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Abstract 

Electronic health records (EHRs) are the collection of all digitalized information regarding individual’s 
health. EHRs are not only the base for storing clinical information for archival purposes, but they are also 
the bedrock on which clinical research and data science thrive. In this chapter, we describe the main aspects 
of good quality EHR systems, and some of the standard practices in their implementation, to then conclude 
with details and reflections on their governance and private management. 
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1 Introduction 

Vast quantities of data are routinely recorded as part of the care 
process. While its primary aim is managing individual’s patient care, 
there are significant opportunities to use these data to address 
research questions of interest. In the United Kingdom, there has 
been almost 25 years of research using routine primary care data, 
anonymized at source, through the General Practice Research 
Database (now CPRD, Clinical Practice Research Datalink [1]), 
and other data sources, also pooling data from multiple practices 
and tied to specific electronic health record (EHR) systems (QRe-
search [2], ResearchOne [3]). As better described in Subheading 4, 
we define anonymized data as one for which all elements that can 
link back to its owner are irrecoverably deleted; alternately there are 
pseudo-anonymization options that allow the reidentification of 
the owner through a procedure mediated by those responsible for 
that data security and privacy protection. Health Data Research UK 
has created a nationwide registry of EHR-derived datasets available 
for research [4]. A similar development has taken place in the 
Netherlands, where, in the early 1990s, the Netherlands Institute 
for Health Services Research (NIVEL) developed its Netherlands 
Information Network of General Practice [5], now named NIVEL
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Primary Care Database (NIVEL-PCD) [6, 7]. Belgium also has its 
Intego Network [7, 8]. France has the Système National des Données 
de Santé [9, 10] and the data warehouse of Assistance Publique-
Hôpitaux de Paris (AP-HP) [11]. Sweden has numerous and 
extensive nationwide registries [12]. These databases provide valu-
able information about the use of health services and developments 
in population health. In the United States, there has not been a 
tradition of using routine anonymized data, largely because the 
Health Insurance Portability and Accountability Act (HIPAA) reg-
ulations place restrictions on the linkage of health data from differ-
ent sources without consent [13–15] and because small office 
practices have not been widely computerized. Instead, the focus 
has been mainly on secondary care (hospital) data, facilitated by the 
National Institutes of Health’s (NIH) Clinical Translational Sci-
ence Awards (CTSA) [16]. Use or reuse of administrative data for 
research purposes is becoming more restricted in Europe as well, 
partly as a consequence of the European General Data Protection 
Regulation (GDPR) that was established in 2016 [17, 18]. In addi-
tion, data owners increasingly want control over the use of their 
data, making it more difficult to construct large centralized 
databases.
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2 Data Quality in EHR 

An electronic health record (EHR) is a digital version of a patient’s 
medical history which may include all of the key administrative 
clinical data relevant to that person’s care, including demographics, 
vital signs, diagnoses, treatment plans, medications, past medical 
history, allergies, immunizations, radiology reports, and laboratory 
and test results. EHRs are real-time, patient-centered records that 
make information available instantly and securely to authorized 
users. EHRs have been adopted with the aim of improving quality 
of patient care quality, in particular by ensuring that all pertinent 
medical information is being shared as needed for different care 
providers. Meantime, the rapidly growing number of EHRs has led 
to increasing interest and opportunities for various research pur-
poses. To ensure the patients receive care as they need and to draw 
valid and reliable research findings, quality data are needed. 

Data quality is defined as “the totality of features and charac-
teristics of a data set that bear on its ability to satisfy the needs that 
result from the intended use of the data” [19]. Currently, there is 
no definitive agreement on the components of data quality in 
available research. Feder described in a study [20] frequently 
reported components of data quality including data accuracy 
(data must be correct and free of errors), completeness (data must 
be sufficient in breadth, depth, and scope for its desired use), 
consistency (data must be presented in a consistent format),



credibility (data must be regarded as true and credible), and timeli-
ness (data should be recorded as quickly as possible and used within 
a reasonable time period) [20–24]. Other aspects of data quality 
might include accessibility which means that data must be available 
for use or easily retrievable, appropriate amount of data which 
means the quantity of data must be appropriate, ease of understand-
ing which means data must be clear, interpretability which means 
data must be in appropriate language and units, etc. 
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Many concerns were raised on digital data quality within EHRs 
including incompleteness, duplication, inconsistent organization, 
fragmentation, and inadequate use of coded data within EHR 
workflows [25]. As the old programming maxim states: garbage 
in, garbage out. Poor data quality can impact the care patients 
receive which may in turn lead to long-term damage or even 
death. It will also impact public health decision-making whenever 
it is based on statistics drawn from inaccurate data. In the following 
section, we will investigate in more detail the challenges regarding 
data accuracy and data completeness. 

2.1 Data Accuracy Data accuracy can be conceptualized as how accurate or truthful the 
data captured through the EHR system is. In other words, it is the 
degree to which the value in the EHR is a true representation of the 
real-world value [20, 23, 24] (e.g., whether a medication list accu-
rately reflects the number, dose, and specific drugs a patient is 
currently taking [21]). A pilot study evaluated information accuracy 
in a primary care setting in Australia and confirmed that errors and 
inaccuracies exist in EHR [26]. This pilot study showed that high 
levels of accuracy were found in the area of demographic informa-
tion and moderately high levels of accuracy were reported for 
allergies and medications. A considerable percentage of 
non-recorded information was also present. The sources of data 
inaccuracy could be mistakes made by clinicians (e.g., clinicians 
improperly use the “cut and paste” function in electronic systems 
[27]), error, loss or destruction of data during a data transfer 
[27]. Ways to improve data accuracy at collection include avoiding 
EHR pitfalls (e.g., fine-tuning preference lists, being careful when 
copying data, modifying templates as needed, documenting what 
was done, etc.) and being proactive (e.g., conducting regular inter-
nal audits, training staff, maintaining a compliance folder, etc.). 

