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Wir müssen wissen, Wir werden wissen.

—David Hilbert



Dedicated to all those who do not like
Mathematics with the hope that they will
change their mind.



Preface to the Second Edition

Mathematics is the science which studies structures and relations among structures.
The “truth” (whatever it means) inMathematics is established by rigorous deductions
made in an appropriately chosen frame described by axioms and definitions. Self-
consistency is the first requirement which any mathematical result should satisfy.
Sometimes, in Mathematics, theorems are formulated about space and changes of
structures involving the space which becomes a language for models in Physics.
The language of Relativity is the Differential Geometry, and our road to Relativity
depends on it. In other words, while Geometry is often used to formulate theories of
Physics, in General Relativity, Geometry coincides with Physics and a modern trend
is that all Physics could coincide with Geometry. The aim of this Second Edition is to
improve both the content and the style we present in this language. Therefore the two
chapters dedicated to Differential Geometry are completely changed. We insist on
the natural transfer of geometric structures between the ambient space and surfaces
belonging to it. We present more examples and simplify the proofs of theorems.
More exercises are solved considering students who need to understand the basic
techniques of Differential Geometry in view of applications to Physics. The aim is
taking into account the Einstein point of view: “As far as the laws of Mathematics
refer to reality, they are not certain; and as far as they are certain, they do not refer
to reality.” Therefore the reader can realize that modeling Physics does not mean to
describe the Reality in its deep meaning but only represent some features of Reality
which can be studied by the self-consistency of the models as well as probed by
experiments and observations validating or discarding such features.

The road passing through Differential Geometry allows us to step to Relativity
after we proved the Bianchi second formula. It is why we succeeded in less than
80 pages to develop a chapter called “Differential Geometry at Work. Two Ways
of Thinking the Gravity”.... We find out how to simply deduce the Einstein field
equations.

At the same time, the road we took allows to understand, in the next chapter, how
models of Euclidean, Non-Euclidean and Elliptic geometries can be deduced from
Geometry and Physics points of view. Yes, you read correctly, from Physics, the
Physics related, for example, to Special Relativity.
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x Preface to the Second Edition

There are changes inside almost each chapter of the First Edition, because we
think to offer more information about FLRW universes and the dimensions of our
observable Universe. Also if it is hard to believe, it is possible to prove that FLRW
universes depend on the geometries of Gaussian constant curvature. Therefore such
universes are created starting two dimensional metrics which describe Euclidean,
Non-Euclidean and Elliptic geometries. In particular, we discuss some special exact
solutions of Einstein field equations describing exotic space-times without matter,
time and having the “geometric texture” shacked by planar gravitational waves.
Finally, without claim of completeness, we give simple examples of black holes,
wormholes or cosmic strings with the aim to show howMathematics can be powerful
in imagining theWorld. If in the First Editionwehave presented the deSitter universe,
nowweenlarge the approachpresenting universeswithoutmatter and time.Adetailed
discussion is given for the Anti-de Sitter universe. We explained how the cosmolog-
ical constant of de Sitter and Anti-de Sitter space-times depends on the affine radius
of the Minkowski spheres which appear in the landscape description.

In order to improve the Differential Geometry tools, we presented differentiable
manifolds, differential forms, structure equations, vector fields, affine connections,
covariant derivatives induced by affine connections, torsion, curvature, parallel trans-
port and geodesics. The aim is presenting concepts of Differential Geometry which
can exist even without a metric. Setting a metric compatible with a connection means
to consider only a specific connection, the so called Levi Civita connection.

In some sense, we return to the Differential Geometry presented in the previous
chapters of the book, but we open the road to the Metric-Affine Gravity. An entire
chapter is devoted to this topic and an entire section prepares the basic notations and
notions necessary to understand it.

In this second edition, we added more figures and took care of observations and
suggestions received from students and colleagues, trying to write an improved text
suitable for all the audience.

Constanţa, Romania
Naples, Italy

Wladimir-Georges Boskoff
Salvatore Capozziello



Preface I to the First Edition

This book is an approach to Special and General Relativity from a full mathematical
point of view.WhenPhysics is studied, there is the needof understanding its language,
that is Mathematics. Dirac’s words describe very well what we want to do: “God
used beautiful Mathematics in creating the world,” therefore we present a part of
this divine plan, the beautiful Mathematics of Special and General Relativity. We
wrote a textbook which, we believe, can be easily used by students in Mathematics,
Physics, and Engineering studies. By teachers or by some other people who are
interested in this subject. If someone already knows Mathematics, that is both basic
Geometry and Differential Geometry, this person can neglect the first six chapters.
She/he can start from Gravity in Newtonian Mechanics. People who study Physics
should start from the very beginning in order to understand the development of
Geometry. The improvement of mathematical language, in more than 2000 and 500
years, allowed to produce a common language for both Calculus and Linear Algebra:
this approach ends up to a dialect, the Differential Geometry, which constitutes the
basic tool of Relativity. Without the effort to understand the nature of the Non-
EuclideanGeometry, theDifferential Geometry could not occur.WithoutDifferential
Geometry, General Relativity could not exist. The first six chapters represent the
adventure of Geometry from axioms until the Non-Euclidean Geometries through
Differential Geometry. A lot of examples and solved exercises help the reader to
understand the theory. Actually, the entire book, which is written in a unitary way,
offers clear statements and proofs. About the proofs: it offers complete proofs and
all computations are presented. In our opinion, this is the only way to understand
the complicated computations which depend on the Differential Geometry language.
Reading line by line, the reader can understand every single proof. The references
which inspired us are mentioned at the beginning of each chapter, but also in the text.
Some proofs and some approaches of the theory are completely original. If somebody
is reading from the beginning to the end of this book, it becomes understandable why
each subject presented is important for the topic. We hope that our humble efforts are
useful, first of all, for learning people who this book is mainly dedicated. We thank
our colleagues, our teachers, our friends and, first of all, our studentswhose questions,
discussions, and remarks allowed us to enter the perfect world of Geometry towards

xi



xii Preface I to the First Edition

its amazing realization which is General Relativity.Wewant to thank also Dr.Marina
Forlizzi and the Springer staff for invaluable support in publishing this book.

As a final remark, we want to say that this book was conceived about 2 years
ago during pleasant discussions on Mathematics and General Relativity in scientific
congresses and meetings between the authors and was concluded during the severe
period of the global Coronavirus disease. We hope that Science and its high values
can be comforting even in difficult situations like the present one, as happened so
many times in history.

Constanţa, Romania
Naples, Italy
March 2020

Wladimir-Georges Boskoff
Salvatore Capozziello



Preface II to the First Edition

What does amathematical journey towards the general theory of Relativity look like?
The authors propose an original itinerary moving from Euclidean and non-Euclidean
Geometry created fromaxioms, tomodels of geometric Euclidean and non-Euclidean
worlds. Differential Geometry of surfaces and then abstract Differential Geometry
are special stops for two reasons:

1. To understand non-Euclidean Geometry models from this point of view;
2. To create the language by which we can describe the General Relativity and its

consequences.

The physical world allows both Euclidean and non-Euclidean descriptions. To have
an image of this physical world we need to continue the itinerary with supplementary
stops: Newtonian and Lagrangian Mechanics, Special Relativity to reach, finally,
General Relativity.

The content of the book iswritten to be self-contained.All the proofs are donewith
all the details presented for the reader. The problems are solved, or they have hints.
Almost all the contents were presented to students at different university courses and,
in our experience, they were well received.

In Chap. 1, we present, using a slightly modified Hilbert’s axioms system,
Euclidean and non-Euclidean geometries and what they mean. Here, the mathemat-
ical theory is built from a set of primary objects, which do not require definitions,
together with a set of axioms. The collection of primary objects is chosen from the
set theory. The axioms are stated in a formal form and the axiomatic theory is built
as a collection of mathematically rigorous statements deduced from the axioms.

It exists a common part for Euclidean and Non-Euclidean Geometry, the so-called
Absolute Geometry. Absolute Geometry consists in all the results that can be thought
and proved using the axiomatic system before introducing a Parallelism Axiom. The
main theorem in Absolute Geometry is the Legendre one, which states that the sum
of measures of angles of a given triangle is less than or equal to two right angles.

xiii



xiv Preface II to the First Edition

The two consequences are:

1. The sum of angles in each triangle is equal to two right angles.
2. The sum of angles in each triangle is strictly less than two right angles.

A further axiom, the Parallelism Axiom, makes us to discover the Euclidean world,
corresponding to the first case, i.e. the sum of angles is equal to two right angles.

The denial of the previous Parallelism Axiom leads us to the Non-Euclidean
Geometry; here the sum of angles is strictly less than two right angles.

Euclidean Geometry and Non-Euclidean geometries are the frameworks where
formulate Newtonian Mechanics and Relativity respectively, as we will see later.

Chapter 2 highlights how the Euclidean Geometry, previously introduced, can
be constructed and viewed using algebra and trigonometry. All happens in a two-
dimensional vector space endowedwith an inner product invariant with respect to the
group of Euclidean rotations. Basic facts on Euclidean Geometry are presented, the
most important being Pythagoras Theorem and the generalized Pythagoras theorems.

Even if it seems there is no connection between Minkowski Plane Geometry
and the geometries created from the axiomatic point of view, we present in detail the
Minkowski PlaneGeometry. The construction is related to the same two-dimensional
vector space used to describe Euclidean Geometry, but instead of the Euclidean
inner product, we have a Minkowski product. There exists a group of hyperbolic
rotations which leaves invariant the Minkowski product. Minkowski Geometry is
not as simple as Euclidean Geometry. There are space-like vectors, null vectors, and
time-like vectors. Minkowski–Pythagoras Theorem has different statements with
respect to the type of the involved side-vectors of the triangle. Even if in this chapter
we construct an algebraic image of the Euclidean Geometry, we have not yet images
about the Non-Euclidean Geometry. The next chapters deal with this issue.

Chapter 3 is dedicated to the tools we need to construct a first model of Non-
Euclidean Geometry. This model is constructed in the interior disk of a given circle.

To be constructed, we need to understand the geometric inversion and basic
facts about Projective Geometry. A projective invariant of a special projective map,
attached to the previous given circle, allows us to construct a distance inside the disk
of the circle. The Poincaré disk model is highlighted.

The “lines”, that is the geodesic lines of this distance, are orthogonal arcs of circles
to the given circle. It is easy to see that there are more than two non-intersecting
“lines” through a given point with respect to a given “line”. The sum of angles of a
triangle in this Poincaré model is of course less than π.

Chapter 4 is related to the Differential Geometry of surfaces. In the first part, the
surfaces are seen as subsets of a 3-dimensional Euclidean space. In this context, we
understand how the Euclidean inner product of the Euclidean space induces a way to
measure lengths and angles for vectors belonging to the tangent planes of the surface.
We can also measure the length of curves that belong to surfaces, areas of regions,
and all these using the metric attached to the surface.

The Differential Geometry of a surface continues by introducing a fundamental
notion: the Gaussian Curvature of a surface at a point. If, at the beginning, the
Gaussian Curvature seems to be dependent on the fact that the surface is seen in the
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Euclidean ambient space, after we prove Gauss’ formulas, we step into the intrinsic
theory of surfaces. There, Gauss’ equations and Theorema Egregium offer another
perspective: each surface can be seen as a piece of a plane endowed with a metric,
and this metric only determines the curvature.

The study continues in Minkowski three-spaces where we have to take care of the
Minkowski-type nature of the normal vector to the surface. However, we have almost
the same picture, the Minkowski product determines a non-Euclidean metric of a
surface which allows us to conclude about the intrinsic Geometry of it. Therefore,
in both cases the surface becomes irrelevant for our study. In fact, we study the
Geometry of a metric and obtain relevant geometric aspects about the piece of plane
endowed with that metric.

The covariant derivative introduced in the last part of the chapter allows us to
define the parallel transport and the geodesics of surfaces. At the end of the chapter
we introduce a short story about a person embedded in a surfacewith the aim to reveal
how the person can develop a theory about its universe, which is the surface where
he lives. The study is continuing in the next chapter, when we better understand the
nature of geometric objects which appear in Differential Geometry.

Chapter 5 is fundamental for the book: the final image about the Non-Euclidean
Geometries cannot be given without what we learn here. Basic Differential Geom-
etry is about Differential Geometry when an extra dimension does not exist. In the
previous chapter, we claimed that we did not know yet the mathematical nature of
the multi-index quantities which appear in the Differential Geometry of surfaces. In
this chapter we prove the tensor character of the metric coefficients, of the Riemann
symbols, of the Ricci symbols, and also for the geodesics equations. All these multi-
index quantities remain invariant when we deal with a change of coordinates. Why
this is important? The substance of General Relativity is related to these changes of
coordinates. A change of coordinatesmay reflect an acceleration fieldwhich is equiv-
alent to a gravitational field and, in the context described, a nice example developed
later is about the constant gravitational field.

The covariant derivative for contravariant vectors, which appears as a geometric
property, allows us to think of a general definition for the covariant derivative of
tensors. How we parallel transport vectors along curves, how geodesic lines appear,
and some other important properties of parallel transport of vectors along geodesic
lines are also studied. At the end of the chapter, the covariant derivation of Einstein’s
tensor allows the reader to have a first image on Einstein’s field equations.

Chapter 6 is devoted to Non-Euclidean Geometry models and their physical inter-
pretation. It is worth stressing that we are dealing with models and not only with a
model. In fact, we imagine some other models of Non-Euclidean Geometry. There
are some steps before providing these models. Differential Geometry gives us the
possibility to see:

– how distances of the models produce the metrics;
– how the geodesics of the distances are also the geodesics of the metrics;
– how the models are related among them through their metrics according to

convenient changes of coordinates.
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It is important to stress that all these models are equivalent and contribute to the
big picture. Specifically, the Poincaré disk model, the Poincaré half-plane model, the
exterior disk model, the hemisphere model, and the hyperboloid models are studied
and presented.

The first three models are connected among them by geometric inversions. The
remaining models need appropriate changes of coordinates to connect them to the
first three. In particular, the hyperboloid model is described by a Minkowski metric.
At this point, we have the first connection between Non-Euclidean Geometry and
Minkowski Geometry. Next, in the Eighth Chapter devoted to Special Relativity, a
Minkowski-type metric appears giving a geometric image of the (so called) physical
reality [1].

The physical example, developed at the end of the chapter, is due to Poincaré. The
question is: Can we develop the Poincaré disk model starting from simple physical
rules? The answer is yes and this is possible combining Physics and Geometry. Even
if Poincaré developed the model stating that reality cannot be fully understood, after
this example, it is easy to accept the fact that the Geometry is related to the Relativity
description. In fact Non-Euclidean Geometry, seen through Differential Geometry,
is needed to understand basic facts of General Relativity, as we see later.

Euclidean Geometry constitutes the framework of the Newtonian Mechanics.
Chapter 7 is dedicated to understand how forces can explain what is happening in
our surrounding world modelled into a three-dimensional Euclidean Space where
only one clock gives the universal time. In this sense, the Newtonian Mechanics
reveals an absolute space and an absolute time [2].

It is described the gravitational force together with the gravitational field. Amath-
ematical artefact, the gravitational potential, is involved in two fundamental results:
the vacuum field equation and the gravitational field equation. Looking at these equa-
tions and how difficult we mathematically obtained them, somebody can think that
this is the maximum we can say about the gravitational field. But the tidal forces and
the tidal acceleration equations offer another perspective. The vacuum field equa-
tion is encapsulated in the trace of the Hessian matrix involved in tidal acceleration
equations.

If we try to obtain the geometric equivalent of these equations in a curved space,
that is if we cancel out the Euclidean 3-dimensional space, the Hessian matrix is
replaced by a curvature-dependent tensor whose trace is the Ricci symbol. In the
future, we prove via Fermi coordinates, that this is a possible way to obtain Einstein’s
vacuum field equations. This is the first geometric change of the Euclidean frame
when one studies forces.

This situation may arise another important change of perspective.
Suppose we have a force and the trajectories of a point subjected to this force. Is

it possible to locally find a metric whose geodesics are the previous trajectories? The
answer is yes. The Euler–Lagrange equations become the equations of the previous
trajectories and the same Euler–Lagrange equations are the geodesic equations of a
metric induced by another mathematical artefact called Lagrangian.

The study of the Lagrangian, starting from the mechanical one, is made through a
functional called action. If the first-order variation of the action vanishes, we obtain
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theEuler–Lagrange equations. Later,we prove howanother action, theHilbert action,
allows us to derive the Einstein field equations in General Relativity.

Kepler’s laws are also studied in this chapter with the aim to prepare the reader
understanding of planet trajectories in a metric, of course, later, in the part related to
General Relativity.

Chapter 8 is devoted to Special Relativity. Reflection and refraction of light were
explained in a satisfactory way by Newton who looks at light rays as trajectories of
particles (after called photons).

In the middle of XIXth century, James Clark Maxwell offered another view: the
light is an electromagnetic wave and it satisfies four equations, known as Maxwell’s
equations of theElectromagnetism. Ifwe try to put them in accordancewithNewton’s
theory, it appears the necessity of considering amedium inwhich the electromagnetic
waves travel through space. It was called by physicists of that time the ether.

Ernst Mach’s did not agree with the idea of ether and observed the necessity of
the revision of all fundamental concepts of Physics [2].

Michelson–Morley experiment, who initially was designed to reveal the ether,
had a result completely different with respect to the expectations. Albert Einstein
explained the result of the experiment in a theory where he revised in a fundamental
way the ideas of space and time, and no place for ether remained. The absolute space
and the absolute time of theNewtonianmechanicswere replaced by the specific space
and the specific time of each observer. Different observers mean different inertial
frames of coordinates, each one having its time axis and its space axes [3].

Einstein formulated the Special Relativity starting from two main postulates:

1. The laws of Physics has to be the same in all inertial reference frames.
2. The speed of light in vacuum, denoted by c, is the same for all the observers and

it is the maximum speed reached by a moving object.

Presenting the theory, we preferred to balance it starting from two important works,
the book by Callahan, [4], and a paper by Varićak [5], where we found the most
possible geometric approach to Special Relativity.

Therefore we have adapted, in a new form, the basic ideas discussed there. The
first idea is related to the consideration of two inertial frames of coordinates, one
moving at a constant speed, another considered at rest, in which the two observers
have to agree on the same laws of Physics [4]. In this way, the old Galilean trans-
formations of coordinates are replaced by the Lorentz transformations. There are
a lot of consequences: another formula for velocity addition, the time dilation, the
length contraction, the covariance of Maxwell’s law under Lorentz transformation,
the rest-energy formula, the Doppler effect, and so on. The second one is related to
the geometric understanding of these facts: we have a sort of equivalence between
the so-called “geometric coordinates” and the “physical coordinates” [5]. The entity
called “physical space-time” is understood through the geometric space-time where
the results are easier to be viewed. This idea can be originally seen in [3].

Then, when we introduce a constant gravitational field via the accelerated frames,
(see also [4] point of view) we can prove the bending of the light rays; the interpreta-
tion of the Doppler gravitational effect shows that accelerated frames are not inertial
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ones. Much more: a contradiction between the Minkowski flat space-time of Special
Relativity and the gravitational Doppler effect occurs. A physical theory containing
the old Mechanics, including gravity, and the modern electromagnetic waves theory
needs to integrate the accelerated frames. In this way, we can add another argument
towards the General Relativity.

