-
chology, psychophysiology, behavioral, and functional magnetic 
resonance imaging (fMRI) research. The commonly obtained 
metrics are specific discrete on/off responses (pressed or not) and 
reaction time [6]. It is usually necessary to measure a person’s 
reaction time to the nearest millisecond which requires dedicated 
response pads. Indeed, general-purpose commercial keyboards and 
mice have variable response delays ranging from 20 to 70 ms, a 
range comparable to or lower than human reaction time in a simple 
detection task [7]. On the other hand, dedicated computerized 
testing devices seek to have less variable and smaller response 
delay. They introduce less variation and biases in timing measure-
ments [7] by addressing problems such as mechanical lags, deboun-
cing, scanning, polling, and event handling. Commercially available 
response-button boxes (e.g., Psychology Software Tools, Inc., 
Sharpsburg, PA, USA; Cedrus Corporation, San Pedro, CA, 
USA; Empirisoft Corporation, New York, NY, USA; Engineering



Solutions, Inc., Hanover, MD, USA; PsyScope Button Box by New 
Micros in Dallas, TX, USA) have few options and specific layouts to 
collect responses according to standard gamepad layouts while still 
being usually customizable for more specific applications. 
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Alternatively, touchscreens can be used to detect discrete 
responses with screen coordinates of the touch or pressing. They 
come in many forms, and the most popular type works with capaci-
tive or resistive sensors. Resistive touchscreens are pressure-
sensitive, and capacitive screens are touch-sensitive. Nowadays, 
capacitive screens are more used because of their multi-touch cap-
abilities, short response time, and better light transmission. How-
ever, if an application needs the exact coordinates of the contact, 
the inductive touchscreens are more suited. This technology is 
usually featured in the highest priced tablets along with a special 
pen that induces a signature electromagnetic perturbation that 
improves its precision compared to finger pointing. The disadvan-
tage of touchscreens is that they lack tactile feedback and have high 
energy consumption. For collecting continuous responses, a joy-
stick, computer mouse, or touchscreen may be used to track move-
ment trajectories supposedly reflecting the dynamics of mental 
processes [8]. 

Connected devices have been introduced in many domains of 
everyday life and, more recently, in health and research settings, 
sometimes with medical-grade applications [9]. Such devices may 
include sensors of health-relevant physiological parameters (e.g., 
weight, heart rate, and blood pressure) or health-related behaviors 
(e.g., treatment compliance). These connected systems make data 
collection more systematic and readily available to the clinical prac-
titioner. They are automatically integrated into data management 
systems. For example, on a pre-specified schedule, the patient will 
measure his/her blood pressure with a so-called smart blood pres-
sure monitor, which may provide reminders and record and trans-
mit these measurements to his/her doctor. Active connected 
devices (which require the patient to participate in the data collec-
tion process) may also track behavior: a connected pillbox would 
allow monitoring that the patient takes the medication according to 
the prescribed schedule [10]. In a subsequent part of this chapter, 
we will refer to passive connected medical devices (which perform 
measurements without the intervention of the user/patient), such 
as fall detection systems. 

2.1.2 Subjective 

Assessments 

With current knowledge and technologies, data that reflect psycho-
logical states such as emotions and thoughts can only be obtained 
by active data probing of the patient or an informer, usually a 
partner, family member, or caregiver (see Fig. 1b). The long history 
of psychological assessment provides rich conceptual and method-
ological frameworks for collecting valid measures of subjective



states when collected with a traditional semi-directed interview or 
paper-and-pencil questionnaires. Nevertheless, the novel possibili-
ties allowed by mobile technologies challenge those traditional 
well-validated assessment tools by renewing the format and the 
content of questions addressed to the user. In medical care and 
research, patient-reported outcomes are at the heart of a paradig-
matic change in medicine and clinical research, where patient-
centric measures tend to be favored over pure biomedical targets. 
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Subjective assessments may sometime take the form of utter-
ances or text. For machine learning applications, those have to be 
converted into data usable for feeding mathematical models. Natu-
ral language processing (NLP) tools have recently made substantial 
progress thanks to deep learning techniques, making even complex 
spontaneous oral or written language amenable to machine 
processing [11]. 

2.2 Passive Data 

Probing 

In passive data probing, the data is collected without explicitly 
asking the subject to provide the data. It provides an objective 
representation of the subject’s state in time. In scenarios where 
the data needs to be acquired multiple times a day, passively collect-
ing the data is a more valuable and ecological way to proceed. It 
allows objectively measuring the duration and frequency of specific 
events and their evolution in time. In contrast with active data, 
probing can provide more samples over a period. Since meaningful 
events might be embedded in the collected data, this probing type 
requires reviewing historical loggings or computer applications to 
extract the information of interest. 

2.2.1 Inertial and 

Positioning Systems 

Detection of whole-body activities (such as walking, running, and 
bicycling), as well as fine-grained hand activity (such as smartphone 
scrolling, typing, and handwashing), can allow the arduous task of 
studying and monitoring human behavior, which is of great value 
to understand, prevent, and diagnose brain diseases as well as to 
provide care and support to the patient. The change in physical 
activity and its intensity, the detection of sleep disorders, fall detec-
tion, and the evolution or detection of a particular behavior are 
some possibilities that can be assessed with inertial sensors. 

Identifying specific activities of a person based on sensor data is 
the main focus of the broad field of study called human activity 
recognition (HAR). A widely adapted vehicle for achieving HAR’s 
goal is passive sensor-based systems that use inertial sensors (see 
Fig. 1c), which transduce inertial force into electrical signals to 
measure the acceleration, inclination, and vibration of a subject or 
object (see Fig. 2a). These systems are commonly included in 
today’s portable electronic devices such as mobile phones, smart-
watches, videogame controllers, clothes, cameras, and 
non-portable objects like cars and furniture. Besides offering the 
advantage, due to their reduced size, of being embeddable in



almost any possible device, they are perceived as less intrusive of
personal space than other HAR systems, such as camera and
microphone-based systems [ ], allowing to sense more naturalis-
tic motion information uninterruptedly. Most prior work on activ-
ity detection has focused on detecting whole-body activities that
reflect ambulatory states and their degree of locomotion or lack of
it, such as running, walking, cycling, lying, climbing stairs, falling,
sitting, standing, and monitoring the sleep–wake cycle. Whole-
body activities differ from fine-grained human actions, usually
undertaken by the hands (see Fig. ). These hand activities are
often independent of whole-body activity, for instance, sending a
text from your smartphone while walking. A sustained sequence of
related hand gestures composes a hand activity. Hand gestures like
waves, flicks, and snaps tend to have exaggerated motions (used for
communications), and hand activities are more subtle, discontinu-
ous, and of varying durations [ ]. Examples of complex hand12