Data accuracy can be assessed via different approaches 
[20]. One can compare a given variable within the dataset to 
other variables which is referred to as internal validity, e.g., using 
medication to confirm the status of the disease. Internal validation 
can also be done by looking for unrealistic values (a blood pressure 
that is too high or low [28]) which could be checked by identifying 
outliers. One can also use different data sources or datasets to cross-
check the data accuracy which is referred to as external validity, e.g., 
a patient was registered in a stroke registry but recorded as not



having a stroke in the current dataset. Generally, it is hard to link 
multiple datasets due to data privacy policy. Simple statistical mea-
sures can help the researcher determine whether variable values 
follow logical restrictions and patterns in the data such as central 
tendency (e.g., mean, median, mode) and dispersion (range, stan-
dard deviation) for continuous variables and frequencies and pro-
portions for categorical variables and goodness-of-fit tests (e.g., 
Pearson chi-square) [20]. Researchers found that validation helps 
check the quality of the data and identify types of errors that are 
present in the data [28]. 
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2.2 Data 

Completeness 

Data completeness is referred to as the degree and nature of the 
absence of certain data fields for certain variables or participants. 
Generally, these absent values are called missing data. Missing data 
is very common in all kinds of studies, which can limit the outcomes 
to be studied, the number of explanatory factors considered, and 
even the size of the population included [28] and thus reduce the 
statistical power of a study and produce biased estimates, leading to 
invalid conclusions [29]. Data may be missing due to a variety of 
reasons. Some data might not be collected due to the design of the 
study. For example, in some questionnaires, certain questions are 
only for females to answer which leads to a blank for males for that 
question. Some data may be missing simply because of the break-
down of certain machines at a certain time. Data can also be missing 
because the participant did not want to answer. Some data might be 
missing due to mistakes during data collection or data entry. Thus, 
knowing how and why the data are missing is important for 
subsequent handling and for analyzing the mechanism underlying 
missing data. 

Depending on the underlying reason, missing data can be 
categorized into three types [30] (Fig. 1): missing completely at 
random (MCAR), missing at random (MAR), and missing not at 
random (MNAR). MCAR is defined as data to be missing not 
related to any other variables or the variable itself. Examples of 
MCAR are failures in recording observations due to random fail-
ures with experimental instruments. The reasons for its absence are 
normally external and not related to the observations themselves. 
For MCAR, it is typically safe to remove observations with missing 
values. The results will not be biased but the test might not be 
powerful as the number of cases is reduced. This assumption is 
unrealistic and hardly happens in practice. For missing data that 
are MAR, missingness is not random and can be related to the 
observed data but not to the value of this given variable [31]. For 
example, a male participant may be less likely to complete a survey 
about depression severity than a female participant [32]. The data is 
missing because of gender rather than because of the depression 
severity itself. In this case, the results will be biased if we remove 
patients with missing values as most completed observations are



females. Thus, other observed variables of the participants should 
be accounted for properly when imputing missing data that are 
MAR. But MAR is an assumption that is impossible to verify 
statistically [33] and substantial explorations and analysis are 
needed. MNAR refers to situations where missingness is related 
to the value that the missing data would have had. For example, the 
participant refuses to report their depression severity because they 
are seriously depressed. In this case, missingness is due to the value 
itself and no other data can predict this value. Missing data that are 
MNAR are more problematic as one may lack data from key sub-
groups which, in turn, may lead to samples that are not representa-
tive of the population of interest. The only way to obtain an 
unbiased estimate of the parameters in such a case is to model the 
missing data and then be incorporated into a more complex one for 
estimating the missing values [29]. 
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Fig. 1 Summary on missing mechanisms with definitions, examples, and acceptable approaches for handling 
the missing values 

Handling missing data is critical and should be done according 
to the assumption on the missingness mechanism, as the results 
might be biased if handled differently. Techniques for handling 
missing data include the following [29]: 

1. Complete case analysis (also known as listwise deletion) to 
simply omit those cases with the missing data. This approach 
is suitable for MCAR assumption or when the level of missing-
ness is low in a large dataset.
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2. Pairwise deletion allows researchers to use cases with missing 
values but the variable with missing values will not be included 
in the analysis. This method is known to be less biased for 
MCAR or MAR data [29]. The analysis will be deficient if 
there is a high level of missingness in the data [29]. 

3. Single imputation means that missing values are replaced by a 
value defined by a certain rule. Here is a list of possible impu-
tation rules. (1) A simple imputation rule is to substitute the 
missing value with the mean, median, or mode. (2) A more 
sophisticated approach uses regression (the missing values are 
predicted from the other variables using regression). (3) Last 
observation carried forward or next observation carried back-
ward is for longitudinal data (i.e., repeated measures). If a 
certain measure is missing, the previous observation or the 
next observation can be used to impute the current missing 
values. (4) Maximum likelihood method assumes that the 
observed data are a sample drawn from a multivariate normal 
distribution and the missing data are imputed with the maxi-
mum likelihood method [34]. (5) K-nearest neighbors method 
can be used to impute the missing values with the average from 
the k-nearest neighbors. Single imputation often results in an 
underestimation of the variability since the unobserved value is 
analyzed as the known, observed values [35] and some single 
imputation methods depend on specific rules (e.g., last obser-
vation carried forward) rather than missing mechanism 
assumption which are often unrealistic [36]. Single imputation 
is often a potentially biased method and should be used with 
great caution [35–38]. 