Chapter 9 is devoted toGeneral Relativity andRelativistic Cosmology. There is no
other better description of the subject than the sentence by John Archibald Wheeler:
“Space-time tells matter how to move; matter tells space-time how to curve” [6],
[7]. How the space is curved appears from the Einstein field equations

Ri j − 1

2
R gi j = 8πG

c4
Ti j .

In the left-hand sidewe have “Geometry,” ametricgi j and its derivatives are involved;
in the right-hand side we have a tensor depending on matter, the so-called energy-
momentum tensor. The energy-momentum tensor establishes the metric, the metric
produces geodesics described by the equations

d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt
= 0.

They are trajectories of objects moving according to the Geometry of space-time.
Therefore, the geodesic equations are the equivalent equations of curveswhich satisfy−→
F = m−→a from Mechanics.
The equations of geodesics of an initial metric switch accordingly to a change of

coordinates into the equations of the geodesics of the new obtained metric. Changes
of coordinates may provide a new state of a given frame, therefore the new state
is described by a new metric provided by the old state metric via the coordinates
change. The reader will understand how it works looking at the case of the constant
gravitational field. However, after a change of coordinates, the metric of space-time
remains the same being a tensor.

The chapter starts looking at the differences between the classical Newtonian
Mechanics and Einstein’s landscape of gravity described by Geometry. Einstein’s
field equations can be derived from the Hilbert action. A generalization of such an
action, the so-called f (R) gravity is also presented. The straightforward solution, in
the case of vacuum field equations for spherical symmetry, is Schwarzschild’s one.
We present computations related to the orbits of planets and the bending of light rays.

Fermi’s viewpoint on Einstein’s vacuum field equations allows to obtain the clas-
sical counterparts of the relativistic equations in the case of the weak gravitational
field.

After, we analyse the Einstein static universe and the basic considerations on the
cosmological constant, as a part of the classical approach to the General Relativity.
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A “metric for the Universe” is obtained for the cosmic expansion. It is the
Friedman–Lemaître–Robertson–Walker metric. The way we obtain it is related to
the energy-momentum tensor and the Cosmological Principle.

Black holes are an important prediction of General Relativity. We propose an
introduction to their theory starting from the Rindler metric. The singularities which
can be removed using Rindler’s idea are geometric only. Schwarzschild metric is
important in the study of black holes. The anomalies of black holes are explained
via Kruskal–Szekeres coordinates and light cones inside and outside black holes are
presented.

Another important prediction, the existence of gravitational waves, is discussed in
this chapter to give amore complete picture of the physical landscapeofGeneralRela-
tivity. Furthermore, cosmic strings are presented as a hypothetical structure consid-
ered, until now, only as a possible solution to Einstein’s field equations. Another
important solution of Einstein’s field equations is the Gödel’s, who succeeded to
prove that a homogeneous universe without a global time coordinate can theoreti-
cally exist. We present the above solutions with all the details necessary to be easily
understood at the undergraduate student level.

In Chap. 10, as a full geometric realization of Relativity, we present the so-
called Affine Universe and the de Sitter space-time. From a cosmological point of
view, this solution is fundamental to discuss, at an elementary level, the problems
of primordial inflation and the late accelerated behaviour, often dubbed as dark
energy. Starting from two different parameterizations, it is possible to describe the
cosmological constant, the main ingredient of de Sitter solution. Essentially, it is
possible to show that a curved universe can be achieved without a mass distribution.
A possible explanation can be obtained starting from aMinkowski space-time where
gravitational field (withoutmasses) is considered. In this sense, this is a full geometric
realization of Relativity.

Constanţa, Romania
Naples, Italy

Wladimir-Georges Boskoff
Salvatore Capozziello
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Chapter 1 
Euclidean and Non-Euclidean 
Geometries: How They Appear 

Omnibus ex nihilo ducendis sufficit unum. 

G. W. von Leibniz 

We intend to construct these geometries using a slightly modified Hilbert’s axioms 
system in the same way as it is done in [ 36, 37, 138, 185]. An interesting thing is 
related to the fact that it exists as a common part for Euclidean and non-Euclidean 
Geometry, the so-called Absolute Geometry. Roughly speaking, the Absolute Geom-
etry consists in all theorems that can be thought and proved using the axiomatic 
system before introducing a parallelism axiom. 

In our vision, the most important theorem in Absolute Geometry is the Legendre 
one: 
“The sum of angles of a triangle is less than or equal two right angles.” 
It allows us to prove that only two situations hold: 
“The sum of angles in each triangle is equal to two right angles.” 
or, the other situation: 
“The sum of angles in each triangle is strictly less than two right angles” 

Choosing an appropriate parallelism axiom we discover the Euclidean world, 
corresponding to the first case, i.e. the sum of angles is equal to two right angles. 
The denial of the previous parallelism axiom leads us to the non-Euclidean geometry; 
here the sum of angles is strictly less than two right angles. We have used few figures 
to illustrate these concepts, because the reader can remain with a false image about 
how lines look like. However, in Absolute Geometry, the reader can think and draw 
images as in the Euclidean geometry, because all the objects and all the theorems 
valid in absolute geometry are also valid in Euclidean Geometry. Here the lines 
are the ordinary straight lines of the plane. The images can be thought in a more 
complicated way if someone try to imagine them in a model for the non-Euclidean 
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2 1 Euclidean and Non-Euclidean Geometries: How They Appear

geometry, because lines can look like arcs of circles, segments, etc. All the proofs are 
reported in such a way that they can be understood by reading them directly. 

1.1 Absolute Geometry 

The key idea of the axiomatic method is to build a theory from a set of primary 
objects, which do not require definitions, together with a set of axioms. Therefore 
the theory is built as a collection of mathematically rigorous statements deduced 
from the axioms. 

The collection of primary objects of the geometry is given in the following, inher-
ited from set theory. The objects of the first collection are called points, and they are 
denoted by capital letters.A, B,C, . . . The second collection contains lines , denoted 
by.l, l ,, . . . The third collection contains planes, denoted by Greek letters. α,β, γ, . . .

Finally, the last collection contains only one element called space, denoted by . S. 
The first important group of axioms is related to the incidence of the objects 

described above. They describe who belongs to who, which set of objects can be 
included in which, how many objects are necessary to create another object, etc. Let 
us introduce the so-called “axioms of incidence”. 

The first axiom which helps us to construct a geometry establishes the existence 
and uniqueness of a line and its connection with two given distinct points. 

Axiom .I1 : For any two distinct points . A and .B there exists a unique line . l which 
is incident with both . A and . B, i.e. .A ∈ l and .B ∈ l. 

The unique line . l of the previous axiom is often denoted by .AB, indicating that 
it is the line that passes through the points . A and . B. 

Axiom .I2 : There exist at least two distinct points on any line. Moreover, there 
exist at least three distinct points which are not on the same line. 

In view of the axiom, it seems useful to be able to distinguish between points 
which are on a line from points which do not belong to the same line, therefore we 
introduce the following notion. 

Definition 1.1.1 Any number of points are called collinear if there is a line which 
is incident to all of them. Otherwise, they are called non-collinear . 

For example, axiom .I1 asserts that every two distinct points are collinear, and 
axiom.I2 guarantees the existence of at least three non-collinear points in the geom-
etry we are constructing. The next two axioms establish the relationship between 
points and planes. 

Axiom .I3 : For any three arbitrary non-collinear distinct points . A,. B and . C , there 
exists an unique plane . α which contains . A, . B, and . C .
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In general, such a plane is denoted by .α := (ABC). 

The following axiom establishes the relationship among points on a given line 
and a plane containing that line. This axiom plays a crucial role once we construct 
geometries with more number of points and lines. 

Axiom .I4 : If two points .A and . B, which determine the line . l, lie in the plane . α, 
then every point of the line . l lies in the plane . α. 

In this case, we write.l ⊂ α (regarded as a subset of points). The following axiom 
states that the minimum number of points in an intersection of two planes is two. 

Axiom .I5 : If two planes . α and . β have a common point . A, then they have another 
common point .B distinct from . A. 

An immediate consequence of axioms.I4 and.I5 is that if the planes . α and. β con-
tain the two distinct points .A and . B, then they contain the whole line .l = AB, and 
we write .α ∩ β = {l}, again as an equality of sets of points. 

The last axiom of incidence states the minimum number of points necessary to 
create the space. 

Axiom .I6 : There exist at least four points which do not belong to the same plane. 

In the view of this last axiom. I6, we give the following. 

Definition 1.1.2 Any number of points are called coplanar if there is a plane which 
passes through all of them. Otherwise, they are called non-coplanar. 

Axioms.I1 − I6 give rise to a simple model of a space created only with 4 points, 
6 lines, and 4 planes. 

The model described above can be written as follows. The distinct points are 
.A, B,C, D, and the six lines are given by the following sets of points:.lAB = {A, B}, 
.lAC = {A,C}, .lBC = {B,C}, .lBD = {B, D}, .lCD = {C, D}, and.lAD = {A, D}. The  
four planes are . (ABC) = {A, B,C}, (ABD) = {A, B, D}, (ACD) = {A,C, D},
(BCD) = {B,C, D}, and the space built by Axiom.I6 is by definition .(ABCD). 

We study below some immediate consequences of the group of six axioms of 
incidence. Notice that the results we prove below make sense even when applied to 
the simple model described above. 

Theorem 1.1.3 Two distinct lines have at most one common point. 

Proof Let .l1, l2 be two distinct lines. We distinguish the following two cases. If 
.l1 ∩ l2 = ∅, then they have no point in common, therefore the conclusion of the 
theorem is true.
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If .l1 ∩ l2 /= ∅, then let .A ∈ l1 ∩ l2 be a point in their intersection. We assume, by 
contradiction, that there is another point .B ∈ l1 ∩ l2, .B /= A. In particular, . A, B ∈
l1, therefore .l1 = AB (axiom . I1). Similarly, .A, B ∈ l2, therefore .l2 = AB. Axiom 
.I1 says then that .AB = l1 = l2, in contradiction with the hypothesis that .l1 /= l2. 
Therefore, our assumption on the existence of a different point .B ∈ l1 ∩ l2 is false. 
In conclusion, . A is the only common point of the two lines . l1 and . l2. ▢

The previous theorem motivates the following: 

Definition 1.1.4 Two distinct lines that intersect in exactly one point are called 
secant lines. 

The “Axioms of Order” deal with the undefined yet relation of betweenness, i.e. of 
a point lying between two other points. Once the axioms of order appear, the previous 
very simple model of geometry fails to exist. The axioms of order are formulated as 
follows. 

Axiom .O1 : If a point .B is between .A and . C , then .A, B,C are three distinct 
collinear points on a line . l, and .B is between .C and . A. 

Imagine the line as a circle. The previous axiom tells us that such an image is 
not possible. The line. l has no predefined “orientation”. The only correct concept of 
order among points is defined to be “between”. 

Axiom .O2 : For every pair of distinct points .A and . B, there is at least another 
distinct point .C such that .B is between . A and . C . 

An immediate consequence of axiom .O2, combined with axiom. I2, is that a line 
contains at least three points. The axiom can be applied again to the pair .{A,C}, so  
there exists another point .D such that . C is between . A and . D, etc.  

Axiom .O3 : Given three arbitrary points on a line, at most one of them is between 
the other two. 

Notice that the axiom .O2 does not guarantee the existence of a point .B between 
two given ones. A and. C . This will be proven below. Nevertheless, if we assume that 
there exists .B between .A and . C , then the axiom .O3 guarantees that .A cannot be 
between . B and . C , and . C cannot be between . A and . B. Another theorem will clarify 
the situation of three given points on a line. 

Axiom .O4 (Pasch): Let .A, B,C be three non-collinear points, and . la line situated 
in the plane .(ABC) which does not pass through any of the points .A, B,C . If the 
line . l contains a point which is between .A and . B, then the line . l contains either a 
point between . A and .C or a point between .B and . C .
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We denote by .ABC when .B is on the line .AC and .B is between .A and . C , and 
we will refer to it as the order .ABC . Note that by axiom .O1, the order .ABC is the 
same as the order .CBA. 

An immediate consequence of the axioms of order is the following 

Theorem 1.1.5 Given two points .A and .B on a line . l, there is a point .M ∈ l such 
that we have the order .AMB. 

Proof There exists a point. C not on the line.AB (axiom. I2). Then there exists a point 
.D such that we have the order .ACD (axiom.O2). 

Similarly, there exists the point .E with respect to the order .DBE (axiom .O2). 
Then we apply axiom .O4 for the points .C, D, E and the line .AB, so there exists a 
point .M on the line .AB such that we have order .AMB. ▢

The previous theorem suggests the following. 

Definition 1.1.6 The set of points .M on the line .AB with the property that .M is 
between . A and . B is called a segment, and it is denoted by .[AB]. 

Formally we can write 

. [AB] = {M ∈ AB | AMB} ∪ {A, B}.

The interior of the segment .[AB] is defined to be the set .[AB] − {A, B}. 
Note that the segment.[AB], seen as a set of points, is equal to the segment.[BA]. 

Moreover, the order .AMB is equivalent to .M ∈ [AB] − {A, B}, so the previous 
theorem can be reformulated as follows: the interior of every segment is non-empty. 
We have also .[AA] = {A}. Moreover, we can define now one of the most important 
object of any geometry: the triangle. 

Definition 1.1.7 A configuration of three distinct non-collinear points .A, B,C is 
called a triangle, and it is denoted by .ΔABC . Moreover, the points .A, B,C are 
called the vertexes of the triangle, and the segments determined by each pair of two 
vertexes are called the sides of the triangle. 

The next theorem guarantees the existence and uniqueness of ordering for three 
collinear points. 

Theorem 1.1.8 Let .A, B,C be three points on a line . l. Then one and only one of 
the orders .ABC, ACB, or .BAC occurs.
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Proof We assume that we have neither the order .ACB, nor the order .BAC , and we 
prove that we must have the order .ABC . In our Euclidean intuition, we will prove 
that if . B is not “to the left” of . A and not “to the right” of . C , then it must be between 
. A and . C . 

There exists a point .D /∈ AC (axiom. I2). Then there exists a point .E ∈ DB with 
the order.EDB (axiom.O2). Looking at the triangle.ΔBEC and the secant line.AD, 
then there is a point. F at the intersection of.AD and.EC , such that we have the order 
.EFC (axiom .O4). In the same way, there exists the point .{G} = CD ∩ AE , such 
that we have the order.AGE . The line.CG is a secant line for the triangle.ΔAEF , as  
we have the order .ADF . Moreover, considering the triangle .ΔAFC and the secant 
line .DE , it follows the order .ABC . ▢

The following theorems establish incidence relations between a line and a triangle. 
Historically they are attributed to Moritz Pasch, whose influential works have been 
one century ago in the centre of attention of many authors interested in foundations 
of geometry. 

Theorem 1.1.9 If a line . l does not intersect two sides of a triangle .ΔABC, then it 
cannot intersect the third one, either. 

Proof Without loss of generality, we can assume. l does not intersect neither.[AC] nor 
.[BC]. By contradiction, we assume. l intersects .[AB], so . l contains a point between 
.A and . B. Then the axiom .O4 affirms that . l must contain either a point between . A
and . C , or a point between . B and . C , in contradiction with the hypothesis. ▢

Theorem 1.1.10 If a line . l intersects two sides of a triangle .ΔABC, then it cannot 
intersect the third one. 

Proof Let us assume, by contradiction, that the line. l intersects all sides.[BC],.[AC], 
and .[AB] of the triangle .ΔABC in, respectively, . D, . E , and . F . We can assume the 
order .EFD on the line . l. We consider the triangle .ΔCDE and the secant line .AB, 
which intersects .[DE] in . F . It follows that .AB intersects either .[DC] or . [EC]
(axiom.O4). In both cases, it follows that.AB intersects either.[AC] or.[BC], respec-
tively, in two points, which means that either .AB = BC or.AB = AC (axiom. I1, in  
contradiction with the assumption that .ΔABC is a triangle. ▢

In what follows, we introduce the notion of half-line. Let  .O be a fixed point on 
a line . l and let .A, B ∈ l be two points such that we have the order .OAB. Then we 
call . A and. B to be on the same side of the point . O . This defines a binary relation on 
the set of points of . l. 

Theorem 1.1.11 The binary relation defined above is an equivalence relation on 
the set of points of a line . l.
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Proof Reflexivity is obviously true, as for .A = B, we have clearly the order .OAA. 
The symmetry follows from the fact that the order .OAB is the same as the order 
.BAO (axiom.O1). For the transitivity, we observe: if we have.OAB and.OBC , then 
it follows the order .OAC . ▢

In this context, we can define a half-line as follows. 

Definition 1.1.12 The equivalence class of a point on a line. l with respect to a fixed 
point .O ∈ l is called the half-line with vertex (origin) . O . 

An equivalent formulation would be as follows: given a pair of points .A and . B, 
the half-line starting at . A and pointing in the direction of .B consists of all points . P
so that we have either the order .ABP , or the order .APB. A half-line .AB is often 
called a ray emanated from. A towards . B. 

Theorem 1.1.13 Let .O and . A be two points on a line . l. The set of points .A, ∈ l such 
that we have the order .A,OA forms a half-line with origin . O. 

Proof Let .A, be an arbitrary point such that .A,OA. Let . B be a representative of the 
equivalence class defined by . A with respect to . O , i.e. . A and . B are on the same side 
of . O . Thus we have the order .OAB. Let .B , ∈ l such that we have the order .B ,OB. 
From the orders .BAO and .B ,OB it follows the order .AOB ,. But the orders . A,OA
and.B ,OA exclude the order.A,OB , (try to prove this assertion). Therefore the points 
.A, and.B , are on the same side of . O , which proves the conclusion of the theorem.▢

The theorem above affirms that a point .O on a line . l divides the line into two 
half-lines. For any point .A /= O , we denote one half-line by .(OA), and the other 
half-line by .(OA,, also called the complementary half-line of .(OA). 

The set of points of a half-line is a total ordered set. Indeed, for two points . A and 
.B on a half-line, we have either .A coincides with . B, or we have one of the orders 
.OAB or.OBA. If we have the order.OAB, we say. A precedes . B. Therefore, in view 
of this total ordering, for any two distinct points .A and .B on a half-line, either . A
precedes . B or . B precedes . A. 

In view of this remark, we can arrange any finite set of points on a line . l in the 
order of their precedence. Moreover, if we denote the ordered points by.A1, A2, . . . , 
then for any .i < j < k we have the order .Ai A j Ak . This proves the following: 

Theorem 1.1.14 There is an order-preserving, one-to-one correspondence between 
any set of . n points on a line . l and the set of natural numbers .{1, 2, . . . , n}. 

Similarly as in the case of half-lines, one can introduce the following binary 
relation of the set of points in a plane. 

Definition 1.1.15 If . l is a line in a plane . π and .A, B are two points in . π such that 
.[AB] ∩ l = ∅, then we say that the points . A and. B are on the same side of the plane 
. π with respect to the line . l.
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This defines a binary relation on the set of points of the plane . π. 
As before, we prove the following: 

Theorem 1.1.16 The binary relation defined above is an equivalence relation. 