2b
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Fig. 2 Inertial sensors.  (a) Representation of an inertial measurement unit (IMU) depicting the sensing axes and 
the corresponding yaw, pitch, and roll rotations. (b) Exemplar accelerometer profiles of two hand gestures 
(hand rubbing and key locking) for three subjects showing the similar periodic nature of the hand movements. 
(c) Operating principle of an MEM accelerometer. When a force is detected due to a compressive or extensive 
movement, it is possible to determine the displacement x and acceleration since the mass and spring 
constants are known. (d) Representation of a simple gyroscope model. (e) The magnetic field generated by 
electric currents, magnetic materials, and the Earth’s magnetic force exerts a magnetic force detectable by a 
magnetometer sensor

https://www.zotero.org/google-docs/?Tzzf7g


gestures are writing, typing, painting, searching the Internet, smok-
ing, eating, and drinking. The way one approaches whole-body 
activity detection differs from fine-grained activity recognition in 
terms of the analysis approach (e.g., selected features), sensor con-
figuration (e.g., higher sampling frequency for fine-grained activ-
ities than for whole-body activities), and location on the body (e.g., 
wrist vs. hip). In both detection problems, the most common 
sensors used for HAR applications are accelerometers, gyroscopes, 
and magnetic sensitive sensors (see Fig. 2c–e).
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Accelerometers Accelerometers are sensors used to measure linear acceleration, viz., 
change in velocity or speed per time interval of the object being 
measured along reference axes. Furthermore, one can obtain veloc-
ity information by integrating accelerometry data with respect to 
time. The measuring acceleration unit in the International System 
of Units (SI) is a meter per second squared (m/s2 ). Since we can 
distinguish a static component in the accelerometer signal as the 
gravitational acceleration, it is also common to use the unit G-force 
(g) to distinguish the relative free-fall gravitational acceleration 
with a conventional standard value of 1 g = 9.81 m/s2 . A simplistic 
representation of the accelerometer’s operation principle is based 
on a suspended mass attached to a mechanical suspension system 
with respect to a reference inside a box, as shown in Fig. 2c. The 
inertial force due to gravity or acceleration will cause the suspended 
mass to deflect according to Hooke’s law (F = mk) and Newton’s 
second law (F = ma), where F denotes the force (N), m is the mass 
of the system (kg), k is the spring constant, x is the displacement 
(m), and a is the acceleration (m/s2 ). This acceleration force can 
then be measured electrically with the changes in mass displace-
ment with respect to the reference. To better understand this 
working principle, you can think of your experience as a passenger 
in a car rapidly moving back and forth and how the forces acting on 
you make you incline backward and forward on your seat. In 
nowadays-electronic devices, we find mostly miniaturized semicon-
ductor accelerometers (microelectromechanical systems or 
MEMs), which are small mechanical and electrical devices mounted 
on a silicon chip. The most common types are piezoresistive, pie-
zoelectric, and differential capacitive accelerometers [13]. Since the 
accelerometer is usually a built-in component embedded in a 
mobile device, the data we can obtain is provided in the XYZ 
coordinate system of the accelerometer component. The XYZ ori-
entation is specific to each device, and its coordinate system is 
found in the datasheets of the components. 

When processing the accelerometer signals, separating the 
acceleration due to movement from gravitational acceleration and 
noise sources (e.g., electronic device and measurement conditions) 
is necessary. A low-pass filter with a cutoff frequency of 0.25–3  Hz  
is usually applied to raw data to remove noise [14]. Alternatively,



transforming the raw accelerometer data to the vector magnitude 
(Eq. 1), which measures the instantaneous intensity of the subject’s 
movement at time t can be done before filtering to remove noise 
and/or gravity from body acceleration. The following processing 
steps usually include normalization (min–max, division by maxi-
mum absolute value, or division by the mean). 
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vm tð Þ= Ax tð Þ2 þ Ay tð Þ2 þ Az tð Þ2 ð1Þ 
A time-window segmentation is often necessary to retrieve 

information from the accelerometer time series. The epochs are 
usually consecutive sliding windows with an overlapping percent-
age (usually 50% overlap). Different window sizes can be compared 
to identify the optimal size for HAR analysis. 

Gyroscope A gyroscope is an inertial sensor that measures the rate of change of 
the angular position over time with respect to an inertial reference 
frame, also known as angular velocity or angular rate. The principle 
of function of MEM’s gyroscopes is based on the Coriolis effect, 
which acts on moving objects within a frame of reference that 
rotates with respect to an inertial frame. Figure 2d represents a 
simple gyroscope model where a mass suspended on springs has a 
driving force on the x-axis and angular velocity ω applied about the 
z-axis, causing the mass to experience a force in the y-axis as a result 
of the Coriolis force. In an MEM’s gyroscope, the resulting dis-
placement is measured by a capacitive sensing structure. The angu-
lar velocity unit is deg./s, but expressing it in radians per second 
(rad/s) is also common. A gyroscope can provide information 
about activities that involve rotation around a particular axis. A 
triaxial gyroscope can provide information from three different 
angles, pitch (x-axis), roll (y-axis), and yaw (z-axis), to help estimate 
the movement signature’s orientation and rotation. 

In human activity recognition, the gyroscope activity helps 
provide information about activities involving rotation around a 
particular axis. While a gyroscope has no initial frame of reference 
like gravity, it can be combined with accelerometer data to measure 
angular position and help determine an object’s orientation within 
3D space. To obtain the angular position, we can integrate the 
angular velocity with Eq. 2, where p = yaw, pitch, and roll and θp0 
is the initial angle compared to the Earth’s axis coordinates. 

θ tð  Þ= 
t 

0 

_θp tð Þdt þ θp0 ð2Þ 

When the changes in angular velocity are faster than the sam-
pling frequency, one will not be able to detect them, and the error 
will continue to increase with time. This error is called drift. There-
fore, the sampling rate value should be carefully chosen since gyro-
scopes are vulnerable to drifting over the long term.
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Magnetic Sensitive 

Sensors (e.g., Hall Sensor) 

Magnetic sensors measure the strength and direction of the Earth’s 
magnetic field and are affected by electric currents and magnetic 
materials (see Fig. 2e). Most MEM’s magnetic sensors are based on 
magnetoresistance to measure the surrounding magnetic field, 
meaning that the resistance changes due to changes in the Earth’s 
and nearby magnetic fields. They can detect the vector character-
ized by strength and direction toward the Earth’s magnetic north, 
and with it, one can estimate one’s heading. This vector is vertical at 
the Earth’s magnetic pole and has an inclination angle of 0°. When 
used with accelerometers and gyroscopes, it can help to determine 
the absolute heading. 

IMU Technology The combination of accelerometers, gyroscopes, and sometimes 
magnetometers in a single electronic device is referred to as an 
inertial measuring unit (IMU). Here are some considerations 
when choosing an IMU system or a device that contains an acceler-
ometer, gyroscope, or magnetic sensor for HAR applications: 

1. Dynamic range. Dynamic range refers to the range of maxi-
mum amplitude that the sensor can measure before distortion. 
In the case of accelerometers, where the amplitude in locomo-
tion increases in magnitude from cranial toward caudal body 
parts, they are typically measured in powers of two (±2G, ±4G, 
±8G, and so on), with an amplitude range of ±12G for whole-
body activities [15]. Gyroscopes are grouped by the angular 
rotation rate they can quantify (in thousands of degrees/sec-
ond). The measuring range of magnetometers is in 
milliTesla (mT). 

2. The number of sensitive axes. Inertial units that can sense in 
three orthogonal planes (triaxial) are suitable for most applica-
tions since different directions contribute to the total complex 
movement patterns. 

3. Bandwidth. The sampling rate determines the frequency range 
that can be represented in a waveform. Its unit is samples per 
second or Hertz. For HAR applications, the bandwidth of 
human accelerations of interest must be covered by the sensor’s 
sampling rate. The sampling rate selection depends on the 
activity of interest, the measured axes, and the body part to 
which the sensor is attached. For instance, walking at natural 
velocity ranges from 0.8 to 5 Hz when measured in the upper 
body, whereas abrupt accelerations up to 60 Hz have been 
measured at the foot level [15]. For typical whole-body activ-
ities (like lying, sitting, standing, and walking), sampling rates 
are usually between 50 and 200 Hz. Still, some studies use low 
ranges 20–40 Hz or as high as 4 kHz [12, 16] with analysis 
window lengths from 2 to 15 s [14]. A study has reported that 
frequencies from 0 to 128 Hz best characterize most human 
activities via hand monitoring [12].
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4. Interface and openness. In HAR applications, IMUs interface 
with other systems for signal processing. It is essential to know 
the communication protocol for data transfer and the degree of 
openness of the chosen system to allow configuration and 
extraction of raw signals since not all commercial systems 
allow raw signal extraction or changes in some parameters, 
like the sampling frequency. 