4. Multiple imputation consists in replacing missing values with a 
set of plausible values which contain the natural variability and 
uncertainty of the correct values [29]. The multiple imputed 
values are predicted using the existing data from other variables 
[39], and then multiple imputed datasets are generated using 
the set of values. Compared to single imputations, creating 
multiple imputations accounts for the statistical uncertainty in 
the imputations. A typical method for multiple imputation is 
the use of chained equations (MICE) [40]. Multiple imputa-
tion operates under the assumption that the missing data are 
MAR since we use other variables to predict the missing values. 
Implementing MICE when data are not MAR could result in 
biased estimates [40]. Multiple imputation has been shown to 
be a valid method for handling missing data and is considered a 
good approach for datasets with a large amount of missing 
data. This method is available for most types of data [31, 37, 
38]. Studies comparing software packages for multiple imputa-
tions are available [41].
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The acceptable handling methods for different missing data 
mechanisms [35] are summarized in Fig. 1. For MCAR, the meth-
ods for handling missing data which give unbiased effects and 
standard errors are complete case analysis, regression or 
likelihood-based single imputation methods, and multiple imputa-
tion. For MAR assumption, pairwise deletion, regression or 
likelihood-based single imputation methods, and multiple imputa-
tion provide unbiased effects. Under the MNAR assumption, the 
above methods are no longer suitable. In this case, the appropriate 
analysis requires the joint modeling of the outcome along with the 
missing data mechanism [35]. This could be done by asking related 
questions, e.g., (1) what’s the probability of having missing data 
given the outcome and (2) what’s the probability of an outcome in 
those with missing data? Selection [33] and pattern-mixture mod-
els [42] are two example approaches for modeling the above two 
questions, respectively. 

The recommended strategies to overcome barriers caused by 
missing data would be to first understand the data and the missing 
mechanism. If the data are simply unavailable, alternative datasets 
and similar information might be available [28]. Then the imputa-
tion method could be selected based on the understanding of the 
missing values. Since the correctness of the assumptions cannot be 
definitively validated, it is recommended to perform a sensitivity 
analysis to evaluate the robustness of the results to the deviations 
from the assumptions [28]. 

2.3 Other Challenges 

and General Practices 

Recommendations 

There are other challenges in EHR data. For example, some data 
may be recorded without specifying units of measurement which 
makes these data hard to interpret [28]. In this case, an understand-
ing of the data collection process and background knowledge can 
be helpful in interpreting the data. There might be inconsistencies 
in data collection and coding across institutions and over time 
[28]. Some inconsistencies can be easily identified from the data, 
e.g., a measure was started to be recorded only after a certain time. 
On the other hand, some inconsistencies may be hard to identify 
and require an understanding of how data are collected geographi-
cally and over time. Last but not least, unstructured text data 
residing in the EHR causes poor accessibility and other data quality 
issues such as a lack of objectivity, consistency, or completeness 
[28]. Data extraction techniques such as natural language proces-
sing (NLP) are being used to identify information directly from text 
notes. 

Quality data is the basis for a valid research outcome and 
whether the quality is enough depends on the purpose of the 
study. Currently, there are no certain criteria for deciding whether 
the quality of the data is sufficient, but careful analysis of the data 
quality should help the researchers decide if the data at hand is 
useful for the study [28]. Three general practices were



recommended by Feder [20]. The first recommendation is to get 
familiar with the EHR platform and EHR-based secondary data 
source. Knowledge of the types of data available, how the data were 
collected, and who collected it is very useful. It is recommended to 
have a dictionary that defines all data variables: it should contain the 
type of data, the range of expected values of each variable, general 
summary statistics, level of missingness, and subcomponents if 
available. The second recommendation is to develop a research 
plan that includes strategies for data quality appraisal and manage-
ment such as statistical procedures for handling missing data and 
potential actions if other data quality issues arise (e.g., removal of 
extreme values, diagnostic code validation). The last recommenda-
tion is to promote transparency in reporting data quality including 
the proportion and type of missing data, other quality limitations, 
and any subsequent changes made to data values (e.g., variables 
removed for analysis, imputation methods, variable transforma-
tions, creation of new variables). This should enable the reuse of 
quality data for clinical research. Communications and sharing of 
the importance of data quality with clinicians are encouraged [28]. 
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3 Clinical Coding Systems 

In this section, we discuss clinical coding systems, classifications, or 
terminologies. We first introduce clinical coding systems and 
explain the motivation behind their existence and usage. This is 
followed by a discussion of the common attributes that coding 
systems tend to have, and how this relates to their usage for data 
analysis. We provide summaries for some of the most commonly 
used systems in use at the time of writing. Finally, we discuss some 
of the potential challenges and limitations of clinical coding 
systems. 