Proof Reflexivity and symmetry are obviously true. We have to prove the transitivity 
of this relation. Let .A, B and .B,C be on the same side of the plane . π with respect 
to the line . l. If follows that the intersections of . l with .[AB], respectively .[BC], are  
empty. From a previous theorem it follows that.l ∩ [AC] = ∅, so the points.A,C are 
on the same side of the plane with respect to the line . l. ▢

In view of the theorem above, we give the following: 

Definition 1.1.17 Let . l be a fixed line in a plane . π and a point .A ∈ π − l. The  
equivalence class of .A with respect to the line . l is defined to be the half-plane 
determined by . A and . l. The line . l is called the border of this half-plane. 

Then we have the following. 

Let. l be a fixed line, and let.A /∈ l. Then the set of points.A, with the property that 
the segment .[AA,] intersects the line . l forms a half-plane of border . l. 

Definition 1.1.18 This half-plane is called the complementary half-plane of the half-
plane determined by . l and . A. 

Note that every line . l in a plane divides the plane into two half-planes, both with 
border . l. 

Definition 1.1.19 An angle is defined to be a pair of two half-lines. h and. k with the 
same origin. O , denoted by.∠(hk). The point .O is called the vertex of the angle, and 
the half-lines . h and . k are called the sides of the angle. 

If.h = (OA and.k = (OB are two half-lines defined by three non-collinear points 
.O, A, and. B (.O is the vertex of the angle), then we will also denote the angle. ∠(hk)
by .∠AOB. 

Let us consider an angle .∠(hk) in a plane  . π. Then, there are two distinguished 
half-planes: one is determined by the underlying line of the half-line. h and the points 
of the half-line . k, and, similarly, the other one is determined by the underlying line 
of the half-line . k and the points of the half-line . h. 

Definition 1.1.20 We call the interior of the angle .∠(hk), the intersection of the 
two half-planes above. The exterior of the angle .∠(hk) consists of all the points in 
the plane which are neither in the interior, nor on the sides of the angle .∠(hk). 

In a similar fashion, one can define the interior of a triangle as follows.
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Fig. 1.1 Crossbar theorem 

Definition 1.1.21 The interior of the triangle .ΔABC is the intersection of the inte-
riors of its angles. 

Consider . n half-lines with common vertex .O and assume that there exists a line 
.l /∋ O which intersects all of them. We can order all the intersection points (.A1A2A3, 
etc.). This gives us the notion of a half-line being between two other half-lines, and 
implicitly an order on the set of half-lines. 

The following theorem is usually known as the crossbar theorem, or, sometimes, 
as the transversal theorem . In the present approach, the proof relies on axiom .O4, 
Pasch’s axiom (Fig. 1.1). 

Theorem 1.1.22 (Crossbar Theorem) Let .∠(hk) be an angle of vertex . O. Let . A ∈ h
and .B ∈ k be two points different than . O, and . T a point in the interior of the angle 
.∠(hk). Then the half-line .(OT intersects the segments .[AB]. 

Proof Denote by .HA the half-plane determined by .OB and the point . A. Consider a 
point.A, on the complementary half-line of.(OA, and.HA, the half-plane determined 
by .OB and the point . A,. We apply Pasch’s axiom .O4 for the triangle .ΔAA,B and 
the half-line .(OT , which intersects .[AA,] in . O . Then .(OT should intersect either 
.[AB] or .[A,B]. If  .(OT doesn’t intersect .[AB], it exists a point .L ∈ [A,B] ∩ (OT , 
in collision with the fact that all points of .(OT are in .HA, . ▢

As a final remark, we can observe that the complementary half-line of .(OT , say  
.(OT , is included in the interior of the opposite angle of.∠AOB, say.∠A,OB ,, there-
fore it cannot intersect neither.[A,B] nor.[AB], because they have empty intersection 
with the interior of .∠A,OB ,. 

Angles as .∠AOT and .∠T OB are called adjacent angles.
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We introduce below the axioms of congruence and we study their immediate 
consequences. The congruence notion we introduce below is actually an equality 
notion, but it is called different just to make distinction between equality of real 
numbers and equality of geometric objects. The relationship between the set of real 
numbers and geometry is addressed later on. 

The formulation of these axioms is after Arthur Rosenthal [185], which has con-
siderably modified the original Hilbert’s formulation of Axiom .E4, by omitting the 
symmetry and transitivity properties of the congruence of angles. These properties 
can be actually proven from the axioms below. 

The following axioms introduce the concept of congruence (equality) of segments 
and angles. The notion of congruence is written using the special symbol. ≡, in order 
to eliminate any confusion between this geometric notion with the equality notion 
from set or number theories. We will reserve the equality symbol .= for when we 
define the values of segments and angles. 

Axiom .E1 : If .A and .B are two points on a line . l, and .A, is a point on a line . l ,, 
where . l , is not necessarily distinct from . l, then there exists a point .B , on . l , such that 
.[AB] ≡ [A,B ,]. For every segment .[AB] ≡ [BA]. 

As we can see from the previous axiom, the congruence .[AB] ≡ [A,B ,] is pro-
vided by the ability to construct the point.B , on the line. l , with the requested property. 

Axiom .E2: If .[A,B ,] ≡ [AB] and .[A,,B ,,] ≡ [AB], then .[A,B ,] ≡ [A,,B ,,]. 
Note that this axiom is not the transitivity property of congruence of segments. 

Transitivity will be proved in a theorem below. The next axiom establishes the addi-
tivity of the congruence of segments. 

Axiom .E3: Let .[AB] and .[BC] be two segments of a line . l, without common 
interior points, and let .[A,B ,] and .[B ,C ,] be two segments without common interior 
points on a line . l ,, where . l , is not necessarily distinct from . l. If .[AB] ≡ [A,B ,] and 
.[BC] ≡ [B ,C ,], then .[AC] ≡ [A,C ,]. 

The next axiom defines the congruence of angles in a plane. 

Axiom .E4: Let .∠(hk) be an angle in a plane . π, and let . l , be a line in a plane 
. π,, where .π, is not necessarily distinct from . π. Let .h, be a half-line of . l ,, where 
.h, is not necessarily distinct from . h. Then in one of the half-planes determined by 
. l ,, there uniquely exists a half-line . k ,, such that .∠(hk) ≡ ∠(h,k ,). For every angle, 
.∠(hk) ≡ ∠(hk) (reflexivity), and .∠(hk) ≡ ∠(kh) (symmetry). 

As above, the congruence.∠(hk) ≡ ∠(h,k ,) is provided by the ability to construct 
the angle .∠(h,k ,) in one of the half-planes of . π,. 

Axiom .E5: For any angles, if .∠(h,k ,) ≡ ∠(hk) and .∠(h,,k ,,) ≡ ∠(hk), then 
.∠(h,k ,) ≡ ∠(h,,k ,,). 

The next axiom is establishing conditions for congruences of angles of triangles. 
For an angle of a triangle .ΔABC , say .∠ABC , we understand the angle determined 
by the half-lines .(BA and .(BC .
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Axiom.E6: Let .ΔABC and .ΔA,B ,C , be two triangles. If .[AB] ≡ [A,B ,],. [AC] ≡
[A,C ,], and .∠BAC ≡ ∠B ,A,C ,, then: 

. ∠ABC ≡ ∠A,B ,C , ∠ACB ≡ ∠A,C ,B ,.

The first two congruence axioms give the following result. 

Theorem 1.1.23 The congruence relation for segments is an equivalence relation. 

Proof We prove first the following statement: if we have two segments . [AB] ≡
[A,B ,], then.[AB] ≡ [B ,A,]. Indeed, we have.[B ,A,] ≡ [A,B ,] (axiom.E1). Therefore 
.[AB] ≡ [A,B ,] and.[B ,A,] ≡ [A,B ,], so, using axiom.E2, it follows.[AB] ≡ [B ,A,]. 

Reflexivity now follows from axiom.E1 (.[AB] ≡ [BA]) and, from the statement 
above, it follows .[AB] ≡ [AB]. 

How to prove the symmetry? We have.[A,B ,] ≡ [A,B ,], via the reflexivity proved 
above. Moreover, if .[AB] ≡ [A,B ,] it follows that .[A,B ,] ≡ [AB], via Axiom.E2. It  
is very important to notice that only from this point on, we have the right to assert 
that .[AB] ≡ [CD] is the same as .[CD] ≡ [AB]. 

For transitivity, we consider .[AB] ≡ [A,B ,], and .[A,B ,] ≡ [A,,B ,,]. But  the  
congruence .[A,B ,] ≡ [A,,B ,,] implies the congruence .[A,,B ,,] ≡ [A,B ,] (symme-
try). Then, from .[AB] ≡ [A,B ,] and .[A,,B ,,] ≡ [A,B ,], it follows the congruence 
.[AB] ≡ [A,,B ,,] (axiom.E2). ▢

The congruence relation, being an equivalence relation, gives rise to a partition of 
the set of all segments in disjoint equivalence classes. This fact allows us to define 
all segments in an equivalence class to have the same value. We denote the value of a 
segment.[AB] by simply.AB. Note that the same notation.AB is also used for the line 
which passed through the points. A and. B. In general it is clear from the context if we 
refer to the line .AB or to the value of the segment .[AB]. Moreover, the congruence 
.[AB] ≡ [CD] can be also written as an equality of values, .AB = CD, when there 
is no danger of confusion between equivalence classes and their representatives. In 
what follows, going back and forth between congruence of segments (or angles) 
and equality of their values, technically requires one to prove the independence of 
chosen representatives in a given equivalence class. For the simplicity of geometric 
arguments, we will omit these technical details. 

Theorem 1.1.24 Let .(OA be a half-line with origin . O. If .C and .C , are two points 
on .(OA such that .[OC] ≡ [OC ,], then the points .C and .C , coincide. 

Proof Without loss of generality, we can assume the order .OCC ,. Let . I be a point 
which does not belong to the half-line.(OA (Axiom. I3). Then, in the triangles. ΔOC I
and .ΔOC , I , we have  .[OC] ≡ [OC ,], .[OI ] ≡ [OI ] and .∠I OC ≡ ∠I OC ,. From
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Axiom.E6 it follows .∠OIC ≡ ∠OIC ,, therefore the half-lines .(IC and.(IC , coin-
cide as sets (Axiom .E4). This implies .(IC ∩ (OA = (IC , ∩ (OA, so  .C and . C ,
coincide. ▢

Sometimes we write .C = C , whenever .C and .C , coincide. Notice that the equal 
sign which expresses the coincidence is not the same as the usual symbol. = of equal-
ity of numbers. 

Note that Axiom.E3 guarantees the additivity of the values of segments on same 
line. Indeed, if.A, B,C and.A,, B ,,C , are points on the lines. l and. l ,, respectively, with 
orders .ABC and .A,B ,C ,, respectively, such that .[AB] ≡ [A,B ,], .[BC] ≡ [B ,C ,], 
then it follows directly from Axiom.E3 that .[AC] ≡ [A,C ,]. We can formally write 
the following equalities in terms of values of segments:.AC = AB + BC and. A,C , =
A,B , + B ,C ,. 

Theorem 1.1.25 The congruence relation for segments preserves the order relation. 

Proof Consider the points.A, B,C on a line. l, with the property that. B is an interior 
point of the segment .[AC], i.e. we have the order .ABC . Moreover, let us consider 
the points .A,, B ,,C , on another line . l ,, such that .[AB] ≡ [A,B ,], .[AC] ≡ [A,C ,], 
and .B ,,C , are on the same half-line of vertex . A,. 

If we show that.B , is interior to.[A,C ,], and.[B ,C ,] ≡ [BC], then it will follow the 
order .A,B ,C ,, which is the conclusion of our theorem. Indeed, assume the existence 
of another point .C ,, ∈ l , with order .A,B ,C ,,, such that .[B ,C ,,] ≡ [BC]. . [A,B ,] ≡
[AB] and.[B ,C ,,] ≡ [BC], so, by additivity, it follows.[A,C ,,] ≡ [AC]. But. [A,C ,] ≡
[AC], thus .[A,C ,,] ≡ [A,C ,], therefore it follows that .C , = C ,,. Thus we have the 
desired order .A,B ,C ,. ▢

In view of the results above, one can define the difference operation among seg-
ments. Indeed, if .[AB] and .[AC] are two segments on a line . l, such that they have 
order .ABC , then the difference of the values of .[AC] and .[AB] is the value of the 
segment .[BC], respecting the additivity property .AB + BC = AC . Therefore we 
can write .AC − AB = BC . 

Definition 1.1.26 Two triangles.ΔABC and.ΔA,B ,C , are called congruent, and we 
denote by .ΔABC ≡ ΔA,B ,C ,, if they have congruent sides and congruent angles, 
respectively. 

Concretely, .ΔABC ≡ ΔA,B ,C , if the following six congruences are respected: 

. [AB] ≡ [A,B ,], [BC] ≡ [B ,C ,], [CA] ≡ [C ,A,],

. ∠BAC ≡ ∠B ,A,C ,, ∠ABC ≡ ∠A,B ,C ,, ∠BCA ≡ ∠B ,C ,A,.

When there is no danger of confusion, we denote by.∠A the angle .∠BAC . The first 
result about congruence of triangles is the following.
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Theorem 1.1.27 If a triangle .ΔABC has two congruent sides, then it has two con-
gruent angles, too. In this case, we call the triangle .ΔABC to be isosceles. 

Proof Without loss of generality, we can assume .[AB] ≡ [AC]. Then the triangles 
.ΔBAC and .ΔCAB are in the conditions of Axiom.E6, thus .∠ABC ≡ ∠ACB. ▢

The next theorem is the first important congruence case of triangles (Fig. 1.2). 

Theorem 1.1.28 (SAS) Let .ΔABC and .ΔA,B ,C , be two triangles, such that 
.[AB] ≡ [A,B ,],.[AC] ≡ [A,C ,], and.∠BAC ≡ ∠B ,A,C ,. Then.ΔABC ≡ ΔA,B ,C ,. 
(This congruence case is called Side-Angle-Side (SAS).) 

Proof Using axiom.E6, we have .∠ABC ≡ ∠A,B ,C , and .∠ACB ≡ ∠A,C ,B ,. The  
only congruence left to show is.[BC] ≡ [B ,C ,]. Consider a point.C ,, on the half-line 
.(B ,C , such that .[BC] ≡ [B ,C ,,] (Axiom .E1). Consider now the triangles . ΔABC
and .ΔA,B ,C ,,. From  .[AB] ≡ [A,B ,], .[BC] ≡ [B ,C ,,], and .∠ABC ≡ ∠AB ,C ,,, it  
follows from axiom .E6 that .∠BAC ≡ ∠B ,A,C ,,. From the hypothesis, we have 
.∠BAC ≡ ∠B ,A,C ,. Then we have .C , and .C ,, such that the angles .∠C ,A,B , and 
.∠C ,,A,B , are congruent. Since .C , and .C ,, are in the same half-plane with respect 
to the line .A,B ,, it follows from axiom .E4 that .(A,C , and .(A,C ,, coincide, thus 
.C , = C ,,. ▢

The next theorem establishes the second case of triangle congruence (Fig. 1.3). 

Theorem 1.1.29 (ASA) Let .ΔABC and .ΔA,B ,C , be two triangles, such that 
.[BC] ≡ [B ,C ,], .∠ABC ≡ ∠A,B ,C ,, and .∠ACB ≡ ∠A,C ,B ,. Then . ΔABC
≡ ΔA,B ,C ,. (This congruence case is called Angle-Side-Angle (ASA).) 

Proof Let.A,, ∈ (B ,A, such that.[BA] ≡ [B ,A,,]. Consider the triangles.ΔBAC and 
.ΔB ,A,,C ,. Axiom .E6 guarantees that .∠BCA ≡ ∠B ,C ,A,,. Since .A, and .A,, are in 
the same half-plane with respect to .B ,C ,, it follows that .(C ,A, and .(C ,A,, coincide. 
Therefore,.A, = A,,. We apply Theorem SAS for the triangles.ΔABC and.ΔA,B ,C ,, 
where we now have .[AB] ≡ [A,B ,], .[BC] ≡ [B ,C ,] and .∠ABC ≡ ∠A,B ,C ,. ▢
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Fig. 1.3 Theorem ASA 

Theorem 1.1.30 (Additivity of Angles) If .∠(hl) ≡ ∠(h,l ,), and .∠(lk) ≡ ∠(l ,k ,), 
where . l and . l , are half-lines interior to the angles .∠(hk) and .∠(h,k ,), then . ∠(hk) ≡
∠(h,k ,). 

Proof Let .H and .K be two points such that .H ∈ h and .K ∈ k. Using Crossbar 
Theorem, it follows that .l ∩ [HK ] /= ∅. Let  .{L} = l ∩ [HK ]. Now  take  . H , ∈ h,
and.L , ∈ l , such that .[OH ] ≡ [O ,H ,] and.[OL] ≡ [O ,L ,], and take .K , on the half-
line complement to .(L ,H , such that .[L ,K ,] ≡ [LK ]. Notice that the congruence 
.ΔOHL ≡ ΔO ,H ,L , (case SAS) implies.[HL] ≡ [H ,L ,] and.∠OHL ≡ ∠O ,H ,L ,. 
But the segments .[HL], [LK ]; [H ,L ,], [L ,K ,] satisfy the conditions of axiom .E3, 
thus the triangles .ΔOHK and .ΔO ,H ,K , are congruent (case SAS). It follows that 
.∠HOK ≡ ∠H ,O ,K ,, thus using axiom.E4, it follows that the half-lines .(O ,K , and 
. k , coincide. ▢

Suppose we are in the same hypothesis as in Theorem of Additivity of Angles. 

Theorem 1.1.31 If .∠(hk) ≡ ∠(h,k ,), and .∠(hl) ≡ ∠(h,l ,), then .∠(lk) ≡ ∠(l ,k ,). 

Proof Consider the triangles.ΔABC and.ΔA,BC such that. A and.A, are in different 
half-planes with respect to the line .BC . If  .[AB] ≡ [A,B] and .[AC] ≡ [A,C], then 
triangles .ΔABC and .ΔA,BC have congruent angles, respectively. Considering the 
segments.[AA,] and.[BC], we distinguish two cases: .[AA,] ∩ [BC] /= ∅ or. [AA,] ∩
[BC] = ∅. In each one of these cases, we apply the theorem for isosceles triangles 
in the case of triangles .ΔABA, and .ΔABA,, respectively. The conclusion of the 
theorem follows then immediately. ▢

Now we are in the right context to prove the following side-side-side (SSS) con-
gruence theorem of triangles. Note that in the proof we do not use neither the sym-
metry, nor the transitivity of the equality relation for angles! These properties are an 
immediate corollary to the following theorem (Fig. 1.4). 

Theorem 1.1.32 (SSS) Let.ΔABC and.ΔA,B ,C , be two triangles, such that. [AB] ≡
[A,B ,], .[BC] ≡ [B ,C ,], and .[CA] ≡ [C ,A,]. Then .ΔABC ≡ ΔA,B ,C ,. This con-
gruence case is called Side-Side-Side (SSS).
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Fig. 1.4 Theorem SSS 

Proof Consider the half-line .(B ,D, such that .[B ,D,] ≡ [AB] and . ∠D,B ,C , ≡
∠ABC , .D, in the half-plane determined by .A, and .B ,C ,. 

Since .[BC] ≡ [B ,C ,], .[BA] ≡ [B ,D,], and .∠ABC ≡ ∠D,B ,C ,, . ΔABC ≡
ΔD,B ,C , (case SAS). It follows that .[AC] ≡ [D,C ,]. Let us construct a point . E ,
in the complementary half-plane defined by the line.B ,C , and the point. A,, such that 
.[B ,E ,] ≡ [B ,D,] and .∠E ,B ,C , ≡ ∠C ,B ,D,. It follows that . ΔD,B ,C , ≡ ΔE ,B ,C ,
(case SAS), thus.[E ,C ,] ≡ [D,C ,] ≡ [AC] ≡ [A,C ,]. Similarly,. [E ,B ,] ≡ [B ,D,] ≡
[AB] ≡ [A,B ,]. 