5. Sensor biases. Sensor bias refers to the initial offset in the signal 
output when there is no movement. In the case of MEM’s 
inertial sensors, it is often indicated as a zero-g offset for accel-
erometers and a zero-rate offset for gyroscopes. It has been 
shown that there is a large range of bias variability among 
different commercial devices and between devices of the same 
model [17]. Large uncompensated bias in HAR applications 
can lead to difficulties in detecting states when using different 
devices. In these cases, oriented data fusion techniques can be 
used to compensate the biases’ effect on the data. 

Raw signal periods are further decomposed into a few numbers 
(in the tens) of features. These are reduced variables of original raw 
data that represent the main characteristics of the signal. Inertial 
features are usually a mixture of frequency-domain features and 
time-domain features, although there are some rare cases of meth-
ods that process raw accelerometer data [12]. Table 1 summarizes 
the most common features applied to human activity recognition 
using machine learning and groups them into four domain cate-
gories: statistical, frequency, time, and time–frequency. Statistical 
features are descriptive features that summarize and give the varia-
bility of the time series. Time-domain features give information on 
how inertial signals change with time. For instance, zero-crossing is 
the number of times the signals change from positive to negative 
values in a window length. Together with frequency-domain fea-
tures capturing how the signal’s energy is distributed over a range 
of frequencies, they are useful to capture the repetitive nature of a 
signal that often correlates to the periodic nature of the human

Table 1 
Accelerometer features for machine learning applied to human activity recognition 

Features Statistical features Kurtosis, skewness, mean, standard deviation, interquartile range, 
histogram, root mean square, and median absolute deviation 

Time-domain 
features 

Magnitude area, zero-crossing rate, pairwise correlation, and 
autocorrelation 

Frequency-domain 
features 

Energy, entropy, dominant frequency (maximum and median frequency) 
and power of dominant frequency, cepstral coefficients, power 
bandwidth, power spectral density, and fundamental frequency 

Time-frequency 
features 

Spectrogram [12], wavelets, spectral entropy [18]



activity. Their advantage is that they are usually less susceptible to 
signal quality variations. Time–frequency features such as spectro-
grams give information about the temporal evolution of the spec-
tral content of the signals. They can represent context information 
in signal patterns, but they have higher computational costs than 
other features. Indeed, the low computational cost is a desired 
characteristic of HAR for their applications, and it is no surprise 
that most applications with smartphones that use inertial sensors 
use time-domain features [19].
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Data Fusion Data fusion is the concept of combining data from multiple sources 
to create a result with an accuracy that is higher than that obtained 
from a single source. IMUs can be used to simultaneously provide 
linear acceleration and angular velocity of the same event, as well as 
the device’s heading. Data fusion techniques provide complemen-
tary information to improve human activity recognition. Impor-
tantly, they can also be used to correct each other since each IMU 
sensor has different strengths and weaknesses that can be combined 
for a better solution. Accelerometers can measure gravity for long 
terms but are more sensitive to certain scenarios, such as spikes. 
Gyroscopes can be trusted for a few seconds of relative orientation 
changes, but the output will drift over longer time intervals, and 
magnetometers are less stable in environments with magnetic 
interferences. 

Data fusion techniques can be divided into three levels of 
applications: sensor-level fusion, feature-level fusion, and 
decision-level fusion [20]. In sensor-level fusion, the raw signals 
from multiple sensors are combined before feature extraction. For 
instance, accelerometers are sensitive to sharp jerks, while gyro-
scopes tend to drift over the long term; thus, sensor-level fusion 
helps with these problems. This is achieved via signal processing 
algorithms, where the most popular algorithms are the Kalman 
filter [21] and the complementary filter [22]. The first, an iterative 
filter that correlates between current and previous states, consists of 
low- and high-pass filtering to remove gyroscope drift and acceler-
ometer spikes. Feature fusion refers to the combination of multiple 
features from different sensors before entering them into a machine 
learning algorithm through feature selection and reduction meth-
ods such as the principal component analysis (PCA) and singular 
value decomposition (SVD). Feature fusion helps in identifying the 
correlation between features and working with a smaller set of 
variables. The models’ results (e.g., multiple classifiers) are com-
bined in decision fusion to have a more accurate single decision. 
The aim is to implement fusion rules to get a consensus that would 
help in improving the algorithm’s accuracy and have a better gen-
eralization. These rules include majority voting, boosting, and 
stacking [23].
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Benchmark Databases In the context of HAR, there are several advantages to having access 
to inertial databases. The most obvious one is that it allows for 
comparing several solutions. Inertial databases can be used to rap-
idly focus on the development of signal processing and machine 
learning solutions before spending time on the development and 
deployment of hardware sensing solutions. In the past years, several 
public databases have appeared in the literature for smartphone and 
wearables studies. The list of the main databases of inertial sensors 
used in research work is gathered in Lima and colleague’s review 
[19] and in Sprager and Juric’s review [24]. 

Global Positioning System: 

Geospatial Activity 

The Global Positioning System (GPS) is a global navigation system 
based on a network of GPS satellites, ground control stations, and 
receivers that work together to determine an accurate geographic 
position at any point on the Earth’s surface. The widespread inte-
gration of GPS into everyday objects such as smartphones, naviga-
tion systems, and wearables (GPS watches) has enabled the 
objective measurement of a person’s location and mobility with 
minimal retrieval burden and recall bias [25]. At a basic level, raw 
data from GPS provide latitude, longitude, and time [26]. These 
data can be further processed to provide objective measurements of 
location and time, such as measurements of trajectories and loca-
tions in specific environments. Newer GPS can provide variables 
such as elevation, indoor/outdoor states, and speed. GPS devices 
have proven to be useful tools for studying and monitoring physical 
activity [27]. When combined with inertial sensors, it is possible to 
identify activity patterns and their spatial context [28]. The spatial 
analysis can then be contextualized with environmental attributes 
(presence of green space, street connectivity, cycling infrastructure, 
etc.). The data is often analyzed using commercial or open-source 
geographic information systems (GIS), software for data manage-
ment, spatial analysis, and cartographic design. According to Krenn 
and colleagues [28], the main limitation of using GPS in health 
research is the loss of data quality. Indeed, urban architecture and 
dense vegetation can lead to signal dropouts. 