3.1 Motivation Recording clinical data using free text and local terminology incurs 
major barriers to conducting effective data analysis for health 
research [43]. Clinical coding systems significantly alleviate this 
problem, and so are of great usefulness to researchers and analysts 
when carrying out such work. Medical concepts are naturally 
described by linguistic terminology and are often associated with 
a descriptive text. Linguistic data is however loosely structured, and 
the same underlying medical concept might be expressed differ-
ently by different healthcare professionals. Clinical concepts can 
usually be expressed in a multitude of ways, both due to synonyms 
in individual terms and simply through different ways of combining 
and arranging words into a description. Processing large amounts 
of such data in order to perform modern computer-assisted data 
analysis, such as training machine learning models, would therefore 
require the use of natural language processing (NLP) techniques



[44]. Furthermore, when considering medical data from many 
countries, one would need to consider all the possible languages 
that medical records might be written in. 
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Instead of mapping clinical concepts into the highly complex 
realm of natural language, clinical coding systems seek to provide 
an unambiguous mapping from a given clinical concept to a unique 
encoding in a principled fashion. This makes it significantly easier to 
employ modern large-scale data analysis techniques on clinical data. 
For example, if one were interested in studying the prevalence of 
chronic fatigue, instead of having to attempt to exhaustively match 
records containing every conceivable way to express this linguisti-
cally, one would only need to identify which clinical codes are 
associated with the relevant clinical concepts and select records 
containing those codes. 

3.2 Common 

Characteristics 

Clinical coding systems can vary significantly in their descriptive 
scope, depending on their intended usage. The DSM-5 [45], for 
instance, limits its scope entirely to psychiatric diagnoses, while 
SNOMED-CT [46, 47] seeks to be as comprehensive as possible, 
including concept codes relating to, for example, body structure, 
physical objects, and environment. Both of these coding schemes 
describe concepts relevant at the level of individual patients, though 
codes can exist for broader or more fine-grained scopes such as 
public health or microbiology. 

Typically, clinical coding schemes are arranged hierarchically, as 
this reflects the categorical relationship between clinical concepts 
well while also providing an intuitive means to find relevant con-
cepts. This hierarchical structuring can be reflected in the identifiers 
used to encode clinical concepts, further aiding in their compre-
hension. In the ICD scheme [48], for example, codes begin with a 
character that identifies the relevant chapter in the ICD manual, 
and subsequent characters provide identification of finer and finer 
degrees of specification. 

Another property of clinical coding systems that can be useful 
to classify is whether it is compositional or enumerative [49, 
Chapter 22]. In a compositional scheme, concepts can be encoded 
by combining more basic conceptual units together. This reduces 
the burden to specify large enough lists of distinct concepts to 
comprehensively cover all necessary clinical concepts required by 
scheme designers. This is in contrast to enumerative systems, which 
instead aim to achieve completeness by having a unique identifier 
for every concept within the scope of the scheme. 

Clinical coding schemes can encode many kinds of relationships 
between concepts that are more specific than the simple parent-
child relationship in basic hierarchies. These reflect the more 
nuanced kinds of relationships present in clinical concepts. Coiera 
[49, Chapter 22] outlines three main kinds of conceptual relation-
ships: Part-Whole, Is-A, and Causal. Part-Whole



relationships are useful when a concept contains constituent parts 
which are also concepts, e.g., the eyes are a part of the face which is 
a part of the head which is a part of the body. This relationship is 
generally most useful for describing physical assemblages. Is-A 
relationships are perhaps the most common and indicate basic 
categorical similarities, such as Arterial Blood Specimen Is-A 
Blood Specimen Is-A Specimen. Finally, Causal relationships are 
used to indicate events or effects that arise as the result of another, 
or that cause another. 
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Hierarchical schemes may also introduce multiple axes upon 
which to expand concepts (essentially multiple hierarchies). In this 
way, elements belonging to a particular place in the hierarchy of one 
axis may also appear in the hierarchy of a different axis. This often 
involves a concept having multiple relationships of different types 
to a number of different concepts, i.e., a concept may have an Is-A 
relationship and a Causal relationship with two different concepts. 

These are all useful features in the context of data science. 
Hierarchical structures allow for users of data to select as coarse 
or as fine-grained concepts as are relevant to their specific analyses. 
The defined relationships between concepts can be exploited in 
order to identify groups of relevant codes. Furthermore, some 
coding schemes, such as SNOMED-CT, may encode useful con-
cepts beyond clinical events or concepts, such as whether patients 
have consented for research data usage, which can be useful, for 
example, in screening population members who are unsuitable for 
research cohorts, etc. 

3.3 Notable Coding 

Systems 

Here we provide summaries of commonly used coding systems that 
are likely to be encountered when performing analysis on EHR 
data. However, this is by no-means an exhaustive list. Many more 
are in use, and some datasets or corpora might use their own coding 
systems. In these cases, the data provider will usually specify map-
pings to more common systems such as ICD or SNOMED-CT. For 
example, in the case of the Clinical Practice Research Datalink 
(CPRD) [50], unique codes are provided for medical terms with 
mappings to Read Codes (a now largely legacy coding system in the 
United Kingdom), and unique treatment codes with links to the 
NHS Dictionary of Medicines and Devices (dm+d) [51] and the 
British National Formulary (BNF) [52], which provide codes relat-
ing specifically to medical products and prescribing. 