Then, using the fact that isosceles triangles have equal angles corresponding to 
equal sides, the triangles.ΔA,B ,C , and.ΔE ,B ,C , are congruent (since we use the pre-
vious theorems with sum or difference of angles to prove that.∠B ,A,C , ≡ ∠B ,E ,C ,). 
Then.∠A,B ,C , ≡ ∠E ,B ,C ,, so in the half-plane determined by.B ,C , and.A, we have 
two half-lines .(B ,D, and .(B ,A,, such that they determine .∠A,B ,C , ≡ ∠D,B ,C ,. 
Therefore they are coincident and this means that the points .A, and .D, have to 
coincide. ▢

Corollary 1.1.33 The congruence relation for triangles is an equivalence relation. 

Corollary 1.1.34 The congruence relation for angles is an equivalence relation. 

The details are left for the reader, and here it is used E. 5. We have to mention 
that this equivalence relation allows us to define a value for all representatives of a 
class, which can be denoted by .v(∠(hk), with the same remarks we did in the case 
of segments.
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Fig. 1.5 Right angle 
existence 

Definition 1.1.35 Let .∠hk be an angle. The angle formed by a ray of angle . ∠hk
and the complement of the other ray is called the supplementary angle to the angle 
.∠hk. 

Definition 1.1.36 Two angles which have the same vertex and complementary sides 
are called opposite (or complementary) angles. 

We propose two problems to the reader. 

Problema 1.1.37 Supplementary angles of congruent angles are congruent. 

Problema 1.1.38 Opposite angles are congruent. 

Hint for both problems: choose points on rays such that congruent triangles occur 
(Fig. 1.5). 

Definition 1.1.39 A right angle is an angle congruent to its supplementary angle. 
We denote by . R the class of the right angles. 

The following theorem establishes the existence of right angles in any geometry 
respecting all axioms introduced so far. 

Theorem 1.1.40 There exist right angles. 

Proof Consider the congruent angles.∠hl and.∠lk such that all rays have the common 
point.O and. l belongs to the interior of.∠hk. Choose.A ∈ h, B ∈ k such that. [OA] ≡
[OB]. Crossbar theorem tells us that it exists.{T } = l ∩ [AB]. It is easy to see using 
congruent triangles that .∠AT O ≡ ∠BT O , i.e. .∠AT O and .∠BT O are both right 
angles. ▢
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The supplementary angle of an right angle is a right angle itself. The angle. ∠AT B
can be seen as the sum of the right angles .∠AT O and .∠OT B, therefore its class is 
.R + R, i.e. .2R. 

Definition 1.1.41 The points . A and .B are called symmetric with respect the line . l. 
The line .AT is called perpendicular to . l, .T is called the foot of the perpendicular 
line to . l passing through . A. 

Theorem 1.1.42 All right angles are congruent. 

Proof By contradiction, we assume that there exist two right angles .∠BAD and 
.∠B ,A,D, which are not congruent. We consider the supplementary angles . ∠CAD
and.∠C ,A,D,, respectively. Consider the half-line.(AE such that. ∠BAE ≡ ∠B ,A,D,
and observe the equality of angles .∠CAE ≡ C ,A,D,. Therefore we have. ∠CAE ≡
∠C ,A,D, ≡ ∠B ,A,D, ≡ ∠BAE . Let  .(AF such that .∠CAE ≡ ∠BAE . It results 
.∠CAE ≡ ∠CAF , in collision with E. 4. ▢

Theorem 1.1.43 The perpendicular line from an exterior point to a given line is 
unique. 

Proof By contradiction, suppose.AC and.AC , are perpendicular lines to. l,.C,C , ∈ l. 
Consider the symmetric points .B, B , of .A with respect to . l on each perpendicular 
line and choose .O ∈ l such that the order is .OC ,C . It results . ΔOCA ≡ ΔOCB
and .ΔOC ,A ≡ ΔOC ,B ,. We have  .∠BOC ≡ ∠AOC , ≡ ∠B ,O ,C , and . [OB] ≡
[OB ,] ≡ [OA], i.e. . B and .B , coincide, therefore . C coincides . C ,. ▢

Definition 1.1.44 Let.[AB] and.[A,B ,] be two segments. If there exists a point. C in 
the interior of the segment .[AB] such that .[AC] ≡ [A,B ,], we say that the segment 
.[A,B ,] is less than the segment .[AB], and we denote by .[A,B ,] < [AB]. 

In the same time we may say that the segment .[AB] is greater than the seg-
ment .[A,B ,] and we denote by .[AB] > [A,B ,]. Note that the order .ABC on a line 
determines the inequalities .[AB] < [AC] and .[BC] > [AC]. We may also define 
.[AB] ≤ [A,B ,], etc. The inequality relation .≤ is a partial order relation on the set 
of segment and more, if .[AB] > [A,B ,] and .[CD] > [C ,D,], then . [AB] + [CD] >

[A,B ,] + [C ,D,]. The inequality can be transferred to values with the notations estab-
lished there. 

Definition 1.1.45 Let .∠(h,k ,) and .∠(hk) be two angles. If there is a line . l in the 
interior of the angle .∠(hk) such that .∠(h,k ,) ≡ ∠(hl), then we can say that the 
.∠(h,k ,) is less than the angle .∠(hk), denoted by .∠(h,k ,) ≤ ∠(hk). 

Or, we can say that the angle .∠(hk) is greater than the angle .∠(h,k ,), denoted by 
.∠(hk) > ∠(h,k ,). We can easily define .∠(hk) ≥ ∠(h,k ,) or .∠(h,k ,) ≤ ∠(hk). 

We do not insist and we left to the reader to prove that the inequality relations . ≥
and . ≤ are partial order relations on the set of angles. 

Definition 1.1.46 Two lines which do not have any common point are called non-
secant lines.
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Fig. 1.6 The exterior angle theorem 

Definition 1.1.47 Consider the triangle .ΔABC . The angle formed by the half-line 
(.BA and the complement half-line of (.BC , say  (.BD, is called the exterior angle of 
the triangle .ΔABC with respect to the vertex . B. 

Consider the angle formed by the half-line .(BC and the complement half-line 
of .(BA, say  .(BF . This angle is also the exterior angle of the triangle .ΔABC with 
respect to the vertex. B, and of course.∠ABD ≡ ∠CBF as opposite angles. Having 
in mind the previous definition we can prove (Fig. 1.6). 

Theorem 1.1.48 (Exterior Angle Theorem) The exterior angle of a triangle with 
respect to a given vertex is greater than both the angles of the triangle which are not 
adjacent to it. 

Proof Let us fix the vertex to be. B. We have to prove “the exterior angle of the triangle 
.ΔABC with respect the vertex. B is greater than both the angles.∠BAC and.∠ACB”. 
Let.D be a point on.BC with the order.DBC such that.[BD] ≡ [AC]. We show that 
.∠DBA > ∠BAC . The other inequality results from .∠ABD ≡ ∠CBF > ∠ACB. 
We focus on the first inequality. By contradiction, let us suppose that . ∠ABD ≡
∠BAC . If we succeed to obtain a contradiction, the case.∠ABD < ∠BAC is reduced 
to the previous case by considering.C1 ∈ (BC) such that.∠ABD ≡ ∠BAC1. There-
fore, it remains to prove that .∠ABD ≡ ∠BAC is impossible. In the given condi-
tions it results .ΔABD ≡ ΔCAB, (SAS), i.e. .∠DAB ≡ ∠ABC . Since . ∠CAD ≡
∠CAB + ∠BAD ≡ ∠ABD + ∠ABC ≡ ∠CBD = 2R, equivalent to .A ∈ BC , in  
collision to the fact that .ABC is a triangle. ▢

Corollary 1.1.49 The sum of two among the three angles of triangle is less than the 
sum of two right angles. 

Proof To simplify the writing denote by .Be the exterior angle with respect to the 
vertex . B. The exterior angle theorem asserts that .Be > A, Be > C . It results . Be +
B > A + B, therefore .A + B < 2R. ▢
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Definition 1.1.50 An angle of a triangle which is greater than a right angle is called 
an obtuse angle. An angle of a triangle which is less than a right angle is called an 
acute angle. 

Corollary 1.1.51 A triangle cannot have more than one obtuse angle. 

Proof Suppose there exists a triangle .ΔABC such that .A > R and .B > R. Then 
.A + B > 2R, in collision with the previous corollary. ▢

We left for the reader the following very nice problems: 

Problema 1.1.52 Given a segment.[AB], there exists an unique point.M (called the 
midpoint of the segment .[AB]), such that .[AM] ≡ [MB]. 
Problema 1.1.53 Given an angle .∠hk, there is an unique half-line . l in its interior 
such that .∠hl ≡ ∠lk (the half-line . l is called the bisector of the .∠hk). 

The previous problems create an infinity of points in the interior of a given segment 
and an infinity of half-lines in the interior of an angle. 

Definition 1.1.54 The perpendicular line from a vertex of a triangle on the line 
which contains the opposite side is called an altitude (or height) of the triangle. 

Theorem 1.1.55 At least one altitude among the three altitudes of a triangle lies in 
the interior of the triangle. 

Proof (Hint) Consider the altitude corresponding to the greatest angle of a triangle, 
say.AD, D ∈ BC . . B and. C are mandatory acute angles. The order on.BC has to be 
.BDC . ▢

Theorem 1.1.56 In the triangle .ΔABC, [AC] > [AB] if and only if .∠B > ∠C. 

Proof Consider .D ∈ [AC] such that .[AB] ≡ [AD]. It results  . ∠B > ∠ABD ≡
∠ADB > ∠C . Conversely, assume.∠B > ∠C and by contradiction,.[AC] ≤ [AB]. 
If .[AC] ≡ [AB], then .∠B ≡ ∠C , contradiction. If .[AC] < [AB], then .∠B < ∠C , 
contradiction. ▢

Theorem 1.1.57 (triangle inequality) In every triangle .ΔABC the sum of two sides 
is bigger than the third side. For example .[BC] < [BA] + [AC]. 
Proof Consider.D ∈ (BA such that the order is.BAD and.[AD] ≡ [AC]. It follows 
that.[BD] ≡ [BA] + [AD] ≡ [BA] + [AC]. Since.∠BDC ≡ ∠DCA < ∠DCB it 
follows that .[BD] > [BC], that is .[BA] + [AC] > [BC]. ▢

Theorem 1.1.58 . [A1An] ≤ [A1A2] + [A2A3] + · · · + [An−1An]
Proof (Hint) .[A1An] ≤ [A1A2] + [A2An] ≤ [A1A2] + [A2A3] + [A3An] ≤ · · · .▢
Theorem 1.1.59 Consider the triangles .ΔABC and .ΔA,B ,C , such that . [AB] ≡
[A,B ,], . [AC] ≡ [A,C ,]. If .∠A > ∠A,, then .[BC] > [B ,C ,].
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Fig. 1.7 The existence of a 
non-intersecting line 

B C 

A EF 

Proof (Hint) Consider the half-line.(AD such that.∠BAD ≡ ∠B ,A,C , and. [AD] ≡
[AC] ≡ [A,C ,]. Observe that.(AD is included in the interior of the angle.∠BAC . We  
have.ΔABD ≡ ΔA,B ,C ,. The triangle.ΔACD is isosceles,.[AC] ≡ [AD], therefore 
.∠DCB < ∠ADC < ∠BDC , i.e. .[BC] > [BD] ≡ [B ,C ,] (Fig. 1.7). ▢

Theorem 1.1.60 From a point . A exterior to a line . d, one can construct at least one 
non-secant line to . d. 

Proof Consider the points.B,C on. d and a half-line.(AE in the half-plane determined 
by .A and . d such that .B and .E are in opposite half-planes with respect to the line 
.AC and.∠E AC ≡ ∠BCA. According to the exterior angle theorem we have. (AE ∩
(BC = ∅. The complementary half-line .(AF has the property .∠BAF ≡ ∠ABC . 
The same exterior angle theorem implies .(AF ∩ (CB = ∅. Therefore .FE ∩ d = ∅.
▢

Definition 1.1.61 The angles.∠E AC and.∠ACB are called interior alternate angles. 

The angles .∠FAB and .∠ABC are interior alternate angles, too. 
The reader observes that until now there is no a parallelism axiom involved in the 

construction we made. We are still in the absolute geometry area mentioned at the 
beginning of this chapter. The previous result is an important one. In the axiomatic 
frame created before it exists at least one non-secant line through a point with respect 
to a given line. There is only one or there are more? We left the answer for later. 

The axioms before allow us to have infinitely many points on a line, but we don’t 
know if a line can be “filled” with points or if it is “unbounded”. Until now we can 
see that if we establish an origin .O on a line and if we take a segment .[AB] we can 
construct on one half-line the points .E1, E2, ..., En,... such that . [AB] ≡ [OE1] ≡
[E1E2] ≡ [E2E3] ≡ · · · ≡ [EnEn+1] ≡ ... and on the complementary half-line the 
points.E−1, E−2, ..., E−n,... such that. [AB] ≡ [OE−1] ≡ [E−1E−2] ≡ [E−2E−3] ≡
· · · ≡ [E−n E−(n+1)] ≡ · · · , therefore we can associate for any integer number a point 
on the line . l. Combining with a result before related about the existence of the 
midpoint of every segment, we can see on the line . l all rational points having the 

form.
n

2m
.
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So, not all the real numbers can be “seen” on. l. And still the problem of unbound-
edness persists. Why? Since even if. [OEn] = [OE1] + [E1E2] + · · · + [En−1En] <

[OEn+1] the following example of segments bigger and bigger is bounded in the seg-

ment .[0, 1]. It is about the sequence of intervals .(0, 1 − 1

n
), n ∈ N. Can we make  

any connection between the set of real numbers and the points of a line? We need to 
introduce the axioms of continuity at this point. 

Axiom .C1 (Axiom of Archimedes): Let .[AB] and .[CD] be two arbitrary segments 
such that .[CD] < [AB]. Then, there exists a finite number of points . A1, A2, ...An, ...

on the ray .(AB, such that .[CD] ≡ [AA1] ≡ [A1A2] ≡ [A2A3] ≡ · · · ≡ [An−1An], 
the interiors of those segments have every two an empty intersection and finally, 
either .B = An or .B ∈ (An−1An). 

In view of the additivity property of segments we can write that it exists . n ∈ N

such that 

. [AA1] + [A1A2] + [A2A3] + · · · + [An−1An] ≡ n[CD] ≥ [AB]

and the inequality may refer to values. The Axiom of Archimedes multiplies values 
by natural numbers and we expect to understand the value of a segment as a real 
positive number describing the length of the segment. Considering .n = 1 in the 
previous inequality, we have the old inequality between segments, therefore.C1 offer 
us the chance to understand the appropriate nature of values attached to the segments 
and the unboundedness of the set of natural numbers. 

The next axiom is attributed to Cantor and it will be involved in “completing” the 
line with points we don’t know until now that they have to belong to a line. 

Axiom .C2 (Axiom of Cantor): Let .[A1B1], [A2B2], ... be a sequence of segments 
on a given line . l, such that every segment is included in the interior of the precedent 
one, i.e..[AnBn] ⊂ [An−1Bn−1] for all.n ≥ 2. If we assume that no segment is included 
in the interior of all segments .[AnBn], n ∈ N, then there is an unique point .M on 
the line . l such that . {M} = [A1B1] ∩ [A2B2] · · · ∩ [AnBn] ∩ · · ·

These two axioms of continuity allow us to use real positive numbers as the 
“values” of segments and angles. The results are a little bit more complicated and 
we try to suggest them without complete proofs. 

Using the continuity axiom.C1 we can assign the natural number. 1 to the segment 
.[CD] and the number . n to the value .nCD. To every segment .[AB] we attach a 
system of coordinates on the line .d = AB such that .A is the origin .O and . 1 =
OA1 = A1A2 = · · · = Am−1Am = · · · . According to.C1 it exists one integer. m ∈ N

such that .B ∈ [An−1An]. If  .B = An−1 then .AB = n − 1. If  .B = An then .AB = n. 
If .B = M1 is the midpoint of the segment .[An−1An] we assign to the value .AB is 
the 2-adic number .n − 1, 10000...0... In fact at each step from now when .B is the 
midpoint of a segment, we associate . 1 and the other decimals after are . 0. Suppose 
.B ∈ [An−1M1]. We consider the value of.AB as.n − 1, 0 and we are looking after the 
next decimal observing where .B is with respect to the midpoint .M2 of the segment 
.[An−1M1]. If  .B ∈ [M2M1] the next decimal is . 1, therefore the attached number is 
until now.n − 1, 01 and we continue looking at the position of . B with respect to the
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Fig. 1.8 Legendre’s theorem 

midpoint.M3 of the segment.[M2M1]. Imagine a little bit the position of. B if the next 
three digits are .001 such that the value of .AB is until now .n − 1, 01001. We can 
continue to discover digits until .B is a midpoint of a segment when we stop with a 
. 1 followed by . 0 only, or we never stop because the point stays in the intersection of 
all segments which are like in axiom.C2. The real number 

. n − 1, a1a2a3...an ...

with .ai = 1 if B is in the “at the right” segment, or with .ai = 0 if B is in the “at the 
left” segment, is the 2-adic number attached to the value of the segment .AB. 

Then we can show that to every real number we can assign a unique point on . l. 
The theory can be extended to angles with the following two theorems. 

Theorem 1.1.62 Let.(a1, b1), (a2, b2), ... be a sequence of angles with common ver-
tex. O, with the property that the angle.(an+1, bn+1) is contained in the angle.(an, bn), 
for all .n ≥ 1. In the assumption that there is no angle contained in the interior of 
all angles in the sequence, then there is a unique half-line . l in the intersection of the 
interior of all angles. 

Proof (Hint) Intersect all angles with a line . l and denote the points of intersection 
with .ak by .Ak and the points of intersection with .bk with .Bk , etc. ▢

Theorem 1.1.63 Let .∠(hk) and .∠(h,k ,) be two angles. There exists a natural num-
ber . n such that .n∠(hk) > ∠(h,k ,). 

Proof (Hint) Observe that the measure of the angle .∠(h,k ,) is less than .2R. If  

.∠(hk) > R we take .n = 2. If .R > ∠(hk) >
R

2
we take .n = 4, etc. ▢

We have two statements for angles analogous with the axioms.C1 and.C2. We can 
develop a similar theory for defining measure of angles, restricting all the proofs in the 
case of segments to the interval .(0, 2R). Then, there is a one-to-one correspondence 
between the set of angles and the interval .(0, 2R) of the real numbers. 

We prove now in the Absolute Geometry frame the most important result regarding 
the sum of the angles of a triangle (Fig. 1.8). 