2.2.2 Interaction with the 

Environment 

When a residence uses a controller to integrate various connected 
objects or home automation systems, we refer to the home as a 
smart home. In a smart home, the role of the home controller is to 
integrate the home automation systems and enable them to com-
municate with each other. In this approach, the subject does not 
need to carry a device; instead, the environment is equipped with 
devices that can collect the required data (see Fig. 1d). In smart 
homes, we can find diverse appliances with some degree of automa-
tion. Perhaps the most popular commercial device is the smart 
speaker, equipped with a virtual assistant that responds to voice 
commands. More and more common virtual assistant technologies 
have expanded the use of speech processing, and the so-called vocal



biomarkers are being considered into precision medicine 
[29]. These technologies can be embedded in what is known as 
affective signal processing, for example, to monitor the mood states 
of home residents [30]. 
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Smart plugs are another type of smart device that fits into 
existing wall outlets. They connect to the Wi-Fi or Bluetooth 
network and enable the control of various appliances by turning 
them on and off on pre-programmed schedules. Although they are 
not sensing devices that collect data per se, by activating the appli-
ances, they allow the interaction between the user and the environ-
ment, and they can be used to activate sensing devices. Other smart 
devices that typically do not collect data from the user but enable 
interaction with the environment include smart light bulbs that can 
be turned on at specific times and allow to be controlled to create a 
colorful ambiance, smart thermostats to control room temperature, 
and smart showers. Other smart systems that allow data collection 
and interaction with the user and the environment include smart 
refrigerators that register the door’s opening and the amount of 
food inside. They also offer the ability to view recipes and videos 
and adjust the water temperature through a touchscreen. Smart 
devices that help with sleep are smart mattresses, sleep trackers, and 
sleep noise machines. 

Finally, when installed in strategic places, presence detectors or 
switches that detect the opening and closing of doors and windows 
can work together to create a map of presence and displacement 
activity inside the smart home. 

The advent of smart home technology has fostered its develop-
ment in medicine and human research. One such example is the use 
of surveillance cameras, which were initially deployed for security 
monitoring of goods and may now be used to detect falls by elderly 
persons in everyday life, thanks to advanced image processing 
techniques [31]. Home automation systems built around dedicated 
single-board computers (e.g., Raspberry Pi) expand behavioral 
tracking capabilities to more complex behaviors using off-the-
shelf components [32]. 

2.2.3 Interaction 

Between Users 

The massive adoption of Internet of Things (IoT) devices has made 
it possible to have a network of interconnected devices that interact 
to collect and analyze data using an Internet connection for remote 
computing (see Fig. 1e). Interaction between devices may be used as 
a proxy to inform about the collective and individual behavior of 
the user(s) carrying them. This interaction is possible due to 
numerous wireless technologies that enable communication 
among devices, such as Wi-Fi and Bluetooth. Moreover, a richer 
picture of the social world may be obtained from the traces of 
interactions in cyberspace, such as the analysis of individual devices’ 
communication. Research using the phone call detail records of a 
sample of elderly participants in France demonstrated that such



passive data could represent a low-cost and noninvasive way to 
monitor the fluctuations of mood [33], working as a “social sensor 
containing relevant health-related insights.” 
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Within the wireless technologies available, Bluetooth is widely 
present in everyday technological devices, and it can be used as a 
mean to measure the interaction between users. It is based on a 
radio frequency that allows nearby devices to exchange data wire-
lessly. Bluetooth devices are paired (established logical link) before 
transmitting the information for security reasons. Each Bluetooth 
device is addressable by a unique Bluetooth device address assigned 
during manufacturing in addition to a textual modifiable identifier 
[34]. Once the devices are Bluetooth-enabled, they act as passive 
tools that can be used in the context of interaction monitoring 
between individuals. The reason why Bluetooth is better fitted to 
this purpose than Wi-Fi is that the former is mainly used for linking 
electronic devices for only short communication bouts using rela-
tively small amounts of data and requires less power compared to 
Wi-Fi, which is designed to shuttle larger amounts of data between 
computers and the Internet. Another reason is that Bluetooth 
technology is rapidly evolving, offering simpler connectivity proto-
cols between devices and better security, together with faster com-
munication (Bluetooth V3) and lower energy consumption 
(Bluetooth Low Energy) with the latest version (Bluetooth 5) 
offering a more extensive range, speed, and bandwidth. 

Implicit Bluetooth encounters can be used to passively detect 
implicit connections between persons, model and predict social 
interactions, recognize social patterns, and create networking struc-
tures without monitoring physical areas and letting people feel 
observed. With the COVID-19 pandemic, massive efforts to 
deploy contact tracing systems to notify for risk of infection used 
a Bluetooth protocol in smartphones as a way to identify the risk of 
close contact with infected individuals. In this context, Bluetooth 
exchanges were considered encounters [35]. This is one remarkable 
example of Bluetooth technology showing how it can be applied to 
exploit users’ interactions in real time to help manage an important 
health issue in modern society. 

3 Applications to Brain Disorders 

A growing number of applications have been developed to collect 
and exploit sensor data for basic science and clinical applications 
related to the disorders of the nervous system—as well as in human 
behavior in general; see [36]. This section presents a selection of 
original and representative application examples where the previ-
ously presented sensors have been put into practice to prevent, early 
diagnose, monitor, and create tailored help for patients, with what



is referred to as digital phenotyping. The objective of this section, 
far from being an extensive review of the sensor-based applications, 
is to give an idea to the reader of how the same sensors can be used 
with different objectives across a broad range of brain disorders. 
The brain disorders mentioned here are Alzheimer’s disease 
(AD) (see also [37]), Parkinson’s disease (PD) [38], epilepsy [39], 
multiple sclerosis [40], and some developmental disorders and 
psychiatric disorders [41]. 
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3.1 Prevention The blooming market of mobile technologies in the field of well-
being and self-quantization, from basic logging to deep personal 
analytics, represents an opportunity to promote and assist health-
enhancing behaviors. For instance, as much as 85% of US adults 
own a smartphone [42] and 21% an activity tracker [42]. Digital 
prevention uses these mobile technologies to advise and anticipate a 
decline in health, the goal being to prevent health threats and 
predict event aggravation by monitoring continuous patient status 
and warning indications. 

An example of digital prevention in the psychiatric domain 
includes specific tools to prevent burnout, depression, and suicide 
rates. Web-based and mobile applications have been shown to be 
interesting tools for mitigating these severe psychiatric issues. For 
instance, a recent study [43] showed how the combination of a 
smartphone app with a wearable activity tracker was put into use to 
prevent the recurrence of mood disorders. With passive monitoring 
of the patient’s circadian rhythm behaviors, their ML algorithm was 
able to detect irregular life patterns and alert the patients, reducing 
by more than 95% the amount and duration of depressive episodes, 
maniac or hypomanic episodes, and mood episodes. 

In specific contexts known for being risk-prone with respect to 
mental health, e.g., high psychological demand jobs, as well as in 
more general professional settings, organizations have been start-
ing to deploy workplace prevention campaigns using digital tech-
nologies [44]. In a study by Deady and colleagues [45], the authors 
developed a smartphone app designed to reduce and prevent 
depressive symptoms among a group of workers. The control 
group had a version of the app with a monitoring component, 
and the intervention group had the app version that included a 
behavioral activation and mindfulness intervention besides the 
monitoring component. Their study showed how the smartphone 
app helped prevent incident depression in the intervention group 
by showing fewer depression symptoms and less prevalence of 
depression over 12 months compared to the control group. Both 
these examples show how using smartphones and wearable devices 
can reduce symptoms and potentially prevent mental health 
decline.
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3.2 Early Diagnosis Although, in the brain care literature, most applications for diag-
nosis with ML use anatomical, morphological, or connectivity data 
derived from neuroimaging [46], there is a growing body of evi-
dence indicating that common sensors could be used in some cases 
to detect behavioral and/or motor changes preceding clinical man-
ifestations of diverse brain diseases by several years. In contrast, in 
neurodegenerative diseases like AD [47], PD [48], and motor 
neuron disease (MND) [49], the symptoms manifest when a sub-
stantial loss of neurons has already occurred, making early diagnosis 
challenging. Because of this, with the increasing adoption of ML in 
research and clinical trials, directed efforts have been made to 
diagnose neurodegenerative diseases early. As an example, in PD, 
a study used IMU in smartphones to characterize gait in the senior 
population, detecting gait disturbances, an early sign of PD, and 
showing the feasibility of the approach with a patient who showed 
step length and frequency disturbances and who was later formally 
diagnosed with PD [50]. Apathy, conventionally defined as an 
“absence or lack of feeling, emotion, interest or concern” [51], is 
one of the most frequent behavioral symptoms in neurological and 
psychiatric diseases. In the daily life of patients, apathy results in 
reduced daily activities and social interactions. These behavioral 
alterations may be detected as a reduction in the second-order 
moment (variance) of location data (as tracked with GPS measure-
ments [52]) and in the first-order moment (average quantity) of 
accelerometer measures (e.g., [53] in the context of schizophrenia 
patients). 