3.3.1 SNOMED-CT SNOMED-CT (Systematized NOmenclature of MEDicine-
Clinical Terms) [46], maintained by SNOMED International, is a 
clinical coding scheme designed to be highly comprehensive and 
computer-processable. It is in wide usage around the world, in 
particular in the United Kingdom. SNOMED-CT supersedes the 
older SNOMED and SNOMED-RT systems. It is a hierarchical, 
compositional coding scheme, including specified relationships



between related concepts. It provides good linkage with ICD to 
allow for easy data sharing. There are 15 primary hierarchical 
categories in SNOMED-CT, to which all other concepts belong. 
A concept in SNOMED-CT is comprised of several elements. The 
primary identifying element is the Concept ID, which is a unique 
numerical identifier for the clinical concept. This is accompanied by 
a textual description of the concept. There are specified Relation-
ships to other related concepts, and Reference Sets which provide 
groupings of concepts. SNOMED-CT codes are hierarchical and 
linked via Is-A relationships. Table 1 presents the top-level con-
cepts of SNOMED-CT. 
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Table 1 
The top-level hierarchical categories in the SNOMED-CT system 

Hierarchy 

Body structure 

Clinical finding 

Event 

Observable entity 

Organism 

Pharmaceutical/biologic product 

Physical object 

Procedure 

Qualifier value 

Situation with explicit context 

Social context 

Substance 

3.3.2 ICD The ICD (International Classification of Diseases) [48] is a coding 
system created by the World Health Organization (WHO). While 
the ICD is currently in its 11th revision (ICD-11) [53], ICD-10 is 
still more commonly used at the time of writing, and the wide-
spread adoption of ICD-11 will likely take more time. The ICD 
system is a multi-axis hierarchical coding system, assigning an 
alphanumeric code to each concept. Each code is procedurally 
derived from its concept’s location in the hierarchy, aiding in com-
prehension. The first character letter in an ICD code associates it 
with a specific chapter in the ICD manual (see Table 2 for the 
different chapters of ICD-10). The following three characters 
locate the concept within the chapter and range from A00 to 
Z99. For more detail, each category can be further subdivided



with up to three additional numeric characters. Table 3 shows 
multiple sclerosis as it appears in ICD-11 as an example of this 
hierarchical coding structure. The ICD system is intended to be 
limited in scope to disease diagnosis-related concepts; however, the 
WHO maintains additional systems to cover concepts outside of 
this scope. The ICF (International Classification of Functioning, 
Disability and Health), for instance, focuses on a patient’s capacity 
to live and function and includes concepts relating to body func-
tions, bodily structures, activities, participation, and environmental 
factors. Furthermore, various modifications of the ICD system exist 
to expand upon its capabilities for use in clinical settings, such as the 
ICD-10-CM in the United States and the ICD-10-CA in Canada. 

342 Wenjuan Wang et al.

Table 2 
The chapters of ICD-10 

Number Chapter name 

I Certain infectious and parasitic diseases 

II Neoplasms 

III Diseases of the blood and blood-forming organs and certain disorders involving 
the immune mechanism 

IV Endocrine, nutritional, and metabolic diseases 

V Mental and behavioral disorders 

VI Diseases of the nervous system 

VII Diseases of the eye and adnexa 

VIII Diseases of the ear and mastoid process 

IX Diseases of the circulatory system 

X Diseases of the respiratory system 

XI Diseases of the digestive system 

XII Diseases of the skin and subcutaneous tissue 

XIII Diseases of the musculoskeletal system and connective tissue 

XIV Diseases of the genitourinary system 

XV Pregnancy, childbirth, and the puerperium 

XVI Certain conditions originating in the perinatal period 

XVII Congenital malformations, deformations, and chromosomal abnormalities 

XVIII Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified 

XIX Injury, poisoning, and certain other consequences of external causes 

XX External causes of morbidity and mortality 

XXI Factors influencing health status and contact with health services 

XXII Codes for special purposes
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Table 3 
The hierarchical structure of multiple sclerosis within the ICD-11 

1. ICD-11 for Mortality and Morbidity Statistics

• 08 - Diseases of the nervous system 

– Multiple sclerosis or other white matter disorders 

8A40 - Multiple sclerosis 

8A40.0 - Relapsing-remitting multiple sclerosis 

8A40.1 - Primary progressive multiple sclerosis 

8A40.2 - Secondary progressive multiple sclerosis 

8A40.Y - Other specified multiple sclerosis 

8A40.Z - Multiple sclerosis, unspecified 

3.3.3 UMLS “The Unified Medical Language System (UMLS) is something like the 
Rosetta Stone of international terminologies”—Coeira [49, Chapter 23] 

The UMLS [54] is intended to provide a means to relate coding 
systems to each other. It achieves this with three knowledge 
sources: the Metathesaurus, a semantic network, and the SPE-
CIALIST Lexicon. The Metathesaurus is a nonhierarchical con-
trolled vocabulary of terms organized by concept and provides 
the synonyms of concepts in different coding systems and is the 
primary way in which translation between systems is supported. 
Controlled vocabularies from hundreds of coding systems are 
represented in the Metathesaurus, and its entries are regularly 
updated. A complete list of all the supported controlled vocabul-
aries is available in the UMLS Metathesaurus Vocabulary Docu-
mentation on the official website.1 The Metathesaurus specifies 
defining attributes of concepts, and relationships between con-
cepts, including Is-A, Part-Whole, and Causal relationship 
types. The semantic network provides the semantic types and rela-
tionships that concepts are permitted to inherit from. The primary 
semantic relationship is the hierarchical Is-A relationship, 
although there are five primary nonhierarchical relationship types: 
“physically related to,” “spatially related to,” “temporally related 
to,” “functionally related to,” and “conceptually related to.” The 
SPECIALIST Lexicon is intended to assist computer applications in 
interpreting free-text fields. It encodes syntactic, morphological, 
and orthographic information, including common spelling var-
iants. In practice, most users of the UMLS do so indirectly through