Theorem 1.1.64 (Legendre) For any triangle, the sum of its angles is at most .2R.
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Proof Consider the triangle .ΔABC . We have to show  .∠A + ∠B + ∠C ≤ 2R. By  
contradiction, let us assume that.∠A + ∠B + ∠C > 2R. On the line.BC we consider 
the points.B = B1,C = B2, B3, ..., Bn, Bn+1 in this order such that. B1B2 = B2B3 =
· · · = BnBn+1 and in the same half-plane the points .A = A1, A2, A3, ..., An, such 
that .ΔA1B1B2 ≡ ΔA2B2B3 ≡ · · · ΔAnBnBn+1. It is easy to see that the follow-
ing triangles are congruent, .ΔA1B2A2 ≡ ΔA2B3A3 ≡ · · · ΔAn−1Bn An , therefore 
.A1A2 = A2A3 = · · · = An−1An . It is easy to deduce that.∠A > ∠A1B2A2 and then 
.BC = B1B2 > A1A2. The polygonal line .B1A1A2..AnBn+1 is bigger than the seg-
ment .B1Bn+1 = nBC , that is 

. nBC < BA + (n − 1)A1A2 + AC.

This one can be written in the form 

. (n − 1)(BC − A1A2) < BA − BC + AC.

We know that .BC − A1A2 > 0, BA − BC + AC > 0, i.e. there exists the seg-
ments .[ST ], [MK ] such that .BC − A1A2 = ST, BA − BC + AC = MK and 
.(n − 1)ST < MK . But in the last inequality the natural number . n is arbitrary, in 
collision with .C1. Therefore .∠A + ∠B + ∠C cannot be greater than .2R. It follows  
.∠A + ∠B + ∠C ≤ 2R. ▢

The next definition takes care that the values of angles are real numbers. 

Definition 1.1.65 For any triangle .ΔABC we define the defect of it, denoted 
.D(ABC), to be .D(ABC) = 2R − ∠A − ∠B − ∠C . 

Legendre’s theorem states that .D(ABC) ≥ 0 for any triangle. Let us investigate 
what other properties the defect of triangles may have. 

Theorem 1.1.66 If .P ∈ (BC), where .[BC] is a side of the triangle .ΔABC, then 
.D(APB) + D(APC) = D(ABC). 

Proof (Hint) Denote by . ∠A1 = ∠BAP, ∠A2 = ∠CAP, ∠P1 = ∠APB, ∠P2 =
∠APC and observe that .∠A1 + ∠A2 = ∠A, ∠P1 + ∠P2 = 2R. Then 

. D(APB) + D(APC) = 2R − ∠A1 − ∠P1 − ∠B + 2R − ∠A2 − ∠P2 − ∠C =

. = 2R − ∠A − ∠B − ∠C = D(ABC).

▢
Theorem 1.1.67 Consider a triangle .ΔABC and two points, . B1 ∈ (AB), C1 ∈
(AC). Then .D(AB1C1) ≤ D(ABC). 

Proof (Hint) Consider the triangles .ΔAB1C1, ΔBB1C1, ΔBCC1 and apply the 
previous theorem as follows: . D(ABC) = D(ABC1) + D(BCC1) = D(AB1C1) +
D(B1C1B) + D(BCC1) ≥ D(AB1C1). ▢
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If “the big triangle”.ΔABC has.D(ABC) = 0, then, mandatory “the small trian-
gle” .ΔAB1C1 has to fulfill .D(AB1C1) = 0. 

Pay attention to the following construction. 
Consider a right-angle triangle .ΔBAC, ∠A = R with .D(BAC) = 0. In this case 
observe that.∠B + ∠C = R and construct.D in the opposite half-plane with respect 
to .BC and .A such that .ΔABC ≡ ΔDBC . It results in a quadrilateral . ABDC
such that all angles are equal to . R, and the opposite sides are equal, i.e. . [AB] ≡
[CD], [AC] ≡ [BD]. We may call this figure rectangle and it is easy to discover 
two more properties. The diagonals .AD and .BC are congruent and they cut in the 
middle of each one. Let us rename the rectangle .ABDC by .A00A10A11A01. 

We intend to pave the plane with tiles congruent to our created rectangle 
.A00A10A11A01 for obtaining a so-called grid. 

On the half-lines .A00A10 we consider the points .A20, A30, ...., An0, ... such 
that the segment .[AB] is seen repeatedly as . [A00A10] ≡ [A10A20] ≡ [A20A30] ≡
· · · ≡ [A(n−1)0An0] ≡ · · · and on the half-line .A00A01 we consider the points . A02,

A03, ...., A0n, ... such that the segment .[AC] is seen repeatedly as . [A00A01] ≡
[A01A02] ≡ [A02A03] ≡ · · · ≡ [A0(n−1)A0n] ≡ · · · . 

The tiles we create and put on the first row are consecutively 

. A00A10A11A01, A10A20A21A11, A20A30A31A21,

. A30A40A41A31, ...., An0A(n+1)0A(n+1)1An1, ...,

on the second row 
. A01A11A12A02, A11A21A22A12,

. A21A31A32A22, A31A41A42A32, ...., An1A(n+1)1A(n+1)2An2, ..., etc.

A “general” tile in this pavement is .Akp A(k+1)p A(k+1)(p+1)Ak(p+1). 
It is easy to see that the points .A20, A11, A02 are collinear. 
The same, the points .A30, A21, A12, A03 and in general 

. An0, A(n−1)1, A(n−2)2, ..., A2(n−2), A1(n−1), A0n

are collinear points. 
And it is also easy to observe that all triangles.A0n A00An0 have the sum of angles 

equal to .2R, i.e. .D(A0n A00An0) = 0. We are prepared to prove a very important 
theorem. 

Theorem 1.1.68 If there exists a right-angle triangle with defect . 0, then all right-
angle triangles have defect . 0, i.e. the sum of their angles is .2R. 

Proof Consider the right-angle triangle to be .ΔBAC, ∠A = R and . D(BAC) = 0
and let a general right-angle triangle .ΔEFG, ∠F = R. According to Archimedes’
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axiom it exists.m ∈ N, n ∈ N such that.m · AB > FE, n · CA > FG. Without loos-
ing the generality we suppose .n > m. Then the triangle .ΔEFG can be “arranged” 
such as .F = A00, E ∈ (A00A0n), G ∈ (A00An0). According to the previous theory 
.0 ≤ D(EFG) ≤ D(A0n A00An0) = 0, i.e. .D(EFG) = 0. ▢

Theorem 1.1.69 If there exists a triangle with defect. 0, then all triangles have defect 
. 0, i.e. the sum of their angles is .2R. 

Proof Consider a triangle with defect . 0, say  .ΔABC . It exists an altitude which 
intersects the opposite side in its interior, say .AT, T ∈ (BC). The altitude and 
the sides of the triangle determine two right-angle triangles, .ΔABT and .ΔATC , 
both with. 0 defect, because the initial triangle is with. 0 defect. The previous theorem 
asserts that all right-angle triangles have. 0 defect. Now, consider an arbitrary triangle 
.ΔDEF . Suppose that the altitude which intersects the opposite side is . DP, P ∈
(EF). The two right-angle triangles.ΔDFP and.ΔDEP are with. 0 defect, therefore 
the defect of the triangle .ΔDEF is . 0. ▢

There are only two situations that can happen. All the triangles have the sum of 
angles.2R or all the triangles have the sum of angles strictly less than.2R. In the given 
context we cannot decide about the sum. The next axioms will clarify this aspect. 

Definition 1.1.70 The collection of all properties and results deduced from all 
axioms of incidence, order, congruence, and continuity above is called an absolute 
geometry. 

1.2 From Absolute Geometry to Euclidean Geometry 
Through Euclidean Parallelism Axiom 

The question we asked before is how many non-secant lines can be constructed 
through an exterior point to a given line. We know that at least one can be con-
structed. Could there be two or more? The standard Euclidean Parallelism Axiom is 
stated as follows. 

Axiom P: Given any line in a plane and given any point not incident to the given 
line, there exists at most one line that passes through the given and it is non-secant 
to the given line. 

Definition 1.2.1 The collection of all properties and results deduced from all axioms 
of incidence, order, congruence, continuity, and Euclidean parallelism above is called 
as Euclidean geometry. 

A direct consequence: In Euclidean geometry, i.e. in the axiomatic frame created 
by the axioms of incidence, order, congruence, continuity, and the Euclidean paral-
lelism axiom there exists an unique line that passes through a given point . A and it is
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Fig. 1.9 Axiom of Euclidean parallelism 

non-secant to the given line. d. This unique non-secant line is called the parallel line 
to the given line . d through the given point . A (Fig. 1.9). 

Theorem 1.2.2 In Euclidean geometry, the sum of angles of any triangle is .2R. 

Proof Consider a triangle .ΔABC and the unique parallel through .A to .BC . We  
have in mind the figure of Theorem 23 where the parallel was .FE with .A ∈ FE . 
The interior alternate angles.∠E AC and.∠ACB are equal. The same for the interior 
alternate angles .∠FAB and .∠ABC . Therefore, if we look at the angle .∠FAE we 
observe that it is equal to the sum of the angles of the triangle .ΔABC and, in the 
same time, it has the value .2R. Since this particular triangle has the sum of angles 
equal to .2R, all other triangles have the sum of angles equal to .2R. ▢

In the case of the figure, . ∠A + ∠B + ∠C = ∠A + α + β = 2R.

Since.∠A + ∠B + ∠C = 2R, we deduce.2R − ∠A = ∠B + ∠C.But. 2R − ∠A
is the value of the exterior angle . A. 

Corollary 1.2.3 (Exterior Angle Theorem in the Euclidean Geometry) For every 
triangle, each exterior angle is the sum of the interior non-adjacent angles. 

Theorem 1.2.4 If it exists a triangle with the sum of its angles equal to .2R the 
parallelism axiom is satisfied. 

Proof Assume that there exists a triangle .ΔABC with .∠A + ∠B + ∠C = 2R. 
Therefore every triangle has the same property. 
Let . d be a line and .M a point not on . d. Let  .MN be the perpendicular line from 

.M to . d, .N ∈ d. Let  . l be a perpendicular to .MN in . M . We know that . l and . d are 
non-secant lines. We have to prove that . l is the only non-secant line through.M to. d. 

Consider another line . l , passing through .M and denote by .α the acute angle 
between .MN and . l ,. 

It makes sense to consider a triangle .M ,N ,P , such that
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. [MN ] ≡ [M ,N ,], ∠M ,N ,P , = R, ∠N ,M ,P , = α

and .∠M ,P ,N , = R − α (without to know that .R,α, R − α are the angles of a tri-
angle, we do not know that only the angles .R and . α together with the side . M ,N ,
determine a triangle). 

Considering .P ∈ d with . [N P] ≡ [N ,P ,], the triangles .ΔMNP and . ΔM ,N ,P ,
are congruent and one of the half-line of . l , is coincident to .MP . Therefore . l , ∩ d =
{P}, i.e. . l is the unique non-secant line through .M to . d. ▢

The story of Euclidean Geometry may continue with many theorems which can 
be proven only in this axiomatic frame. But we are interested in introducing non-
Euclidean parallelism and models of non-Euclidean geometry. Therefore we remain 
in the axiomatic frame corresponding to the axioms of incidence, order, congruence, 
and continuity and, at this moment, we add another axiom, more specific the denial 
of the Axiom of Euclidean parallelism. 

1.3 From Absolute Geometry to Non-Euclidean Geometry 
Through Non-Euclidean Parallelism Axiom 

The Euclidean parallelism axiom, in the set theoretical language, can be written as 

. ∀d, ∀A /∈ d, #{a | A ∈ a, a ∩ d = ∅} ≤ 1,

where. # denotes the number of elements of a set. In what follows we assume the nega-
tion of the previous axiom, and we call this the axiom of non-Euclidean parallelism. 
In set theory language, this translates to 

. ∃d0, ∃A0 /∈ d0, #{a | A0 ∈ a, a ∩ d0 = ∅} ≥ 1.

Therefore the axiom of non-Euclidean parallelism is the following. 

Axiom .PN0 : There exist both a line .d0 and a point .A0 exterior to .d0 with the 
property: at least two non-secant lines to .d0 passing through .A0 exist. 

Definition 1.3.1 The collection of all properties and results deduced from all axioms 
of incidence, order, congruence, continuity, and non-Euclidean parallelism above is 
called a non-Euclidean geometry. 

We study below some important results in the context of this geometry. 

Theorem 1.3.2 Axiom .PN0 acts as a global property, i.e. it holds for any line and 
any exterior point.
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Proof By contradiction, we assume that there is a point . A and a line. d which do not  
satisfy the property “there are at least two non-secant lines to. d, passing through. A”. 
Then, through. A passes exactly one non-secant line to. d. So, the Axiom P is satisfied 
for the pair.(A, d). If we choose. B and. C on. d, it is easy to see that the sum of angles 
of the triangle .ΔABC is .2R, and this is equivalent as we saw before with Axiom P 
for all pairs .(M, l), M /∈ l, in collision with our assumption. ▢

We can restate the axiom of non-Euclidean geometry as follows. 
Axiom PN: Given a line and a point exterior to the line, there exists at least two 

non-secant lines to the given line. 

It is easy to prove 

Theorem 1.3.3 Let . l be a given line in a plane and . A be an exterior point to . l. Let 
.a1 and .a2 be two lines in the same plane which pass through .A and are non-secant 
to . l. Then every line . a passing through .A and included in the interior of the angle 
.∠a1a2 is non-secant to . l. 

Proof (Hint) If. a intersects. l, then it does intersect.a1 or. a2, in collision with the fact 
that . a is included in the interior of the angle .∠a1a2. ▢

Corollary 1.3.4 In non-Euclidean geometry there are an infinite number of non-
secant lines to a given line through an exterior point. 

Theorem 1.3.5 In a geometry which satisfies the groups of axioms of incidence, 
order, congruence, continuity, and the Axiom NP, the sum of angles of a triangle is 
less than .2R. 

Proof (Hint) If it exists a triangle with the sum of angles equal to .2R, then Axiom 
P is valid, contradiction. ▢

We conclude that the non-Euclidean geometry established by the absolute geome-
try together with the Axiom NP is completely different than the Euclidean geometry 
established by the absolute geometry together with Axiom P. More other interesting 
results may be found in both geometries, but in the following, we are interested in 
offering examples of models of Euclidean and non-Euclidean geometries.



Chapter 2 
Basic Facts in Euclidean and Minkowski 
Plane Geometry 

Entia non sunt multiplicanda praeter necessitatem. 

W. Ockham 

In Chap. 1, we found out that there exist different geometries in a plane. It depends 
on the axioms one chooses if Euclidean Geometry or Non-Euclidean Geometry is 
described. But how these geometries look like? In this chapter we present an algebraic 
model for Euclidean Geometry discussing some important theorems. We obtain a 
visual representation for the Euclidean Geometry of the plane. Making small changes 
in the algebraic construction of the Euclidean Geometry, it is possible to construct 
a Minkowski Geometry. This Geometry is deeply involved both with Physics and 
with Non-Euclidean Geometry. Later, we see how the models of Non-Euclidean 
Geometry are connected between them and how a Minkowski one is among them. 
The geometric objects in Minkowski Geometry seem to have a non-intuitive look, but 
the main theorems have a similar look with their Euclidean counterparts. Generally, 
Non-Euclidean models are more sophisticated and we need more mathematical tools 
in order to build them. This happens in the following chapters. One more comment: 
this chapter is not as formal as the previous one where we used the language style 
of an axiomatic theory. We can relax a little bit the mathematical language structure. 
The definitions appear often written as part of a mathematical algebraic description of 
geometric objects and italic letters are used to indicate them. The following notation 
is used: .A := B. It means that the object .A from the left side of the equality is 
described by definition through the object expression .B from the right part of the 
equality. The word iff has the meaning of “if and only if”. 
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2.1 Pythagoras Theorems in Euclidean Plane 

The idea to consider a system of coordinates on a line was discussed in the previous 
chapter. 

The coordinates are real numbers and their set, geometrically represented as a 
line, is denoted by . R. In the following we suppose known 
. • the set of natural numbers denoted by . N, 
. • the set of integers denoted by . Z, 
. • the set of rational numbers denoted by . Q, and 
. • the set of irrational numbers denoted by .R − Q. 

In the same time we have proved that the values of angles are real numbers. 
Basic facts about matrix theory, groups, vector spaces, trigonometric, exponential, 

and logarithms functions are suppose known by the reader interested in the topic of 
this book. 

When we are talking about a model of Euclidean Geometry in a plane, we have to 
start from the vector space .R2 over the field . R. .x := (x1, x2), y := (y1, y2) are 
called vectors. The vector space operations are .x + y := (x1 + y1, x2 + y2) and 
.λx := (λx1,λx2). 

The Euclidean inner product of the vectors . x and . y is defined by 

. ❬x, y❭ := x1y1 + x2y2

and the norm of . x , by .|x | := √❬x, x❭ =
/
x21 + x22 . 

Two vectors are called Euclidean orthogonal (or Euclidean perpendicular) if their 
inner product is null. 

According to the operations, the vector .(x1, x2) can be thought as . x1(1, 0) +
x2(0, 1), that is .(x1, x2) = x1(1, 0) + x2(0, 1) = x1e1 + x2e2 so, the pair . (x1, x2)
can be seen also as a pair of coordinates of a point . A of the plane. 

The line determined by .xe1, x ∈ R is called the .x-axis, and the line determined 
by .ye2, y ∈ R is called the .y-axis. 

Therefore, in the system of coordinates generated by the orthogonal vectors 
.e1 = (1, 0); e2 = (0, 1), the geometric meaning of the vector .x = (x1, x2) is the 

oriented segment .
→
OA, lying from the origin .O with the coordinates .(0, 0) and the 

endpoint . A with the coordinates .(x1, x2). 

Let us consider the .2 × 2 rotation matrix .Aα =
(
cosα − sinα
sinα cosα

)
in which the 

basic trigonometric function sine and cosine are involved as components. 

We define . Aαx :=
(
cosα − sinα
sinα cosα

) (
x1
x2

)

.Aαx, Aαy are two matrices with two lines and one column, and it makes sense to 
consider the inner product.❬Aαx, Aαy❭ by adding, after multiplying, the correspond-
ing first and second components, i.e.
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. ❬Aαx, Aαy❭ =

. = (x1 cosα − x2 sinα)(y1 cosα − y2 sinα) + (x1 sinα + x2 cosα)(y1 sinα + y2 cosα).

Exercise 2.1.1 .❬Aαx, Aαy❭ = ❬x, y❭. 
Hint. Use . sin2 α + cos2 α = 1.

Exercise 2.1.2 . |Aαx | = |x |.
Exercise 2.1.3 If .|x | = 1, then . ❬Aαx, x❭ = cosα.

If .|x | = 1, then .|Aαx | = |x | = 1. Denote by . u the unitary vector .Aαx . The pre-
vious relation for the unitary vectors .u, x can be written in the form.❬u, x❭ = cosα. 

We can see the vector. u as the rotation of the vector. x , so the angle between these 

two vectors is . α. For two arbitrary vectors .a, b, the vectors .
a

|a| ,
b

|b| are unitary and 
the previous relation becomes 

. 

/
a

|a| ,
b

|b|
\

= cosα,

i.e. 

. 
❬a, b❭
|a||b| = cosα.

This last formula is known as the Generalized Pythagoras Theorem. Let us discuss 
why (Fig. 2.1). 

Since we have the vectors .a = (a1, a2), b = (b1, b2), we can think about the 
triangle.OAB as the triangle determined by the points.O(0, 0), A(a1, a2), B(b1, b2). 

Before continuing, we point out the meaning of the Euclidean Parallelism in this 
coordinate frame. 