Sensors can also be used to differentiate between disorders that 
have shared symptoms, accelerating diagnosis and treatments. For 
instance, a study [54] that used wrist-worn devices containing 
accelerometers analyzed measures of sleep, circadian rhythmicity, 
and amplitude fluctuations to distinguish with 83% accuracy pedi-
atric bipolar disorder (BD) and attention-deficit hyperactivity dis-
order (ADHD), two common psychiatric disorders that share 
clinical features such as hyperactivity. 

3.3 Symptom and 

Treatment Monitoring 

Monitoring day-to-day activities and the evolution of symptoms is 
impossible for health providers outside the clinic without auto-
mated detection of events of interest and deployment of mobile 
interventions. Much like apathy, described above, many other psy-
chological constructs may be sensed from continuous monitoring 
of behavioral parameters, such as agitation or aberrant mobile 
behavior [55, 56]. 

Sleeping is one activity that cannot be monitored in any other 
way than with passive data probing in an ecological manner. Moni-
toring sleep is relevant when studying sleep disturbance, a core 
diagnostic feature of depressive disorder, anxiety disorders, bipolar 
disorder, and schizophrenia spectrum disorder. In this sense, sleep 
patterns have been scored using light sensors in mobile devices and



usage data, allowing digital phenotyping of the users that, com-
pared to the average, go to bed and wake up later and more often. 
Disrupted sleep patterns have also been assessed with wrist-worn 
accelerometers to monitor sleep changes in various psychiatric dis-
orders [57], as well as considered a potential psychiatric diagnostic 
tool in bipolar disorder, where sleep changes are a warning sign of 
an affective episode [58]. 
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Given the progressive nature of some diseases, such as Alzhei-
mer’s and Parkinson’s diseases, the individuals suffering from them 
must be monitored often or even continuously. In both cases, the 
patients suffer from functional and cognitive decline, where con-
tinuous objective monitoring could help detect the decline in daily 
capabilities providing opportunities for assistance. In the literature 
interested in monitoring Alzheimer’s disease, the studies mainly 
focus on the detection of abnormal behavior, the detection of 
autonomy in activity performance, the provision of assistance with 
cognitive or memory problems, and the monitoring of functional 
and cognitive decline [59]. To objectively assess autonomy at 
home, video cameras and tags on house objects along with a mobile 
phone application were used in a study [60] with mild cognitively 
impaired patients, Alzheimer patients, and healthy controls. The 
activities examined included online payment, preparing a drink, 
medicine box preparation, and talking on the phone. To monitor 
cognitive decline, Lyon and colleagues from the Oregon Center for 
Aging and Technology (ORCATECH) [61] placed a smart sensor 
platform in 480 homes of an elderly population in an 8-year longi-
tudinal study. The sensors included wireless passive infrared motion 
sensors, wireless magnetic contact sensors placed outside the door 
and in the refrigerator, a personal computer that recorded time 
spent in the computer and the mouse movements, worn actigraphs 
to measure mobility patterns, and, in some cases, connected objects 
such as medication trackers, phone monitors, and wireless scales. 
Using these multimodal data and applying sensor fusion techni-
ques, they could identify decline in cognition, loneliness, and mood 
anomaly. Finally, as nighttime wanderings and memory loss are 
common characteristics of Alzheimer’s patients, GPS solutions are 
increasingly used by caregivers to locate missing patients but are 
also recently being used in various studies [62] as effective nonin-
vasive means of monitoring mobility in these patients. GPS solu-
tions have also been exploited in other areas, such as in monitoring 
anxiety disorders. For instance, GPS data has helped predict social 
anxiety scores among college students by analyzing mobility fea-
tures and detecting that socially anxious students avoid public areas 
and engage less in leisure activities to spend more time at home 
after school [63]. 

An interesting advantage of in-home monitoring of symptoms 
is collecting ecological data allowing clinicians to contextualize 
sensor data to guide potential medication changes. For instance,



Chen and colleagues [64] introduced a web-based platform that 
integrates data from wearable accelerometers and online surveys to 
estimate clinical scores of tremors, bradykinesia, and dyskinesia. 
The objective was to facilitate clinicians’ decision-making regarding 
titration and timing of medications in PD patients with later-stage 
disease. Along the same line, in the aforementioned ORCATECH 
study [61], specific medication trackers (electronic pillbox) were 
also used to complement behavioral assessment derived from sen-
sors: they demonstrated a significant impact of early cognitive 
deficits on medication adherence in everyday life. 
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Active probing of subjective assessment through the everyday 
life course of patients (commonly performed by smartphones and 
now smartwatches) is known as ecological momentary assessment 
(EMA) [61]. EMA aims at reducing memory bias and increasing 
the density of longitudinal data available in a single patient while 
exploring the possible influence of real-life contexts on cognitions 
and behaviors. EMA may thus capture the dynamic changes seen in 
psychiatric [65, 66] or neurological [67] conditions across hours, 
days, or longer periods, delivered according to either a predeter-
mined schedule or in response to some event of interest, as detected 
by the system. EMA may also be used in combination with other 
passive measures and can be particularly useful to provide a ground 
truth concerning subjective states (e.g., mood or apathy [53]). 

3.4 Tailored Help for 

Patients and 

Augmented Therapies 

Personalized or precision medicine consists in using collected data 
to refine the diagnosis and treatment of individual patients. In this 
sense, connected devices and mobile technologies could contribute 
to tailoring patients’ care. Moreover, personalized or augmented 
therapies can benefit from using smart devices and connected 
objects to add additional assistance to classic therapeutic 
approaches. 

An example of this is epilepsy, a central system disorder that 
causes seizures. Not only the unpredictability of seizure occurrence 
is distressing for patients and contributes to social isolation, but for 
unattended patients with recurrent generalized tonic–clonic sei-
zures (GTCS), this may lead to severe injuries and constitute the 
main risk factor of sudden unexpected death. This is why, in the 
epilepsy research field, much effort has been put into developing 
ambulatory monitoring with alarms for automated seizure detec-
tion, with most real-time application studies using wrist acceler-
ometers, video monitoring, surface electromyography (sEMG), or 
under-mattress movement monitors based on electromechanical 
films [68]. The general purpose of using these sensors is to detect 
unpredictable changes in motor activity or changes in autonomic 
parameters characteristic of seizures. 

Another illustrative case of the interest in mobile technology 
for helping patients in their everyday life concerns fall detection in 
older and /or gait-disabled persons: wireless versions of inertial and



pressure sensors have been used to monitor balance impairments in 
patients and to trigger an alert system when a fall is detected 
[69]. Data issued from mobile, wearables, and connected devices 
may also contribute to adjusting the therapeutic strategy followed 
by the healthcare provider. Omberg and colleagues [70] demon-
strated that in Parkinson’s disease patients, remote assessment 
through smartphones correlated with in-clinic evaluation of disease 
severity. In the context of rehabilitation following cerebrovascular 
lesions or neurocognitive training in neuropsychiatric disorders, 
connected devices may also contribute to making the rehabilita-
tion/training program more engaging for patients and improving 
its real-life efficacy [71]. 
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Finally, in the context of psychiatric disorders, mobile technol-
ogies may also support ecological momentary or just-in-time inter-
ventions (EMI), a promising venue for augmenting mental 
healthcare and psychotherapy through digital technologies 
[72, 73]. 