1 https://www.nlm.nih.gov/research/umls/index.html.

https://www.nlm.nih.gov/research/umls/index.html


tools that rely on the UMLS, such as PubMed2 and other clinical 
software systems such as EHR software and analysis pipelines. The 
most common uses are for extracting clinical terminologies from 
text and translating between coding systems [55].
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3.3.4 Read Codes Read Codes [56, 57] were used exclusively by the United Kingdom 
until 2018, when they were replaced by SNOMED-CT. Read 
Codes are organized hierarchically; however, the identifiers them-
selves do not indicate where in a hierarchy the concept belongs as 
they do in ICD. Version 3 (CTV-3) is the most recent version of 
Read Codes, and introduced compositionality to the system, while 
becoming less strictly hierarchical. Read Codes were intended to 
provide digital operability in primary care settings, but are no 
longer used in primary care in England (though they are still in 
use in Scotland at the time of writing and may be used in secondary 
care in England). Read Codes map well to ICD concepts. The Read 
Codes Drug and Appliance Dictionary is an extension of the Read 
Codes system to include pharmacological products, foods, and 
medical appliances for use in EHR software and prescribing 
systems. 

3.4 Challenges and 

Limitations 

The usefulness of clinical coding schemes is dependent upon their 
usage by healthcare professionals being thorough and appropriate. 
Improper usage of coding systems can occur, contributing to data 
quality issues such as incompleteness, inconsistency, and inaccuracy 
[58]. Further challenges can arise for researchers where data may 
contain multiple coding systems; this can happen if the data is 
collected from multiple different sources where different coding 
systems are in use, or if the period of data collection covers a change 
in the preferred coding system, such as the change from CVT-3 to 
SNOMED-CT in the United Kingdom. In these cases, the 
researcher must ensure that they consider relevant concepts from 
each different scheme or implement a mapping from one scheme to 
another. Most coding schemes provide good mapping support to 
ICD codes, and the UMLS coding system is designed to provide a 
means of translating between different schemes. Additionally, some 
sources of data may provide their own coding schemes that are not 
in usage (and thus not documented) elsewhere. 

4 Protection and Governance of EHR Data 

In this section, we will explore the focal points of data protection 
and governance analyzing the most recent jurisdictional back-
ground and its implication in real-world healthcare applications. 
In Subheading 4.1, we introduce the main legislative body and its

2 https://pubmed.ncbi.nlm.nih.gov/.

https://pubmed.ncbi.nlm.nih.gov/


core definitions in data protection. Then, Subheading 4.2 describes 
in a more technical way how data analysis can be conducted in a 
privacy-preserving manner.
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4.1 Data Protection 

in a Nutshell 

The explosive evolution of digital technologies and our ability to 
collect, store, and elaborate data is dramatically changing how we 
should consider privacy and data protection; particularly, the 
advent of artificial intelligence (AI) and advanced mathematical 
modeling tools made it necessary to reform the national and inter-
national data protection and governance rules to better protect 
people who generated such data and give them more control on 
what can be done with it. Although it is worth mentioning valuable 
independent contributions to the healthcare data protection guide-
lines like the Goldacre Review [59, 60], we will focus mainly on the 
most recent and structured action published at international level in 
terms of data protection and governance, the European General 
Data Protection regulation, or GDPR [17]. 

The GDPR was published by the European Commission in 
2016 to set the guidelines that all member states must apply in 
their national legislation in terms of data protection. Although its 
legal validity is limited to the members of the European Economic 
Area (EEA), its effects expanded also to European Union 
(EU) candidate countries and the United Kingdom which 
embraced the new GDPR regulation through the UK GDPR 
[18] and maintained it part living of the legislation even after 
renouncing to the EU membership. It is worth mentioning that 
the effects of GDPR are not limited to the data management and 
governance executed within the countries that embrace the regula-
tion, but is strictly related to the persons to whom the data belong; 
this means that the GDPR guidelines must be followed by any 
entity worldwide when dealing with data belonging to individuals 
from countries where the GDPR applies. GDPR defines as personal 
data any single information that is relatable to a person; in Box 1 we 
enumerate the three main agents required in any endeavor involv-
ing personal data management. 

To contextualize these concepts in an healthcare scenario, if a 
non-European controller (e.g., an Australian hospital) aims at col-
lecting, storing, or elaborating healthcare data from an individual 
protected by the GDPR or equivalent legislation for an interna-
tional multicenter clinical trial, they still must respect all dictations 
of GDPR on that data specifically. 

The GDPR reads: personal data processing should be designed to 
serve mankind and the right to the protection of such data is not an 
absolute right, but must be considered in relation to its function in 
society. Let’s then consider this from the two angles of data gover-
nance and operation, and its purpose in the AI era.
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Box 1: Basic agents recognized by GDPR 
Data subject Individual(s) to whom the personal data 

belongs. 
Controller Individual(s) or institution(s) responsible for 

implementing appropriate technical and organi-
zational measures to ensure and to be able to 
demonstrate that processing is performed in 
accordance with the GDPR. 

Processor Individual(s) or institution(s) responsible for 
using, manipulating, and leveraging personal 
data for the goals defined by the controller and 
agreed upon by the data subject. 