Let us consider .M(m1,m2) and .N (n1, n2). 

Definition 2.1.4 The lines .AB and .MN are Euclidean parallel and we denote this 
by .MN ||AB, if the vectors 

. 

→
OD= (m1 − n1,m2 − n2)

and 
. 

→
OC= (a1 − b1, a2 − b2)

are collinear, i.e. .∃β /= 0 such that .(m1 − n1,m2 − n2) = β(a1 − b1, a2 − b2).
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Fig. 2.1 Parallel lines seen through vector properties 

The Generalized Pythagoras Theorem in .AOB asserts 

. |AB|2 = |OA|2 + |OB|2 − 2|OA||OB| cosα,

where .|OA| = | →
OA | = |a|, 

. |AB| = | →
AB | = |OC | = |a − b| = /❬a − b, a − b❭ =

/
(a1 − b1)2 + (a2 − b2)2,

and .∠AOB = α. 
The formula explained and written above 

.|AB| :=
/
(a1 − b1)2 + (a2 − b2)2
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is called the Euclidean distance between the two points .A(a1, a2), B(b1, b2) of the 
plane. 

Theorem 2.1.5 In the previous notations, it is 

. |AB|2 = |OA|2 + |OB|2 − 2|OA||OB| cosα,

iff 

. 
❬a, b❭
|a||b| = cosα.

Proof We observe that we need to prove only that 

. 2|OA||OB| cosα = |OA|2 + |OB|2 − |AB|2

is the same as 
. 2|a||b| = 2 ❬a, b❭ .

Or, this means 

. |OA|2 + |OB|2 − |AB|2 = 2

/ →
OA,

→
OB

\
,

and, in coordinates, this becomes a quick computation for the reader, that is, 

. (a21 + a22) + (b21 + b22) − (
(a1 − b1)

2 + (a2 − b2)
2
) = 2(a1b1 + a2b2)

2.

Corollary 2.1.6 If .
/ →
OA,

→
OB

\
= 0, i.e. the vectors .a and .b are orthogonal 

(Euclidean perpendicular), then we obtain the standard Pythagoras’ theorem. 

The side .AB is called a hypotenuse, and .OA, OB are called legs of the triangle 
.OAB. 

Theorem 2.1.7 (Pythagoras’ Theorem) In the previous notations, it is 

. |AB|2 = |OA|2 + |OB|2.

The angle corresponding to orthogonal vectors is described by the condition 

.cosα = 0, that is, its measure is .α = π

2
. 

Therefore .
π

2
is the value of the right angle . R. The sum of angles of a triangle in 

Euclidean Geometry becomes .∠A + ∠B + ∠C = π. 

Theorem 2.1.8 (Thales Theorem) Let us consider . O(0, 0), A(x1, x2), B(y1, y2),
A1(μx1,μx2), . B1(λy1,λy2). Then, .AB||A1B1 iff .λ = μ.
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Proof In coordinates.
→
AB= (y1 − x1, y2 − x2) and. 

→
A1B1= (λy1 − μx1,λy2 − μx2).

The parallelism between .AB and .A1B1 is equivalent to: .∃β such that . (λy1 −
μx1,λy2 − μx2) = β(y1 − x1, y2 − x2). Therefore 

. (λ − β)y1 − (μ − β)x1 = 0,

. (λ − β)y2 − (μ − β)x2 = 0

for arbitrary .x1, x2, y1, y2, that is, .AB||A1B1 iff .λ = μ. 

Thales theorem can be written in the form: 
Consider the triangle . OAB, A1 ∈ OA, B1 ∈ OB.

Then .AB||A1B1 iff . 
|OA|
|OA1| = |OB|

|OB1| .

Problema 2.1.9 Consider the triangle .OAB, A1 ∈ OA, B1 ∈ OB. Then 

.AB||A1B1 iff . 
|OA|
|OA1| = |OB|

|OB1| = |AB|
|A1B1| .

Hint. Construct a parallel from .B to .OA, denote by .X the point of intersection 

between the parallel and.A1B1, apply Thales Theorem in the form. 
|B1X |
|B1A1| = |B1B|

|B1O|
and use the properties of proportions. ▢

It is not very difficult to express line equations in the Euclidean plane. 
If the line . d passes through .A(a1, a2); B(b1, b2) the equation of . d is 

. y − a2 = a2 − b2
a1 − b1

(x − a1).

The ratio denoted by . m, .m := a2 − b2
a1 − b1

is called a slope for the line . d. The slope . m

has the value .m = tanα, where . α is the angle between the .Ox and . d in this order. 

Exercise 2.1.10 Show that two lines .d1 and .d2 are Euclidean perpendicular iff 
.m1m2 = −1. 

Hint. Use Euclidean exterior angle theorem and .tan(α + β) formula. 
The equation of a circle centred at .(a1, a2)with radius . r is expressed with respect 

to the Euclidean distance between the centre and a point .(x, y) on the circle: 

. (x − a1)
2 + (y − a2)

2 = r2.

The interior of a circle. C is denoted by.intC and, between the two regions in which a 
circle divides the plane, it is the region containing its centre. The Euclidean distance 
between the centre and a point belonging to this region is less than the radius. The 
complementary region is called the exterior of the circle. The Euclidean distance 
between the centre and a point belonging to this region is greater than the radius.
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There are many properties related to circles and lines attached to triangles in the 
Euclidean Geometry. Some of them will be studied in the next chapter. The Euclidean 
plane is denoted by .E2. 

2.2 Space-Like, Time-Like, and Null Vectors in Minkowski 
Plane 

When we are talking about a model of Minkowski Geometry in a plane, we have to 
start from the same vector space.R2 over the field. R. Here,. x = (x1, x2), y = (y1, y2)
are called vectors, as in the Euclidean case. 

The vector space operations are the same.x + y := (x1 + y1, x2 + y2) and. λx :=
(λx1,λx2). 

The Minkowski product of the vectors . x and . y is defined by 

. ❬x, y❭M := x1y1 − x2y2

and the Minkowski norm of . x by .|x |M := √| ❬x, x❭ |M =
/

|x21 − x22 |. 
Two vectors are called Minkowski orthogonal if their Minkowski product is null. 

In a system of coordinates generated by the Minkowski orthogonal vectors . e1 =
(1, 0); e2 = (0, 1), the geometric meaning of the vector .x = (x1, x2) is the oriented 

segment .
→
OA, lying from the origin .O with the coordinates .(0, 0) and the endpoint 

. A with the coordinates .(x1, x2). This is exact as in the Euclidean case. 
Even the parallelism is like in the Euclidean case. Consider .M(m1,m2) and 

.N (n1, n2). 

Definition 2.2.1 The lines.AB and.MN are parallel and we denote this by. MN ||AB,
if the vectors.

→
OD= (m1 − n1,m2 − n2) and.

→
OC= (a1 − b1, a2 − b2) are collinear, 

i.e. .∃β /= 0 such that . (m1 − n1,m2 − n2) = β(a1 − b1, a2 − b2).

However, in a Minkowski space, we have three different kind of vectors .
→
OA. Let  

us explain. There are space-like vectors, time-like vectors, and null vectors. 
A vector . x is a space-like vector if . ❬x, x❭M < 0.
Examples are .b = (−1, 2), .e = (2,−3), or in general .a = (a1, a2) with . |a1| <

|a2|.
A vector . x is a time-like vector if . ❬x, x❭M > 0.
Examples are .b = (3, 2), .e = (−4,−3), or in general .a = (a1, a2) with . |a1| >

|a2|.
A vector . x is a null vector if . ❬x, x❭M = 0.
Examples are.b = (−1, 1),.e = (2, 2), or in general.a = (a1, a2)with. |a1| = |a2|.
The reader can observe that Minkowski orthogonal vectors have to be pairs, one 

space-like and one time-like. An example: .x = (x1, x2); v = (kx2, kx1).
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Consider the .2 × 2 “hyperbolic rotation” matrix .Aα =
(
coshα sinhα
sinhα coshα

)
in 

which the basic hyperbolic trigonometric functions sine and cosine are involved 
as components. 

. sinhα = eα − e−α

2
, coshα = eα + e−α

2
.

This matrix is called a hyperbolic rotation and this name is legitimate by the next 
quick exercises. 

As in the Euclidean case, .Aαx, Aαy are two matrices with two lines and one 
column, and it makes sense to consider the Minkowski product .❬Aαx, Aαy❭M . 
Exercise 2.2.2 .❬Aαx, Aαy❭M = ❬x, y❭M. 

Hint. Use .cosh2 α − sinh2 α = 1. Therefore 

. ❬Aαx, Aαy❭M = (x1 coshα + x2 sinhα)(y1 coshα + y2 sinhα) −

. − (x1 sinhα + x2 coshα)(y1 sinhα + y2 coshα) =

. = x1y1 − x2y2 = ❬x, y❭M
We leave the reader to prove that it does not exist . α such that . Aαe1 = e2.

Or, more general, after rotating a time-like (space-like) vector we cannot obtain a 
space-like (time-like) vector. As we will see below, this property is related to causality 
in Relativity. 

Exercise 2.2.3 . |Aαx |M = |x |M .
So, the matrices .Aα preserve the Minkowski type and the Minkowski length of 

vectors. 

Definition 2.2.4 If.u = Aαv we say that. α is the oriented hyperbolic angle between 
. v and . u. Obviously, .−α is the oriented hyperbolic angle between . u and . v. 

Next, we discuss about time-like vector properties. 
A future-pointing time-like vector. v fulfills the property.❬v, e1❭M > 0. An example 

is . v = (3, 2).
Otherwise the vector . v is a past-pointing space-like vector. .v = (−3,−2) is an 

example, and the reader can observe that if we consider the lines .d1 : x2 = x1 and 
.d2 : x2 = −x1 which describe the null cone, a future-pointing time-like vector is 

a vector .v = →
OA with .A = (a1, a2) included in the interior of the angle .∠d1d2 (i.e. 

.|a1| > |a2|) such that .a1 > 0. 

Exercise 2.2.5 If. v is a future-pointing time-like vector, then.Aαv is a future-pointing 
time-like vector.
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Hint. Since we have proved that the time-like property is kept after a hyperbolic 
rotation, it remains to prove that the future-pointing property is preserved. 

Or . ❬Aαv, e1❭M = a1 coshα + a2 sinhα.
We have .|a1| > |a2| and .| sinhα| < coshα, i.e. .|a1 coshα| > |a2 sinhα|. 
It remains to observe that there are triangles in this Minkowski Geometry in which 

the meaning of angle does not exist. The triangles in which we can discuss about 
angles are called pure triangles, i.e. in such triangles all the sides are time vectors, all 
pointing towards the future (or, all pointing towards the past). How we can create such 
a triangle? We start with two, say, future-pointing time-like vectors,. x = (x1, x2), y =
(ky1, ky2) and we choose .k > 0 such that .y − x = (ky1 − x1, ky2 − x2) is future-
pointing time-like vector. 

Exercise 2.2.6 If . x and . y are future-pointing time-like vectors then 
1. . ❬x, y❭M > 0;
2. .x + y is a future-pointing time-like vector; 
3. .❬x, y❭M ≤ |x |M |y|M, where the equality happens iff . y = kx;
4. .|x + y|M ≤ |x |M + |y|M, the equality happens iff . y = kx .

2.3 Minkowski–Pythagoras Theorems 

Let us start with a simple exercise. 

Exercise 2.3.1 If . x is a space-like vector such that .|x |M = 1 then . ❬Aαx, x❭M =
− coshα.

Hint. . ❬Aαx, x❭M = (x1 coshα + x2 sinhα)x1 − (x1 sinhα + x2 coshα)x2 =
(x21 − x22 ) coshα = − coshα.

Denote by. u the unitary vector.Aαx . The previous relation for the unitary vectors 
.u, x can be written in the form.❬u, x❭M = − coshα. 

For two arbitrary future-pointing space-like vectors .a, b, the vectors . 
a

|a|M ,
b

|b|M
are unitary and the previous relation becomes 

. 

/
a

|a|M ,
b

|b|M
\

M

= − coshα,

i.e. 

. 
❬a, b❭M
|a|M |b|M = − coshα.

According to the Euclidean case, this last formula can be called the Generalized 
Minkowski–Pythagoras theorem.
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Consider a Minkowski right triangle .OAB, i.e. a triangle such that the vectors 

.

→
OA and .

→
OB are Minkowski orthogonal, that is, .

/ →
OA,

→
OB

\

M

= 0. The side . AB

is called a Minkowski hypotenuse, and .OA, OB are called Minkowski legs of the 
triangle .OAB. 

An example is given by .
→
OA= (0, a), a > 0; →

OB= (b, 0), b > 0. When we 

consider the vector .
→
AB= (b,−a) it depends on the absolute values .|a|, b if this 

vector is a time-like vector, a space-like vector, or a null vector. 
So, the Minkowski–Pythagoras theorem asserts that “in a Minkowski right tri-

angle, the square of the Minkowski hypotenuse is the difference of the square of 
Minkowski legs.” 

The endpoints of unitary space-like vectors determine a Minkowski circle. The 
equation of this circle is .x2 − y2 = −1. From the Euclidean point of view this is a 
hyperbola equation. 

The endpoints of unitary time-like vectors determine a Minkowski circle, too. The 
equation of this circle is .x2 − y2 = 1. 

Exercise 2.3.2 What kind of triangle is determined by three arbitrary points of the 
Minkowski circle .x2 − y2 = −1? 

The answer is: a pure time-like triangle, i.e. a triangle in which each side is a 
time-like vector pointing the future (or all three pointing the past). 

There are a lot of nice geometric properties for Minkowski circles, some of them 
similar to Euclidean properties. For our purpose the facts highlighted above are 
enough to continue. The Minkowski plane is denoted by .M2.



Chapter 3 
From Projective Geometry to Poincaré 
Disk. How to Carry Out a Non-Euclidean 
Geometry Model 

Virtus unita fortior agit. 

This chapter is devoted to a first model of Non-Euclidean Geometry. To construct 
this model, we need to deal with one of the most important transformations of the 
Euclidean plane, the geometric inversion. We still need some other acquirements, 
therefore we meet the Projective Geometry. An invariant described by a special 
projective map of a circle allows us to construct a non-Euclidean distance inside the 
disk. Elaborating the previous model we highlight the Poincaré disk model. 

3.1 Geometric Inversion and Its Properties 

The geometric inversion is a classical transformation of elementary Euclidean Plane 
Geometry. To describe it, let us consider a circle centred at .O and radius. R, denoted 
.C(O, R). 

A geometric inversion of centre .O ∈ E2 and radius .R maps each point . M ∈
E2, M /= O to the point .N on the radius .OM such that .|OM | · |ON | = R2, where 
.|OM | is the Euclidean length between the points .O and . M . 

The circle .C(O, R) is called circle of inversion. 
The points .M and .N are called homologous inverse points with respect to the 

previous geometric inversion determined by the circle of inversion .C(O, R). .R2 is 
called power of inversion. 

We prefer to use “inversion of centre.O ∈ E2 and power.R2” instead of “inversion 
of centre .O ∈ E2 and radius . R”. 

Suppose we know the homologous inverse .M and .N with respect to a geometric 
inversion having.O as a centre and.R2 as a power and the order of points on the radius 
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.OM is .O, M, N , or  .O, N , M , i.e. .O /∈ (MN ). This is a  direct inversion, when the 
oriented segments .OM and .ON have the same direction. 

Now choose .N , the symmetric of .N with respect to . O , i.e. .|ON ,| = |ON |. We  
have .N , on the radius .OM , .|OM | · |ON ,| = R2 and .O ∈ (MN ,). 

Therefore, for the inverse .N of a point . M , with respect to a given inversion, we 
have two possibilities: 

(1) .O does not belong to the segment .(MN ), 
(2) .O belongs to the segment .(MN ). 

To conclude, when we are talking about an inversion and the inverse .N belongs to 
the radius .OM , we have to specify if it is the direct geometric inversion i.e. we are 
talking about the map 

. TO;R2 : E2 − {O} → E2 − {O}, TO;R2 (M) = N , O /∈ (MN ), |OM | · |ON | = R2,

or we are talking about the map 

. T s
O;R2 : E2 − {O} → E2 − {O}, T s

O;R2 (M) = N , O ∈ (MN ), |OM | · |ON | = R2,

which can be called symmetric geometric inversion. 
All next results are done for the direct geometric inversion, that is for the map 

.TO;R2 . All the properties obtained can be easily transferred by symmetry with respect 

.O for the symmetric geometric inversion. When in a problem we use an inversion, 
the reader finds the information if it is a direct one or symmetric one looking at the 
map involved, i.e. .TO;R2 or .T s

O;R2 . 
The main properties of the direct geometric inversion are: 
1. If .TO;R2(M) = N , then .TO;R2(N ) = M . 
In simple words, if .N is the inverse of . M , then .M is the inverse of . N . 
That is, 

. TO;R2(TO;R2(M)) = M.

This property can be written in a simpler form as 

. T 2 = idE2−{O}

and it highlights that the geometric inversion is an idempotent transformation. 
2. .TO;R2(C(O, R)) = C(O, R), that is the circle of inversion is invariant under 

the inversion it generates. 
3. A line. d which passes through the pole of inversion is invariant under inversion, 

i.e. 
.TO;R2(d − {O}) = d − {O}.
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Fig. 3.1 Inversion main 
figure 

O 

A 

C D 

B 

Before continuing, some notions are needed. A cyclic quadrilateral .ABCD is a 
quadrilateral which vertexes.A, B,C, D belong to a circle. l, called the circumcircle 
of the quadrilateral (Fig. 3.1). 

4. If .TO;R2(A) = B and .TO;R2(C) = D, then .ABDC is a cyclic quadrilateral. 

Hint: From .|OA| · |OB| = |OC | · |OD| = R2 it results .
|OA|
|OD| = |OC |

|OB| . Then, 
triangles .△OAC and.△ODB are similar, i.e. .∠OAC = ∠CDB, that is the quadri-
lateral .ABDC is a cyclic one. 

Why the circle of inversion is important? Because it allows us to construct the 
inverse of a point. 

5. Construction of the inverse of a given point. 
Suppose .M belongs to .intC(O, R) (Fig. 3.2). 
We consider the radius.OM and the perpendicular line to .OM in .M which inter-

sects the circle at the points. S and. S,. Next,  we  refer to. S. The tangent at . S intersects 
the radius .OM in . N . 

If we look at the right triangle .△OSN , R2 = |OS|2 = |OM | · |ON |, i.e. .N is 
the (direct) inverse of . M . 

Suppose .M is outside the circle of inversion (Fig. 3.3). 
We construct the radius .OM and one of the tangent to the circle, . MS, S ∈

C(O, R). The perpendicular from. S to.OM intersects.OM in. N . In the right triangle 
.△OSM we have .R2 = |OS|2 = |OM | · |ON |, i.e. .N is the inverse of . M . 

Let us observe that in the above two situations the circle passes through . SMS,N
is orthogonal to the circle of inversion. If.M ∈ C(O, R), N = M , that is the inverse 
of .M is .M itself. 

Fig. 3.2 The inverse point 
of an interior point M 

O 
M 

S,

S 

N
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Fig. 3.3 The inverse point 
of an exterior point M 
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Fig. 3.4 The inverse of a 
line. d such that. O /∈ d

O 
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M 

B,

M ,

d 
t 

6. Consider a line .d ⊂ E2, O /∈ d. Then, .TO;R2(d) = C − {O}, i.e. the inverse 
of the line . d is a circle .C − {O}, such that the tangent line in .O to the circle .C is 
parallel to . d (Fig. 3.4). 