4 Considerations and Challenges 

When conceptualizing and developing a project involving human 
behavior recognition, it is essential to anticipate the known chal-
lenges and difficulties that can be encountered. We present the 
general known common challenges for connected devices under 
three groups: (1) those that are related to sensor function per se, 
(2) the challenges related to the signal processing and machine 
learning methods used to exploit the data and that are partly shared 
with other pattern recognition fields, and (3) the challenges raised 
by deploying real-life applications. 

4.1 Related to Sensor 

Function 

We refer to sample rate stability as the homogenous regularity time 
spans between consecutive samples. In a reliable device, the differ-
ence between different time spans between successive measure-
ments is close to zero. When this is not the case, the true measure 
by the sensor and the timestamp registered by the application 
differs. Common sources of sample rate instability are the inherent 
jitter by non-real-time operating systems that cannot guarantee 
critical execution time or access to resources and the additional 
communication delay between the devices and applications. 

4.1.1 Sample Rate 

Stability 

4.1.2 The Choice of 

Technology 

Sensors are usually input devices that take part in a bigger system, 
sending information to a processing unit so that the signals can be 
analyzed. When choosing a technology to work with, a careful 
choice of all of the parts must be pre-studied to avoid issues in 
usability and signal quality since these will have an impact on the 
difficulty of development and deployment, as well as on the long-
term use of the technology. For instance, if we need to record



inertial measurements and the body location is not a major issue, 
deciding between a dedicated IMU device, a smartwatch, or a 
smartphone would be necessary. Smartwatches, having fewer 
resources than smartphones, show larger sampling instabilities, 
especially under high CPU load [17], and then the question 
would be if a smartwatch would then be appropriate for the appli-
cation, and so, what model would provide the best sampling stabil-
ity over long recordings? Hardware memory usage limitations and 
power consumption are critical criteria to consider, especially for 
the long-term use of connected devices. Another issue is the open 
access to commercial devices. Most commercial devices (smart-
phones, smartwatches, and connected devices) offer the developers 
the opportunity to use their integrated sensors to develop applica-
tions using their platforms (i.e., Android, iOS, Tizen, etc.). Usually, 
the development of these commercial devices comes with certain 
restrictions. For instance, the developers do not have complete 
access to the device, and to modifications of the operating system, 
the programming language is usually restricted, and some 
pre-programmed tasks are usually impossible to modify. 
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4.1.3 Power 

Consumption 

One of the main problems preventing the massive expansion and 
adoption of HAR applications is excessive battery power consump-
tion [75]. Indeed, the major problems that lead to data loss are 
empty batteries, where the main sources of high power consump-
tion are the high data processing load and the continuous use of 
sensors. Some strategies can be adopted to minimize energy con-
sumption, although these imply a tradeoff between energy con-
sumption, signal richness, and the accuracy of classification models. 
The first strategy consists of on-demand activation of sensors only 
when necessary, in contrast to continuous sampling; this requires a 
continuous supplementary routine that automatically determines 
when the timing is appropriate to interrogate the sensor(s). Tech 
companies have dealt with this problem by integrating “sensor 
hubs,” i.e., low-power coprocessors that are dedicated to reading, 
buffering, and processing continuous sensor data for specific func-
tions such as step counting and spoken word detection (for 
instance, the specific function of detecting the famous popular 
voice commands “hello google” or “Alexa” for Google’s and Ama-
zon’s vocal assistants). The second strategy consists of choosing the 
sampling frequency of data collection. The higher the frequency in 
sampling data, the more energy the sensors, the processor, and the 
memory unit use. Previous knowledge of the signals and the fre-
quency necessary to capture events is needed to select a sampling 
frequency which is a good tradeoff between capturing relevant 
signal information and avoiding an unnecessary battery drop. The 
third strategy focuses on the applications where the data is pro-
cessed on the device by strategically selecting lightweight features

https://www.zotero.org/google-docs/?EOKWBg


to reduce the data processing load. For instance, in inertial data 
processing, time-domain features have lower computational costs 
than frequency- and time–frequency-domain features. Considering 
how sensors’ power consumption and applications affect battery 
life in worn systems with small batteries is essential. Since total 
power load is hard to estimate, it depends on many external factors 
such as the main application processor, access to memory by other 
applications, etc. A good practice is to record battery statistics for 
several days across different participants to estimate real-life use and 
average battery life. 
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4.2 Related to the 

Data 

Data collection consists of data acquisition, data labeling, and 
existing database improvement. It is one critical challenge in 
machine learning and often the most time-consuming step in an 
end-to-end machine learning application due to the time spent 
collecting the data, cleaning, labeling (for supervised learning), 
and visualizing it. The data required by the machine learning mod-
els can be experimental, retrospective, observational, and, in some 
cases, synthetic data. While retrospective data collection methods 
such as surveys and interviews are easy to deploy, they are subject to 
recall and to self-selection bias, and they might add tedious collec-
tion logistical issues if tools and programs in mobile devices are not 
deployed. Retrospective data collection is sometimes the only 
means to capture subjective experiences in daily life. Observation 
methods such as video-camera surveillance can be impractical for 
large-scale deployment and are often primarily used in small sample 
applications. Generation of synthetic data is sometimes necessary to 
overcome the lack of data in some domains, notably annotated 
medical data. This kind of data is created to improve AI models 
through data augmentation from models that simulate outcomes 
given specific inputs such as bio-inspired data [74], physical simula-
tions, or AI-driven generative models [75]. The issue with this is 
that there is a lack of regulatory frameworks involving synthetic 
data and their monitoring. Their evaluation could be done with a 
Turing test, yet this may be prone to inter- and intra-observer 
variabilities. Plus, data curation protocols can be as tedious and 
laborious as collecting and labeling real data. 

4.2.1 Data Collection 

The availability of large-scale, curated scientific datasets is cru-
cial for developing helpful machine learning benchmarks for scien-
tific problems [76], especially for supervised learning solutions 
where data volume and modality are relevant [77]. Even though 
machine learning has been used in many domains, there is still a 
broad panel of applications and fields, such as neuroscience and 
psychiatry, with few or even inexistent training databases. This is 
the case for connected devices’ and sensors’ derived datasets for 
brain disorder research. In contrast, there are nowadays larger 
neuroimaging and biological databases available, e.g., the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) and the Allen Brain



Atlas. Fortunately, following the moderate adoption of machine 
learning in the brain research field, a trend toward increasing shar-
ing of resources has emerged, but for now, it is mainly in the 
neuroimaging field. Each year, more scientific open data becomes 
available, although their curation, maintenance, and distribution 
for public consumption are challenging, especially for large-scale 
datasets. Another increasing trend in data collection or human 
annotation of data is through crowdsourcing marketplaces, having 
the advantage of giving access to diverse profiles from a large 
population sample, enabling to find more representative examples 
to train the models. 
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4.2.2 Database 

Validation and Signal 

Richness 

For applications in medicine and healthcare, the datasets used to 
train the ML models should undergo detailed examination because 
they are central to understanding the model’s biases and pitfalls. 
Before adopting an openly available dataset or creating one, there 
are some considerations that we have to keep in mind. Firstly, 
ensure a minimal chance of sample selection biases in the database 
(for instance, data acquired with particular equipment or with a 
particular setting). Errors from sample selection biases become 
evident when the model is deployed in settings different from 
those used for training. Secondly, we must be aware of the class 
imbalance problem that often occurs in cases where the data is rare 
(for instance, in low samples associated with rare diseases), which 
could negatively affect models designed for prognosis and early 
diagnosis. A few techniques can be adopted to help with class 
imbalance, such as resampling, adding synthetic data, or working 
directly with the model, such as weighting the cost function of 
neural networks. 