4.1.1 Governance and 

Operation 

One of the main dictations of GDPR is that data should be as 
anonymized (or, de-identified) and minimal as possible for a 
given application. This means that the data controller shall 
specify in details which data will be needed and why and collect 
only this required data, possibly in an anonymous way. More-
over, the data should be stored as long as the application 
requires it but not longer unless authorized by the data subject. 
This process should minimize as much as possible the identifia-
bility of individuals, especially in those cases in which the con-
tent of data carries very sensitive information like health status, 
religious faith, political affiliation, and similar. Indeed, one of 
the main reasons why the use of free-text clinical notes in natural 
language processing (NLP) applications carries additional com-
plications is that information that could identify individuals are 
often expressed in a nonstructured way in text (e.g., a specific 
reference to a person’s habits, rare diseases, physical aspect, etc.) 
[61]. A similar issue arises with imaging applications, where the 
content of the imaging medical examination could contain per-
sonal information of its owner (e.g., the name written on an 
X-ray printing). 

With a closer focus to EHR in a common tabular structure, 
identification of individuals can go beyond their names and unique 
identifiers. If the combination of other information can lead to their 
identification (e.g., the address, the sex, physical characteristics, 
profession, etc.), then the EHR is not technically anonymized. A 
step forward is the pseudo-anonymization, a process where the 
identifiable information fields are replaced with artificially created 
alternatives that encode or encrypt these information without 
direct disclosure. It is important to note that albeit this approach 
is valid in healthcare applications, it still allows a post hoc recon-
struction of the identifiable data and should be implemented



carefully. Note that, in the specific case of brain images, the medical 
image may in principle allow reidentification of the patient (for 
instance, mainly through recognition of facial features such as 
the nose). For this reason, “defacing” (a procedure that modifies 
the image to remove facial features while preserving the content of 
the brain) is increasingly used. According to the Health Insurance 
Portability and Accountability Act of 1996 (HIPAA)3 issued by 
the US Department of Health and Human Services, 18 elements 
have to be deleted for an electronic health record to be considered 
de-identified; these include names, geographic subdivision smaller 
than a State, all elements of dates (except year) for dates directly 
related to an individual, telephone numbers, social security num-
bers, and license numbers. This practice can be exported interna-
tionally and used as a rule of thumb to ensure appropriate 
anonymization in all healthcare-related applications. 
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With respect to the many stages that comprise the analysis and 
elaboration of healthcare data, data protection can be handled in 
different and more flexible ways. Assuming a high level of inter-
nal protection of healthcare institutions (e.g., firewalls and 
encrypted servers), as long as the data remains within the insti-
tution secured information system, the majority of threats can be 
blocked and mitigated at an institutional level. Examples of 
threats are malicious access to and modification of data with 
the objective of compromising individual’s health or disrupting 
the operation of the hospital itself. The main exposure happens 
in case the data need to be transferred to another institution to 
carry out the required analyses. In this rather common case, the 
anonymization (or pseudo-anonymization) process should be 
carefully applied and data should never reside in a non-secured 
storage device or communication channel. To prevent this expo-
sure to happen but at the same time to leave the possibility of 
leveraging the collected data for the purpose of AI applications 
and statistical studies, the federated learning methodology has 
been developed in recent years. This will be described further in 
Subheading 4.2. 

The data subject has the right to get its own data deleted from 
the controller when, for example, the accuracy of the data is con-
tested by the data subject, or when the controller no longer needs 
the data for its purposes. Similarly, the data subject has also the 
right to receive their personal data from the controller in a com-
monly used and machine-readable format and have then the right 
to transfer such data to another controller, when technically feasi-
ble, in a direct way. These aspects introduce operational constraints 
in EHR management as they require to be stored in an identifiable 
way (so as to allow its post hoc management, deletion, or

3 https://www.hhs.gov/hipaa/index.html.

https://www.hhs.gov/hipaa/index.html


modification) but to be elaborated in an non-identifiable manner 
to ensure that at any point of the data elaboration, the identifica-
tion of the patients is impossible or as minimal as required for the 
elaboration itself. A corner case would be when a patient revokes 
the right of the controller to handle their data and its anonymized 
version is in use; from an operational point of view, this could 
cause the need for re-execution of the data extraction and 
elaboration.
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4.1.2 The Purpose of EHR 

in the Era of AI 

The main conundrum here is whether a specific use of healthcare 
data is functional to a societal benefit, which is a very difficult 
problem given its highly subjective interpretation. Indeed, as we 
continue producing beneficial applications, the opportunities to 
develop malevolent ones increase. Hostile actors may use private 
healthcare data and AI for personal profits, policy control, and 
other malicious cases. The availability of new tools suddenly sheds 
light on problems we didn’t know we had and this is happening 
with AI and its application to healthcare. Machine learning and 
deep learning are by far the most successful technologies that are 
changing how we conceive data value and the importance of its 
quality [62], and when it comes to these computing tools, the more 
data, the better, but not only that; for each application, the data 
collected and elaborated should be as representative as possible of 
the learning task, which is a rather challenging issue considering the 
amount of human intervention in clinical data collection (especially 
in free-text annotations) and inherent biases in the data distribution 
over the available population. Current regulations are imposed to 
the data controllers to clearly communicate and have the explicit 
agreement of the data subject for any use they may do with it, and 
this is a fundamental protection of each individual’s right to choose 
when and where their data can be used. This becomes particularly 
stressed in healthcare scenarios where misuse and abuses of 
patients’ data can result in unethical advantage and/or enrichment 
of the institutions or individuals capable of making the most out of 
such abundant data. 