Proof Denote by .B , the intersection between . d and the perpendicular line from 
.O to . d. The  inverse of  .B , is . B. Consider a point .M , ∈ d and its inverse . M . The  
quadrilateral .B ,BMM , is cyclic, therefore .∠OMB is a right one, i.e. when . M ,
belongs to. d, .M belongs to the circle having.(OB] as a diameter. Since the diameter 
.BO is perpendicular to the tangent denoted by. t in.O to the circle, it results.d || t . . ▢

7. The inverse of a circle. C passing through.O is line.d, O /∈ d, .d || t , where. t is 
the tangent at .O to the circle . C . 

Proof The inversion.TO;R2 is an idempotent transformation. If we are looking back-
ward at the previous property of inversion the result is obvious.. ▢

8. The inverse of a circle.C1, O /∈ C1 is a circle.C2, O /∈ C2, i.e.. TO;R2(C1) = C2.

Proof Consider the radius .OO1 where .O1 is the centre of the circle .C1. Denote 
.{A, B} := OO1 ∩ C1 and suppose the order of points is .O, A, O1, B (Fig. 3.5). 

Consider.A1, B1 the inverses of.A, B respectively. Since.|OA| < |OB| and. |OA| ·
|OA1| = |OB| · |OB1| = R2 it results.|OA1| > |OB1|. Without losing the general-
ity, we can suppose the order of points on the radius .OO1 is .O, A, O1, B, B1, A1. 
Consider .M ∈ C1 and its inverse .M1. 

Using the cyclic quadrilaterals.AA1M1M and.BB1M1M it results both. ∠OAM =
∠MM1A1 and .∠ABM = ∠MM1B1.
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Fig. 3.5 Inversion of circles 
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Since.∠OAM = π

2
+ ∠MBA = ∠MM1A1 = ∠MM1B1 + ∠B1M1A1,wehave  

. ∠B1M1A1 = π

2
,

that is .M1 belongs to a circle of diameter .B1A1.. ▢
9. Consider.TO,R2(A) = A1, TO,R2(B) = B1. Then.|A1B1| = R2 · |AB|

|OA| · |OB| . 

Proof The triangles .△OAB and.△OB1A1 are similar, therefore .
|A1B1|
|AB| = |OA1|

|OB| . 
It results 

. 
|A1B1|
|AB| = |OA1|

|OB| · |OA|
|OA| ,

that is .|A1B1| = R2 · |AB|
|OA| · |OB| .. ▢

10. Orthogonal circles to the circle of inversion are preserved by inversion 
(Fig. 3.6). 

Proof Denote by .S, S, the intersection points between the circle of inversion 
.C(O, R) and the orthogonal circle . γ. Consider .M, N ∈ γ such that .O, M, N are 
collinear points. Since .|OM | · |ON | = |OS|2 = R2, it results  .TO,R2(M) = N , i.e. 
.TO,R2(γ) = γ.. ▢

11. The inversion is a conformal map, i.e. it preserves the angles between curves. 

Fig. 3.6 The inverse of a 
circle orthogonal to the 
fundamental circle of 
inversion 
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Fig. 3.7 Ptolemy’s theorem 

O 

A 
B 

C,,

D 

B,

D,

C 

C,

Proof The angle between two curves at their point of intersection, . S, is the  
angle between the tangent lines at .S to the curves. Let .l1, l2;l1

1, l
2
2 be four 

curves such that . TO,R2(l1) = l1
1, TO,R2(l2) = l2

2, O /∈ l1 ∪ l2 ∪ l1
1 ∪ l2

2, S ∈
l1 ∩ l2, TO,R2(S) = S,, TO,R2(M1) = M1

1 , TO,R2(N1) = N 1
1 . The quadrilateral 

.SM1M1
1 S

, and.SM2M2
2 S

, are cyclic therefore.∠M1SM2 = ∠M1
1 S

,M2
2 . When radius 

.OM approaches.OS the previous angles are still equal. The limit position highlights 
the previous angles as angles between tangent lines to the curves. . ▢

Examples of problems solved by inversion (Fig. 3.7). 

Problema 3.1.1 (Ptolemy’s Theorem) The products of the lengths of two diagonals 
of a quadrilateral is less than or equal to the sum of the products of opposite sides 
and the equality holds if and only if the quadrilateral is a cyclic one. 

Solution. (Hint) Consider the inversion of centre. A and arbitrary power.k > 0 and 
denote by .B ,,C ,, D, the inverses of the points .B,C, D. We have  

. |B ,D,| = k · |BD|
|AB| · |AD| , |B ,C ,| = k · |BC |

|AB| · |AC | , |C ,D,| = k · |CD|
|AC | · |AD| .

Replacing in .|B ,D| ≤ |B ,C ,| + |C ,D,|, and taking into account that the equality 
happens when .B ,,C ,, D, are collinear it results the statement. . ▢

Problema 3.1.2 Consider two pairs of circles, .γx , lx ; γy, ly which pass through 
the same point .O having the centres on perpendicular axes .Ox, Oy. Then the four 
points of mutual intersection are cyclic. 

Solution. (Hint) Consider an inversion of centre .O and power .k > 0, .TO,k . The  
circles .γx , lx ; γy, ly which pass through .O are mapped into a rectangle . A,B ,C ,D,
whose vertexes comes from .A, B,C, D respectively. Since a rectangle allows a 
circumcircle, by inversion, this circumcircle comes from the circle containing the 
initial points .A, B,C, D. . ▢

Problema 3.1.3 Two circles intersect at .A and . B. The tangent lines at .A to the 
circles intersect the circles at .M and . N . Let .B1 be the symmetric of . A with respect 
to . B. Prove that the quadrilateral .AMB1N is a cyclic one.
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Solution. Consider an inversion of centre. A and power.k > 0,.TA,k . The three lines 
.AM, AN and .AB are transformed after the rule: . TA,k(AM) = AM, TA,k(AN ) =
AN , TA,k(AB) = AB, TA,k(M) = M1, TA,k(N ) = N1, TA,k(B) = B ,. Since the 
circles passing through. A are transformed into lines parallel to the tangents.AM and 
.AN it is easy to deduce that the quadrilateral.AM1B ,N1 is a parallelogram. The point 

.B1 is mapped by inversion into .B ,
1 such that .|AB1| · |AB ,

1| = k = 2|AB| · 1
2
|AB ,|, 

i.e..B ,
1 is the centre of the previous parallelogram. Therefore the diagonal.M1N1 which 

contains.B ,
1 comes from the inversion of a circle containing the points.A, M, B1, N . 

. ▢
For the next problem the reader has to know what is an inscribed circle for a given 

triangle, and the fact that “the lines which connect the vertexes to the opposite tangent 
points (of the circle with the sides) are concurrent lines”. The point of concurrence 
is called Gergonne’s point. 

Problema 3.1.4 Denote by .C(O, R) the circumcircle of the triangle .△ABC , . A1,

B1,C1 the midpoints of the sides .[BC], [CA], [AB] respectively. 
Prove that the circles .lAOA1, lBOB1 , lCOC1 have a common point . E, E /= O.

Solution. An inversion of centre.O and power.R2 preserves.A, B,C and.C(O, R). 
The circles.lAOA1 , lBOB1 , lCOC1 are mapped into lines passing through. A, B,C

respectively. 
.TO,R2(A1) = A2 such that.|OA1| · |OA2| = |OB|2 = |OC |2 = R2, i.e..A2 is the 

intersection between the tangents at. B and. C to.C(O, R). In the same way we obtain 
the points .B2 and .C2. If we look at the triangle .△A1B1C1 which has as inscribed 
circle.C(O, R), the lines.A1A, B1B,C1C intersects at Gergonne’s point. The inverse 
of Gergonne’s point is . E . . ▢

3.2 Cross Ratio and Projective Geometry 

Consider four distinct collinear points .A, B,C, D on the line . d. Attach them the 
coordinates.xA, xB, xC , xD , respectively. Choose two possible ordered pairs, say (A, 
B); (C, D), that is, consider the ordered pairs of coordinates . (xA, xB); (xC , xD).

Definition 3.2.1 The cross ratio of four ordered points is the real number 

. [AB;CD] := xC − xA
xC − xB

: xD − xA
xD − xB

.

One can see that the definition can be written in the form 

. [AB;CD] := CA

CB
: DA

DB
,

but in this case we have to point that if the order on. d for the points. A and. C is given 
by.xA < xC , then the meaning of.CA is.|CA|, and if.xA > xC we have.CA = −|CA|.
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Fig. 3.8 Cross ratio 

Exercise 3.2.2 If the order of points .A, B,C, D on. d is given by . xA < xB < xC <

xD , then .[AB;CD] > 0. 

Exercise 3.2.3 If the order of points .A, B,C, D on. d is given by . xA < xC < xB <

xD , then .[AB;CD] < 0 (Fig. 3.8). 

Exercise 3.2.4 If the order of points .A, B,C, D on. d is given by . xA < xB < xC <

xD , then 

. [AD;CB] = xC − xA
xC − xD

: xB − xA
xB − xD

> 0.

Observe that in this last case the ordered pairs are .(A, D); (C, B) and the cross 

ratio can be written in the equivalent form.[AD;CB] := CA

CD
: BA

BD
with the mean-

ing explained above. 

Exercise 3.2.5 .[AD; BC] + [AB; DC] = 1 if and only if the order of points on the 
line . d is .A, B,C, D. 

Hint. 

. [AD; BC] + [AB; DC] = BA · CD

BD · CA
+ DA · CB

DB · CA
= BA · CD + DA · CB

BD · CA
= 1.

If .A(xA), B(xB), ... etc., 

. (xB − xA)(xD − xC) + (xD − xA)(xC − xB) = (xC − xA)(xD − xB)

iff the order is as in the statement before. 

Exercise 3.2.6 .[AD; BC] = [DA;CB]. 
Exercise 3.2.7 Consider .A(−1), B(0),C(1), D(x). Determine . x such that 

. [AC; BD] = −1.

Hint. If we write the given condition, it results.x + 1 = x − 1. There is no real . x . 
To maintain the possibility to have four distinct points with a given cross ratio, 

as well as for a given cross ratio and three distinct points to exist a fourth point such 
that the cross ratio is a given one, we have to accept that for each line . d it exists an 

abstract point, denoted.∞, such that for.A /= B,
∞A

∞B
= 1. This point is called point 

at infinity for the line . d.
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Fig. 3.9 Pappus’ theorem 

The cross ratio of collinear points can be extended to pencils of lines. Consider 
the lines .d1, d2, d3, d4 and .{O} = d1 ∩ d2 ∩ d3 ∩ d4. Let  . d be an arbitrary line and 
.{A} = d ∩ d1; {B} = d ∩ d2; {C} = d ∩ d3; {D} = d ∩ d4. Choose two ordered 
pairs of lines, say .(d1, d2); (d3, d4). 

By definition . [d1d2; d3, d4] := [AB;CD].
If we look at this definition it seems that it depends on the line. d we choose. There-

fore, we have to prove that if we choose another line .d , and. {A,} = d , ∩ d1; {B ,} =
d , ∩ d2; {C ,} = d , ∩ d3; {D,} = d , ∩ d4, then.[AB;CD] = [A,B ,;C ,D,] (Fig. 3.9). 
Theorem 3.2.8 (Pappus’ Theorem) The cross ratio of four lines in a pencil depends 
only by the angles of the pencil. 

Proof We are in the case: the pencil of lines .d1, d2, d3, d4 with . {O} := d1 ∩ d2 ∩
d3 ∩ d4, the arbitrary line. d and. {A} = d ∩ d1; {B} = d ∩ d2; {C} = d ∩ d3; {D} =
d ∩ d4; suppose the order on . d being .A, B,C, D and use four times sine theorem: 

. 
CA

sin∠COA
= OC

sin∠OAC
;

. 
CB

sin∠COB
= OC

sin∠OBD
;

. 
DA

sin∠DOA
= OD

sin∠OAD
;

. 
DB

sin∠DOB
= OD

sin∠OBD
;

therefore . [AB;CD] := CA

CB
: DA

DB
= sin∠COA

sin∠COB
: sin∠BOA

sin∠BOD
. ▢

Observe that in fact the cross ratio depends on the sine of angles.
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Fig. 3.10 Existence of poits 
at infinity 

Another approach can be 

Theorem 3.2.9 If.O is the origin and the lines of the pencil are. dk : y = mk · x, k ∈
{1, 2, 3, 4}, then 

. [d1d2; d3d4] = m3 − m1

m3 − m2
: m4 − m1

m4 − m2
.

Proof Consider . d having the equation .x = 1. The points .A, B,C, D on . d have the 
coordinates .(1,m1), (1,m2), (1,m3), (1,m4). . ▢

The pencils of lines allow us to better understand the points at infinity of lines. As 
above, consider the lines.d1, d2, d3, d4 having the property.{O} = d1 ∩ d2 ∩ d3 ∩ d4. 
Let . d be parallel to .d4 and .{A} = d ∩ d1; {B} = d ∩ d2; {C} = d ∩ d3 (Fig. 3.10). 

In this case we have to consider the point at infinity to define .[d1d2; d3d4]; 
.[d1d2; d3d4] = [AB;C∞] = |CA|

|CB| . If we consider another line, say. d ,, such that 

.d , || d and if we denote by .{A,} = d , ∩ d1, {B ,} = d , ∩ d2, {C ,} = d ∩ d3, then 

.[d1d2; d3, d4] := [A,B ,;C∞]. The lines .d, d ,, d4 have empty intersection in .E2. 
This abstract point who doesn’t belong to the Euclidean plane, say.∞, can be taught 
as the intersection of parallel lines .d, d , with . d4. 

We define for all parallel lines the same abstract point .∞. 
If, in a system of coordinates, all the parallel lines have the slope . m, we may  

think that this point at infinity is attached to this slope. We can even denote this point 
by .∞m . An interesting question can be asked: which geometrical structure will be 
assigned to.{∞m, m ∈ R}? It can be taught as an abstract line? Or it is more intuitive 
to be taught as an abstract circle? Or it is something else? We see the answer a little 
bit later. 

The cross ratio can be extended to four points distinct points.A, B,C, D on a circle  
. l. Choose.M ∈ l and the pencil determined by the rays. d1 = MA, d2 = MB, d3 =
MC, d4 = MD. 

By definition, .[AB;CD]l := [d1d2; d3d4].
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Pappus’ theorem shows that this definition is independent of the choice of . M . 
Here, it is important our observation related to the fact that the cross ratio of pencils 
depends on sine of angles. Since .sinα = sin(π − α), the point .M can be chosen 
even between two consecutive points, that is we can have, for a given sense on our 
circle, even the order.A, B, M,C, D. The cross ratio is the same as for the order, say 
.M, A, B,C, D. 

Next theorem shows that the previous cross ratio .[AC; BD]l can be transferred 
to the segment lines.BA, BC, DA, DC determined by the four distinct points on the 
circle. We keep our notation generated by the order of points, now on the circle. To 
have a clear statement, for a chosen sense on our circle, let us consider the points 
.M, A, B,C, D in this order. Denote the angles of the pencil created by . ∠AMB =
α,∠BMC = β,∠CMD = γ. 

Theorem 3.2.10 .[AC; BD]l = BA

BC
: DA

DC
. 

Proof Consider the segment line .[AD] and its intersection with .MB, MC denoted 
by .B1,C1 respectively. The order on the segment line .[AD] is then .A, B1,C1, D. If  
we denote by. R the radius of. l we have. |AB| = 2R sinα, |BC | = 2R sin β, |AD| =
2R sin(α + β + γ), |CD| = 2R sin γ. Taking the order into consideration, we can 
write 

. [AC; BD]l = [d1d3; d2d4] = sinα

sin β
: sin(α + β + γ)

sin γ
= BA

BC
: DA

DC

. ▢

Exercise 3.2.11 .[AD; BC]l + [AB; DC]l = 1 if and only if the order of points 
on the circle . l is .A, B,C, D. 

Solution. (Hint) We use the previous theorem, i.e. we express the 

. [AD; BC]l + [AB; DC]l = BA · CD

BD · CA
+ DA · CB

DB · CA
= BA · CD + DA · CB

BD · CA
= 1

iff .BA · CD + DA · CB = BD · CA, that is Ptolomy’s equality must happen.. ▢

Theorem 3.2.12 Let . I be an interior point of .C(O, r). Consider the chords . AA,,
BB ,,CC ,, .DD, such that .{I } = AA, ∩ BB , ∩ CC , ∩ DD, and the order is . A, B,

C, D, A,, B ,,C ,, D,. 
Then .[A,C ,; B ,D,]l = [AC; BD]l . 

Proof Let us observe that the symmetric inversion .T s
I,R2−OI 2 maps the circle 

.C(O, R) in itself, since .R2 − OI 2 is the power of . I with respect to the circle, 
and .|I A| · |I A,| = |I B| · |I B ,| = |IC | · |IC ,| = |I D| · |I D,| = R2 − OI 2, that is 
.T s

I,R2−OI 2(A) = A,, T s
I,R2−OI 2(B) = B ,, T s

I,R2−OI 2(C) = C ,, T s
I,R2−OI 2(D) = D,. It 

results
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. |B ,A,| = (R2 − OI 2) · |BA|
|I B| · |I A| , |B ,C ,| = (R2 − OI 2) · |BC |

|I B| · |IC | ,

. |D,A,| = (R2 − OI 2) · |DA|
|I D| · |I A| , |D,C ,| = (R2 − OI 2) · |DC |

|I D| · |IC | .

Taking into consideration the established order and the theorem which transfers the 
cross ratio from circle to segment lines, we obtain . [A,C ,; B ,D,]l =
[AC; BD]l .. ▢

We obtain a similar result for a point . J outside the circle using a direct inversion 
.TJ,OJ 2−R2 and .TJ,OJ 2−R2(A) = A,, etc. .[A,C ,; B ,D,]l = [AC; BD]l . 

More general, an inversion.TO,k leaves unchanged the cross ratio of four collinear 
points or the cross ratio of four cyclic points. It doesn’t matter if the four collinear 
points are mapped into cyclic points, or the cyclic points are mapped into cyclic (or 
collinear) points. This result is a fundamental one. 

Definition 3.2.13 A projective map of a circle .C(O, R) is a one to one function 
. f : C(O, R) → C(O, R) such that for any four points.Ai , i ∈ {1, 2, 3, 4} and their 
images .Bi = f (Ai ), it happens 

. [A1A2; A3A4]C(O,R) = [B1B2; B3B4]C(O,R).

Definition 3.2.14 The points which correspond in a projective map . f , e.g.  .Ai and 
. f (Ai ), are called homologous points. 

According to a previous result, let observe that the symmetric inversion 
.T s

I,R2−OI 2 , I ∈ intC(O, R) is a projective map of the circle .C(O, R). 
More, .T s

R2−OI 2 can be identified with the simpler map determined by the point . I
denoted 

. I : C(O, R) → C(O, R), I (A) = A,,

where .A, /= A is the other intersection between .AI and the circle .C(O, R). 
The same for the direct inversion.TI,OJ 2−R2 , J ∈ extC(O, R). This is a projective 

map and can be identified with .J : C(O, R) → C(O, R), J (A) = A,, where. A, /=
A is the other intersection between .J A and the circle .C(O, R). 