The data, often obtained from scientific experiments, should be 
rich enough to allow different analysis and exploration methods 
and carefully labeled when required. For instance, a semantic dis-
crepancy in the labels can dilute the training pool and confuse the 
classifier [78, 79]. In contrast with free-form text or audio to mark 
the activities, imperfect labeling by the users can occur when scor-
ing the samples with fixed labels. For instance, labeling similar 
activities from IMU systems, such as running and jogging under 
the fixed label-running, can induce errors in feature extraction 
because of their interactivity similarity. 

It is also important for signal richness to consider subject 
variability and consider differences between gender, age, and any 
other characteristic that could lead to improper data representation. 
Naı̈ve assumptions can cause actual harm by stigmatizing a popula-
tion subgroup when there is an implicit bias in data collection, 
selection, and processing [80]. These can be addressed by expand-
ing the solutions to inclusion at all levels and carefully auditing all 
stages of the development pipeline.
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4.3 Deployment for 

Real-Life Applications 

Real-work applicability requires that the accuracy be tested off 
laboratory settings, considering real-life factors besides technology 
function and data collection. Before deploying a solution using 
connected objects and sensors, these real-life use considerations 
should be addressed without deprecation. Indeed, factors such as 
user acceptance and behavior around the devices might even be 
more important than having a high positive prospect of technology. 
Here we briefly present three factors to keep in mind. These include 
thinking ahead of privacy issues and how to handle them, the 
potential degree of adoption, and wearability and instrumentation 
unobtrusiveness. 

4.3.1 Health Privacy Using mobile devices, connected objects, and sensors to collect 
data for machine learning for health applications is a process that 
generates data from human lives. In this sense, privacy is a common 
concern with health data. The concept of privacy in health refers to 
the contextual rules around generated data or information: how it 
flows depending on the actors involved, what is the process by 
which it is accessed, the frequency of the access, and the purpose 
of the access [81]. 

The machine learning community has generally valued and 
embraced the concept of openness. It is common for code and 
datasets to be publicly released and paper preprints to be available 
on dedicated archival services before an article is published (despite 
rejection). Therefore, regulatory bodies should encourage and 
enforce data holders to collect and provide data under clear legal 
protection. To ensure data security, these regulations might suggest 
adopting different solutions: not transmitting raw data, having an 
isolated sensor network, transmitting encrypted data, and 
controlling data access authorizations [82]. While individual 
countries decide where to draw the line regarding regulations, 
sometimes, depending on the data type, this is more or less difficult 
to define. For instance, there might be clearer limits on the exploi-
tation and use of patient video recordings because there is explicit 
reasoning that the patient’s identity is easily accessible with image 
processing. In contrast, this reasoning is less straightforward with 
other types of data. For instance, even though inertial sensor data 
might be sufficient to obtain information about a person based on 
their biometric movement patterns, these sensors are currently not 
perceived as particularly sensitive by the public. Part of this is 
because their privacy implications are less well-understood 
[83]. Thus, they tend to be much less protected (e.g., in wearable 
devices and mobile apps) compared to other sensors such as GPS, 
cameras, and microphones. Therefore, requiring proper permis-
sion, conscious advertised participation, and explicit consent from 
the user is essential, no matter the nature of the data collected.
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4.3.2 Perception and 

Adoption 

The perception and adoption of mobile devices, connected objects, 
and sensors refer to the negative or positive way the deployed 
solutions are regarded, understood, and interpreted by the users. 
This degree of perception directly affects the adherence to a proto-
col and the solution’s use or adoption over the long term. It is one 
of the most important factors to evaluate ahead of deployment in 
real-life scenarios. It implies a conscious effort to understand the 
patient’s situation and point of view. It can be overseen by devel-
opers and researchers who could focus more on the technical or 
scientific challenges to overcome or who, because of naivety or 
distance to the patient’s reality, might unwarily not include these 
considerations in their designs. 

The Technology Acceptance Model (TAM) [84], which can be 
applied to mobile devices, connected objects, and sensors, postu-
lates that two factors predict technology acceptance. The first one is 
the perceived usefulness or the degree to which a person believes a 
particular solution will enhance or improve the performance of a 
specific task. The second factor is perceived ease of use or the 
degree to which a person believes the solution proposed will be 
free of effort. The perceived ease of use and usefulness might vary 
according to the population target and should be studied carefully 
before deployment. For instance, the perceived ease of use is essen-
tial for the elderly [85], who are not core consumers of mobile 
wireless healthcare technology. There are, of course, other models 
and theories [86, 87] that have been published since the TAM was 
proposed, and they include other essential factors to take into 
account, such as social influence, performance and effort expec-
tancy, and facilitating conditions, or the perceptions of the 
resources and support available. Although these models have sev-
eral limitations [88], the identified factors are a good starting point 
to consider when designing a solution involving wearable, mobile 
devices, and connected objects. In addition to those factors, clear 
limits in the cost and benefit ratio of the technology must be 
communicated since it is one of the main barriers to their accep-
tance. In that sense, the scientific and healthcare community is 
responsible for efficiently approaching the patients and clearly 
explaining the expected positive outcomes and the advantages and 
disadvantages of the device’s ecosystems. 

4.3.3 Wearability and 

Instrumentation 

Unobtrusiveness 

Wearability refers to the locations where the sensors are placed and 
how they are attached to those locations. Wearable devices are 
typically attached to the body or embedded in clothes and acces-
sories. They are smartwatches and bracelets for activity trackers, 
smart jewelry, smart clothing, head-mounted devices, and ear 
devices [89]. Wearability is an aspect to consider because of its 
direct impact on data collection, signal richness, and quality. The 
goal is to ensure the device’s prolonged and correct use.
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In the 1990s, Gemperle and colleagues [90] proposed the first 
ergonomic guidelines on wearability. Since then, different “wear-
ability maps” have been proposed to approximate the best unob-
trusive locations for sensor placement in the human body. A source 
of the problem in wearability is that the sensors should be securely 
attached to the human body to prevent relative motion, signal 
artifacts, and degraded sensing accuracy. Smartwatches are desired 
to be worn on the dominant arm to capture most of the hand 
movement, but it is more comfortable for people to wear them 
on the passive arm. 

Similar to wearable devices, one desired characteristic of 
deployed sensors and tags in the environment is to ensure unob-
trusiveness. Unobtrusive sensing allows continuous recording of 
the patient’s activities, behaviors, and physiological parameters 
without inconveniences to everyday life [82]. This can be achieved 
by embedding small objects interacting with the subject into the 
ambient environment, for which the design and usability [91], 
especially for long-term monitoring, have been considered. There 
are some devices that are perceived as more invasive than others. 
For instance, special measures are taken when using cameras 
regarding sensor selection and sensor placement [82]. 