Ethical approvals for the use of clinical datasets are usually 
granted by the hospitals’ ethic committee, through detailed pro-
cesses that every study has to undertake in its design phase. How-
ever, with increased focus on the use of AI technologies in 
medicine, the challenge becomes to contextualise within these 
ethics frameworks new technologies, the potential they carry, and 
the risks they may represent. Therefore, an integrated approach is 
needed between clinical experts, and AI/ML specialists to give 
more transparency, cohesion, and consistency to the use of data in 
health research.
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4.2 Privacy-

Preserving EHR Data 

Analysis 

The training of any kind of AI-based predictive model requires as 
much data as possible, and given the nature of clinical data (costly 
and with high human intervention), it is often the case that a single 
healthcare institution is not enough to produce the data needed for 
the creation of a predictive model. This is particularly true in those 
cases in which the distribution of the population of patients within 
the hospital is not representative of the general population or at 
least of the possible population of patients for which those predic-
tive models will be used. 

The most straightforward practice to overcome this limitation 
consists in gathering data from multiple institutions in one single 
center and pre-process the data so as to integrate everything in one 
single training dataset. This allows the unification of the contribu-
tion of all healthcare institutions and therefore a more comprehen-
sive, heterogeneous, and representative training dataset. 
Transferring clinical data from one hospital to another is a proce-
dure that brings many privacy- and security-related problems, 
including the proper anonymization, or pseudo-anonymization, 
of clinical records and the encryption of the data en route to 
another institution. 

The technical difficulties here dominate over the potential of a 
scalable, efficient, and secure data science pipeline that properly 
uses EHR to extract new knowledge and train predictive models. 

One of the most brilliant solutions to solve these problems was 
initially proposed by Google with the federated learning method-
ology [63]. According to this approach designed primarily for deep 
neural networks, instead of transferring the data between institu-
tions and collect everything in one unique dataset, a more efficient 
choice is to send the models to be trained to every institution that 
participates in the federation and, once one or more training steps 
are executed, gather the trained models in one central computing 
node (which can be one of the institutions) and compile the trained 
models in one comprehensive unique solution that represents the 
common knowledge produced. 

Federated learning was designed for a task very different from 
clinical applications, i.e., the automatic completion of smartphones’ 
keyboard, but its principles can be translated to the healthcare 
environment very effectively. The main benefits are that clinical 
data will never leave the owner’s secured information system and 
anonymization and encryption of the data itself are not major 
problems. Moreover, the ability to involve the contribution of 
multiple centers for one training process requires a software infra-
structure that can be utilized many more times for learning tasks. 

4.3 Challenges 

Ahead 

In the context of federated learning for EHR analysis, we find many 
challenges to be addressed in terms of both data quality and gover-
nance and learning methodologies. Here are listed some of the 
most relevant:
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1. Not having direct access to other institutions’ data makes it 
harder to assess the quality, consistency, and completeness of 
the datasets. This mandates additional care to the learning 
strategies as the representativeness of data must be preserved 
and phenomena like the catastrophic forgetting [64] produced 
by a large amount of data should be prevented. 

2. Even assuming a good enough data quality in terms of com-
pleteness, correctness, and standards used, the distribution of 
data in independent datasets can be very different, posing 
additional learning challenges in the creation of a reliable and 
fair predictive model. This phenomenon is also known as the 
non-IID, or  non-independent and identically distributed, data, 
and it is a very active research field [65]. 

3. Regardless of the immobility of data in healthcare information 
systems, the predictive models still have to travel between 
institutions, and this allows the possibility of data reconstruc-
tion through inverse gradient strategies [66], and the predic-
tive model alteration (or poisoning) [67, 68] to induce it to 
behave in a malicious way; this transfers the security problems 
from the data to the machine learning models themselves and 
must be properly dealt both at a network level (with encrypted 
connections) and at a model level to mitigate communication 
bottlenecks, poisoning, backdoor, and inference-based 
attacks [69]. 

5 Conclusion 

Increasing interest and opportunities for various research purposes 
were attracted by the rapidly growing number of EHRs. To draw 
valid and reliable research findings, data quality is paramount. In 
this chapter, we first introduced the definition of data quality, the 
reported components, and the concerns raised with poor data 
quality. Various aspects of data quality components and challenges 
were explored, such as data accuracy and data completeness. Gen-
eral practices for data quality analysis were recommended at the end 
of the data quality section. 

We then introduced the concepts of a clinical coding system 
and discuss their potential challenges and limitations. We described 
the common characteristics of coding systems and then presented 
some of the most common ones: SNOMED-CT, ICD, UMLS, and 
Read Codes. 

Finally, we navigated the main concepts of data governance and 
protection in healthcare settings. National and international regu-
lations are put in place to define baseline principles to ensure the 
most appropriate treatment, storage, and final utilization of per-
sonal data, including healthcare information. From an operational 
perspective, there are numerous challenges to face, e.g., the



anonymization, or pseudo-anonymization, of patients’ data and its 
proper privacy-preserving analysis for business and clinical pur-
poses. This is particularly important in machine learning applica-
tions where a large amount of data is required and data sharing 
between hospitals is not a viable and secure solution. To produce a 
truly privacy-preserving approach for machine learning applica-
tions, federated learning is today the most effective and promising 
deployable methodology. 
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