4.4 Incorporation 

into Clinical Care 

Although there is great potential for connected devices and sensors 
to prevent, early diagnose, monitor, and create tailored help for 
patients suffering from brain diseases, there is still a gap to fill to 
drive transformational changes in health. Besides the challenges 
mentioned in this section, significant barriers to clinical adoption 
include the lack of evidence in support of clinical use, the rapid 
technological development and obsolescence, and the lack of reim-
bursement models. These problems are often highlighted in pre-
liminary reports of government proposals [92–94] and 
publications related to mobile health challenges [95, 96]. 

There is a need for an extensive collection of real-world patient-
generated data to reinforce clinical evidence that will change health-
care delivery. To date, there is a limitation due to an underpowered 
number of available pilot datasets that make the comparability of 
studies difficult and therefore the adoption of these new technolo-
gies into the clinical field. Indeed, sensor datasets come mainly from 
actigraphy and are not as numerous as available neuroimaging, 
MEG, or EEG datasets. 

Opposite to the few large patient-generated evidence, the num-
ber of solutions for connected devices and sensors with added 
features continues to grow every year. This rapid development of 
technologies represents a challenge to clinicians who might per-
ceive difficulty in the feasibility and scalability of real-word imple-
mentations within the clinical workflow, especially since it is 
noticeable that devices become obsolete, outdated, or no longer 
useful very quickly. Another negative impact of the higher number



of alternatives in the market is that too much choice can be over-
whelming. In clinical trials and research, it can be challenging to 
choose a technical solution when there is little or no clinical evi-
dence and when the features proposed differ significantly between 
solutions. Even with well-established companies, for the consu-
mers, there is no guarantee that a product or its support will not 
be discontinued in the short term or that the product will not be 
rapidly replaced with a newer model. At the same time, ensuring 
that the chosen product will be well integrated with other products 
(e.g., compatible bricks between other sensors, software, operating 
systems, and processing units) is challenging. These factors add up 
to the paradox of choice [97], and it is a known consequence of 
choice overload. 
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With newer connected objects and sensors that appear in the 
market every month, there is also a rise in their associated mobile 
applications available. Among these mobile applications, the most 
popular categories are sports and fitness activity trackers, diet and 
nutrition, weight loss coaching, stress reduction and relaxation, 
menstrual period and pregnancy tracking, hospital or medical 
appointment tracking, patient community, and telemedicine 
[98]. Most of these applications are not regulated medical health 
solutions that work with certified medical devices. They are dedi-
cated to consumers only (not intended for collaboration between 
patients and healthcare professionals) and are usually considered or 
displayed as well-being apps. In this sense, while various govern-
ments worldwide have opted for different lines of action regarding 
the consideration of connected objects and sensors in their health 
programs, the appropriate reimbursement models in place are far 
from being well integrated into regulatory norms. Take the exam-
ple of France, where connected objects are rarely reimbursed by 
social security. For a product to be prescribed by a physician, it must 
be considered a regulatorily approved medical device, i.e., be 
registered in an official list of medical services and products. This 
list also establishes the proper use of the device, the support cost, 
the characteristics of the product, and the number of possible 
prescription renewals. The heavy administrative burden required 
to get registered discourages potential players from requesting 
medical approval. In particular, the product has to meet several 
compliance rules of the High Authority of Health (HAS), including 
the proven good performance of the connected object, the reliabil-
ity of the medical data transmitted, and the respect and protection 
of personal and confidential data. 

Even though many available connected objects and their 
mobile applications are not regulated medical health solutions, 
their rapid spread and adoption among the public are starting to 
pave the way for motivating future democratization and integration 
of these devices in public health policies.
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5 Discussion 

With the amount of innovation and development of smart devices 
and connected objects, together with the widespread of ML algo-
rithms implemented in faster processing units, we are now many 
steps closer to having a better understanding of the underlying 
neural mechanisms of brain disorders with the hope to better 
intervene at different stages: by preventing health decline, by early 
and more accurately diagnosing, and by helping to better treat and 
monitor patients. 

In this chapter, we presented the different types of data that one 
can gather with these devices according to the passive or active role 
that the user takes in their collection. Many of them are now widely 
adopted by modern society and used for self-monitoring (e.g., 
fitness trackers containing IMUs) or in smart home settings (e.g., 
virtual assistants and presence detectors). When these devices are 
used together, they represent an opportunity for data fusion allow-
ing the joint analysis of multiple datasets that provide an enhanced 
complementary view of the phenomenon of interest (e.g., detect-
ing a compulsive behavior like handwashing by combining inertial 
and acoustic data from a smartwatch). Without a doubt, some brain 
disorders are better suited for sensor-based assessments, like PD, 
because of their prominent motor symptoms, unlike other brain 
disorders whose symptom assessment requires the combination of 
close behavior observation and access to mental insight (e.g., mood 
disorders). In the second case, combining sensor data would reduce 
uncertainty in monitoring and diagnosing, especially when the 
samples are taken continuously in an ecological manner. 

Despite the promising results obtained with these intelligent 
systems, several conditions need to be addressed before a lab-made 
application becomes integrated into the clinical routine and in an 
unsupervised domestic environment. Indeed, most publications do 
not reach the final phase to be considered as medical devices. 
Concerning the use of sensors and devices for data collection, a 
series of considerations to be regarded was presented in Subheading 
4. Even though this list could be extended, overall, the main goal 
remains to assure reproducibility and unbiased collection of high-
quality data since ML models can only go so far as the data they 
rely on. 

An exciting, promising extension of the capabilities of smart 
devices and connected objects is their integration in a closed-loop 
setting, where the devices serve as real-time continuous monitoring 
tools that respond to events of interest to treat or intervene on 
demand and in real time. Indeed, this is a promising approach 
because of the advantage of early intervention.
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Furthermore, we are currently experiencing a new medical 
revolution with new sensors. Besides what has been presented 
here, much effort has been put into developing wearable biosen-
sors. These are sensing devices that recognize biological elements 
(e.g., enzymes, antibodies, and cell receptors), the most known 
example being glucose monitoring devices. These bioreceptor 
units are still in their infancy in terms of use and acceptance by 
the neuroscientific field and medical community in general, but we 
anticipate that their use and development will continue to grow in 
the brain disorder research field as smart devices and connected 
objects have. 

Finally, as data and better processing techniques keep increas-
ing, more collaborations between engineers, researchers, and clin-
icians are formed to contribute to the field of brain disorders 
positively. We believe that, in the foreseeable future, the rapid 
evolution of the presented technologies, their use, and their adop-
tion will be key to revolutionizing and addressing the challenges of 
the traditional medical approach regarding brain disorders. 
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Lamadé U, Vernon K, Meuth SG (2018) The 
use of digital and remote communication 

technologies as a tool for multiple sclerosis 
management: narrative review. JMIR Rehabil 
Assist Technol 5(1):e7805. https://doi.org/ 
10.2196/rehab.7805 

41. Torous J, Onnela J-P, Keshavan M (2017) New 
dimensions and new tools to realize the poten-
tial of RDoC: digital phenotyping via smart-
phones and connected devices. Transl 
Psychiatry 7(3):e1053. https://doi.org/10. 
1038/tp.2017.25 

42. Pew Research Center (2021) Mobile fact sheet. 
Pew Research Center: Internet, Science & 
Tech .  07  Apr  2021 .  h t tp s ://www.  
pewresearch.org/internet/fact-sheet/mobile/ 
(accessed 06 Oct 2022). 

43. Cho C-H et al (2020) Effectiveness of a smart-
phone app with a wearable activity tracker in 
preventing the recurrence of mood disorders: 
prospective case-control study. JMIR Ment 
Health 7(8):e21283. https://doi.org/10. 
2196/21283 
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