If we consider.I1, I2 ∈ intC(O, R) it can be obtained that. T s
I1,R2−OI 21

◦ T s
I2,R2−OI 22

:
C(O, R) → C(O, R) is a projective map. 

Definition 3.2.15 A projective map between two lines .d1 and .d2 is a one to one 
function. f : d1 → d2 such that for any four points.Ai ∈ d1, i ∈ {1, 2, 3, 4} and their 
images .Bi = f (Ai ) ∈ d2, it happens 

. [A1A2; A3A4] = [B1B2; B3B4].

Since the previous definition has also sense for . f : d → d, we may talk about 
projective maps on . d.
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Theorem 3.2.16 A projective map between two lines is determined by three pairs 
of homologous points. 

Proof Denote the homologous points in the form .A → B instead of .B = f (A), 
because this notation will help us later. 

Then, we know the three pairs of homologous points. A0 → B0, A1 → B1, A2 →
B2. 

We have to show that for any four arbitrary points.Ai , A j , Ak, Al and their homol-
ogous .Bi , Bj , Bk, Bl the relation .[Ai A j ; Ak Al] = [Bi B j ; Bk Bl] is deduced from 
.[A0A1; A2Ai ] = [B0B1; B2Bi ] using successively the indexes .i, j, k and . l. 

The idea is to find somehow a procedure of replacement of the homologous points 
initially given. 

We also have.[A1A2; A0A j ] = [B1B2; B0Bj ] and.[A1A2; Ai A0] = [B1B2; Bi B0]. 
It results 

. [A1A2; A0A j ] · [A1A2; A j A0] = [B1B2; B0Bj ] · [B1B2; Bi B0],

that is 
. [A1A2; Ai A j ] = [B1B2; Bi B j ].

We succeeded to replace the pair of homologous points .A0 → B0. 
Then, the from previous relation and .[A1Ak; A j Ai ] = [B1Bk; Bi B j ] we have 

. [A1A2; Ai A j ] · [A1Ak; A j Ai ] = [B1B2; Bi B j ] · [B1Bk; Bi B j ],

i.e. 
. [A2Ak; A j Ai ] = [B2Bk; Bj Bi ].

Finally, taking into consideration the previous result and . [Al A2; A j Ai ] =
[Bl B2; Bj Bi ] it results 

. [A2Ak; Ai A j ] · [Al A2; A j Ai ] = [B2Bk; Bj Bi ] · [Bl B2; Bj Bi ],

that is 
. [Al Ak; A j Ai ] = [Bl Bk; Bj Bi ].

. ▢

Consequences: The way the previous theorem was proved makes it to hold for 
projective maps: we can imagine between two circles, between a line and a circle, 
on the same line or on the same circle. 

This theorem can be easily extended to projective pencils: they are determined by 
three pairs of homologous rays. Generally speaking, a projective map is determined 
by the knowledge of three pairs of homologous points. 

If two projective maps . f and . f1 has the same three pairs of homologous points, 
then . f = f1.
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Fig. 3.11 Projectivity 
between two lines 
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Fig. 3.12 Projectivity 
determined by an angle on a 
line 
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Fig. 3.13 Projectivity 
determined by an angle 
between two lines 
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Other examples of projective maps: 
1. Consider two distinct lines .d1, d2 and a point .O in .E2 who doesn’t belong 

to .d1 ∪ d2. A moving ray through .O intersects .d1 in .M and .d2 in . N . Then, using 
Pappus’ theorem, .M → N is a projective map between .d1 and .d2 (Figs. 3.11 and 
3.12). 

2. Two points moving with the same speed on two distinct lines, or on a same 
line, determine a projective map. 

3. Consider a point .O /∈ d and a constant angle given angle with its vertex in . O
rotating around. O . The first side of the angle intersect. d in.M and the second side in 
. N . Again, using Pappus’ theorem, .M → N is a projective map on . d (Fig. 3.13). 

4. The example above may be extended. Consider two lines .d1 and. d2. The given 
constant angle intersects the lines such that.M is on.d1 and.N is on. d2. Using Pappus’ 
theorem, .M → N is a projective map between .d1 and . d2. 

For a projective map on. d, denote the coordinate of.M by. x and the coordinate of 
.N by . y, where .M → N are homologous points. 

Theorem 3.2.17 A projective map on . d determines a function .h(x) = Ax + B

Cx + d
, 

.A, B,C, D being real constants such that .AD − BC /= 0. 

Proof (Hint) Suppose the three given homologous points are. 0 → y0, 1 → y1, x2 →
y2. The condition .[xx2; 01] = [yy2; y0y1] becomes
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. 
x

x2
: x − 1

x2 − 1
= y − y0

y2 − y0
: y − y1
y2 − y1

.

After computations it results the desired formula. After another computation the 
coefficients verify .AD − BC /= 0. . ▢

Theorem 3.2.18 The function .h(x) = Ax + B

Cx + d
, .A, B,C, D being constants such 

that .AD − BC /= 0 describes a projective map on . d. 

Proof (Hint) Replace .yk = h(xk) by .
Axk + B

Cxk + D
in .[y1y2; y3y4] and use . AD −

BC /= 0 to simplify. A straightforward computation shows that . [x1x2; x3x4] =
[y1y2; y3y4]. . ▢

Definition 3.2.19 A projective map on . d which interchanges a pair of homologous 
points is called geometric involution, or simple, involution (Fig. 3.14). 

Theorem 3.2.20 All pairs of homologous points interchange in an involution. 

Proof Consider .A → B, B → A, M → N and .N → X . We wish to prove that 
.X = M . Since .[AB; MN ] = [BA; N X ] it results .[AB; MN ] = [AB; XN ] i.e. 
.X = M . . ▢

The same considerations hold for involutions of a circle. They have a pair of 
homologous points which can be interchanged. In fact all pairs of homologous points 
can be interchanged. Therefore .M → N implies .N → M , too. 

We saw above two examples of involutions of a circle: .T s
I,R2−OI 2 is an interior 

involution, i.e. it is described by the point .I ∈ intC(O, R). .TJ,OJ 2−R2 is an exterior 
involution, i.e. it is described by the point .J ∈ extC(O, R). 

Consider a projective map between two lines, . f : d1 → d2. Denote . {O} := d1 ∩
d2 and suppose that . f (O) = O . Such a point is called a self-homologous point. A  
projective map between two lines as above with a self-homologous point is called a 
perspective map. 

Fig. 3.14 Interior involution 
of a circle
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Theorem 3.2.21 For a perspective map between .d1 and . d2, the lines which connect 
homologous points have a common point. 

Proof The perspective map is determined by .O → O, A1 → A2, B1 → B2. 
Denote .{I } = A1A2 ∩ B1B2 and consider the pencil of lines . I O, I A1, I B1, I M
where .A1, B1, M ∈ d1. Suppose that . f (M) = N , N ∈ d2 and denote by . {N ,} =
I M ∩ d2. The perspective map. f implies.[OA1; B1M] = [OA2; B2N ], and Pappus’ 
theorem implies.[OA1; B1M] = [OA2; B2N ,]. Therefore.N = N , and the arbitrary 
line .MN which connects homologous points contains . I . . ▢

Consider a set of arbitrary indexes denoted by. I,.O1, O2 ∈ E2. Also consider both 
the lines passing through.O1, denoted by.αi , i ∈ I and the lines passing through.O2, 
denoted by.βi , i ∈ I. Let denote by.O1(α), O2(β) the two pencils of lines. The next 
definition makes sense even if .O1 = O2. 

Definition 3.2.22 Two pencils of lines are projective if there exists a one to one map 
. f : O1(α) → O2(β) such that for any four rays of the first pencil, say. α1,α2,α3,α4

and their images.β1,β2,β3,β4, we have.[α1α2;α3α4] = [β1β2;β3β4]..α1 and.β1 are 
called homologous rays. 

Example 3.2.23 Consider a line . d and a projective map . f : d → d. Choose four 
arbitrary points.A1, A2, A3, A4 on. d and their images via. f ,.B1, B2, B3, B4. We have  
.[A1A2; A3A4] = [B1B2; B3B4]. Therefore . [OA1OA2; OA3OA4] = [OB1OB2;
OB3OB4]. It results that .O(OA) and .O(O f (A)) are projective pencils of lines. 

Example 3.2.24 Consider a line . d and a projective map . f : d → d. Choose four 
arbitrary points.A1, A2, A3, A4 on. d and their images via. f ,.B1, B2, B3, B4. We have  
.[A1A2; A3A4] = [B1B2; B3B4]. Therefore . [O1A1O1A2; O1A3O1A4] =
[O2B1O2B2; O2B3O2B4]. It results that .O1(O1A) and .O2(O2 f (A)) are projective 
pencils of lines. 

Example 3.2.25 Consider the lines .d, d , and a projective map. f : d → d ,. Choose 
four arbitrary points.A1, A2, A3, A4 on. d and their images via. f ,.B1, B2, B3, B4 on. d ,. 
We have.[A1A2; A3A4]d = [B1B2; B3B4]d , . Therefore. [O1A1O1A2; O1A3O1A4] =
[O2B1O2B2; O2B3O2B4]. It results that .O1(O1A) and .O2(O2 f (A)) are projective 
pencils of lines. 

We left to the reader to prove: “A projective map between two pencils of lines in 
determined by three pairs of homologous rays”. 

Theorem 3.2.26 (Steiner) Consider two projective pencils of lines. Their homolo-
gous rays intersect on a conic. 

Proof To simplify the proof consider a projective map. f on the line of equation. y =
1,. O1(0, 0), O2(1, 0). If .M(x, 1) and.N

(
Ax + B

Cx + D
, 1

)
are the homologous points, 

the equations of the lines .O1M and.O2N are.Y = 1

x
X and.Y = 1

Ax + B

Cx + D
− 1

(X −
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1). It is not necessary to compute the coordinates of the intersection .O1M ∩ O2N . 

We can substitute. x from the first equation, i.e. .x = X

Y
, and replace in the second. It 

results 

. Y = 1

A
X

Y
+ B

C
X

Y
+ D

− 1

(X − 1),

therefore, the coordinates of the intersection point lie on the conic of equation 

. − CX2 + (A − C − D)XY + (B − D)Y 2 + CX + DY = 0.

The reader has to observe that Steiner’s conic contains .O1 and .O2. . ▢
Problema 3.2.27 Consider.M and. N on the hypotenuse.BC of an isosceles rectangle 

triangle .ABC such that .MN 2 = BM2 + CN 2. Prove that . ∠MAN = π

4
.

Solution. Consider a system of coordinates such that. A(0, a), B(−a, 0),C(a, 0),
.M(x, 0), N (y, 0). .MN 2 = BM2 + CN 2 can be written in the form 

. (x + a)2 + (a − y)2 = (y − x)2,

that is .y = ax + a2

−x + a
. This is a projective map on .BC . 

Since .x = −a implies .y = 0, it results .B → O . .x = 0 implies .y = a, therefore 
.O → C . For .x = a it results .y = ∞, i.e. . C → ∞.

So, this projective map on .BC is determined by .B → O, O → C, C → ∞. 

If we consider a rotating angle.∠MAN = π

4
we observe three important positions 

. M = B, N = O; M = O, N = C; M = C, N = ∞

such that .∠BAO = ∠OAC = ∠CO∞ = π

4
. Therefore the rotating angle leads 

to a projective map on .BC determined by .B → O, O → C, C → ∞. The  two  

projective maps are coincident, therefore always .∠MAN = π

4
. . ▢

Problema 3.2.28 (Karya’s point) Let  . I be the incentre of the triangle .△ABC and 
.D,, E ,, F , be the symmetric of . I with respect the sides . BC,CA, AB.

Then, .AD, ∩ BE , ∩ CE , /= ∅. 
Solution. (D. Barbilian) Denote by .D, E, F the contacts of the incircle with the 

sides .BC,CA, AB respectively. Denote also by .D1, D2 the intersection points of 
.I D with.AC and.AB, respectively. The same,. {E1} = I E ∩ BC; {E2} = I E ∩ BA.

Consider first two moving points.M ∈ I D, N ∈ I E who start to move with the same 
speed from. I in the direction of . D, respectively .E (Fig. 3.15).
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Fig. 3.15 Karya’s Point 
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We know that .M → N is a projective map between the lines .I D and .I E . It 
results a projective map between the pencils .A(AM) and .B(BN ). The intersection 
point between .AM and .BN lies on a conic. A conic is determined by the knowl-
edge of five distinct points of it. The initial moment .M = N = I implies that . I
belongs to the conic. When .M = D it results .N = E , therefore Gergonne’s point 
of the triangle ABC, .Ge, belongs to the conic. Now consider .M, N moving from 
. I to .D1, E1 respectively. Since the triangles .I ED1 and .I ED1 are congruent, when 
.M = D1 it results.N = E1, therefore.AM ∩ BN = {C}. According to Steiner’s the-
orem the conic contains .A and . B. But it is easy to observe for this projective map 
why. When .M = D2, .AD2 ∩ BN = {B}, and when .N = E2, . AM ∩ BE2 = {A}.
Therefore Steiner conic for the projective pencils.A(AM), B(BN ) is determined by 
.A, B,C, I,Ge. The same for the Steiner conics determined by the projective pencils 
.A(AM),C(CP) and .B(BN ),C(CP). Therefore the three Steiner conics are coin-
cident, i.e. .AM ∩ BN ∩ CP /= ∅ when.|I M | = |I N | = |I P|. In the particular case 
of the statement, a particular point belongs to Steiner’s conic. We are talking about 
Karya’s point. If we choose the points at infinity of.AM, BN ,CP we can see that the 
orthocenter .H belongs to the Steiner conic. As you can see, this projective solution 
allows us to highlight many other points of intersection among .AM, BN and . CP
described by the condition .|I M | = |I N | = |I P|. . ▢

There is a special case when Steiner’s conic is a line only. 

Definition 3.2.29 Two projective pencils of lines,.O1(α) and.O2(β), O1 /= O2, are  
called perspective pencils if the ray .O1O2 is self-homologous, i.e. .O1O2 → O1O2. 

Theorem 3.2.30 If .O1(α) and .O2(β), O1 /= O2 are perspective pencils, then the 
homologous rays intersection lies on a line. 

Proof Denote .p = O1O2. The perspective map is determined by . p → p, α1 →
β1, ,α2 → β2. Denote .{T1} = α1 ∩ β1, , {T2} = α2 ∩ β2, . If  .α → β, and .{T } =
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α ∩ T1T2 we observe that .α → O2T belongs to the previous projective map. There-
fore,.O2T = β, and.α ∩ β always belongs to.T1T2. This line is called the perspective 
axis of the perspective pencils of lines .O1(α) and .O2(β).. ▢

Let us answer to the question: which is the geometrical structure of.{∞m, m ∈ R}? 
First, it is easy to see that for a given line.d ⊂ E2 it exist two perspective pencils of 

lines,.O1(α) and.O2(β), such that. d is the perspective axis of the previous perspective 
pencils. If we have two perspective pencils there is one case in which the perspective 
axis doesn’t exist: when the homologous rays of the perspective pencils are parallel. 
Exactly as in the case of the abstract infinity point of a line added to preserve a 
geometric rule, we do the same thing. In the case of parallel perspective pencils the 
perspective axis is an abstract line, called the line at infinity of .E2. Therefore we may 
denote .d∞ := {∞m, m ∈ R}. 

Perspective pencils allow us to construct a special line assigned to any projective 
map . f on a circle: the axis of . f . This line plays a crucial role in the construction of 
Poincaré disk model. 

Consider for a projective map. f ona circle. l the homologous points. M, M ,, M →
M , which describe the projective map. f . If we choose two particular pairs of homol-
ogous points, say.A → A,, B → B ,, the point.{P} = AB , ∩ A,B allows us to create 
a function .g : l → l, g(N ) = N ,, {N ,} := N P ∩ l. It is obvious to observe that 
. g is an involution of . l. 

Theorem 3.2.31 (i) The map . f ◦ gP : l → l is an involution of . l. 
(ii) The locus of points .I f ∈ E2 such that . f ◦ gI f is an involution of . l is a line. 

Proof (i) . f and.gP are projective maps on . l, then . f ◦ gP is a projective map on . l. 
It remains to prove that . f ◦ gP has a pair of homologous points which interchanges. 
We show that . f ◦ gP(A,) = B , and . f ◦ gP(B ,) = A,. Let’s compute . f ◦ gP(A,) =
f (gP(A,)) = f (B) = B ,. In the  same  way. f ◦ gP(B ,) = f (gP(B ,)) = f (A) = A,, 
therefore . f ◦ gP is an involution of . l. 

(ii) Consider.A → A, a given pair of homologous point of. f and.M → M , the gen-
eral pair of homologous points of . f . Therefore.A → A, is a particular pair obtained 
from the general pair by replacing .M by . A. The pencils .A(AM ,) and .A,(A,M) are 
perspective, the self-homologous ray being.AA,. The homologous rays intersection, 
i.e. .{I f } = AM , ∩ A,M , lies on the perspective axis, therefore the locus is a line.. ▢

This line is called the axis of the projective map . f . The previous theorem shows 
that this line is .{I f |{I f } = AM , ∩ MA,, M ∈ l}. A direct consequence appears. 
Theorem 3.2.32 (i) If .A → A,, B → B ,, C → C , are homologous points of . f on 
. l, then the points .{U } = AB , ∩ BA,, {V } = AC , ∩ CA,, {W } = BC , ∩ CB , are 
collinear. 

(ii) All projective maps of a circle can be written as a product of involutions (in 
a non-unique way). 

(iii) Two interior involutions of .l, I, J determine in an unique way the projective 
map of .l, f = I ◦ J such that the axis of . f is .I J .
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(iv) Denote .{s, S} = I J ∩ l such that the order is .s, I, J, S. Then . f (s) =
s, f (S) = S and .[I J ; Ss] > 1. 

(v) If .M ∈ l, J (M) = M ,, M , ∈ l, I (M ,) = N , N ∈ l, for an arbitrary . X ∈
I J there is an unique .Y ∈ I J such that .XN ∩ MY ∈ l. 

(vi) .X → Y is a projective map on the line .I J (This map is called the axial 
decomposition of . f ). 

(vii) .[Ss I J ] = [SsXY ]. 
Proof (i) .U, V,W are three particular points of .{I f |{I f } = AM , ∩ MA,, M ∈ l}. 

(ii) If we choose the point, say .{U } = AB , ∩ BA,, then . f ◦U = L where .{L} is 
the intersection between the axis of . f and .A,B ,. Therefore . f = L ◦ I . 

(iii) (iv) and (v) are obvious. 
(vi) Consider the projective map on .I J determined by particular positions of . X

and. Y ,.s → s, S → S, I → J . If remains to prove.[sSI X ] = [sS JY ]. Consider the 
pencils.M(Ms, MS, MJ, MY ) and.N (Ns, NS, N I, N X). Since the angles involved 
are equal it results 

. [MsMS; MJMY ] = [NsN S; N I N X ],

i.e. .[sSI X ] = [sS JY ]. 
(vii) From .[sSI X ] = [sS JY ] it results .[Ss I X ] = [Ss JY ]. If you write the last 

one equality it results 

. 
I S

I s
: XS

Xs
= J S

js
: Y S
Ys

.

This one can be thought as 

. 
I S

I s
: J S

ss
= XS

Xs
: Y S
Ys

,

which means .[Ss I J ] = [SsXY ], or equivalently . [sSI J ] = [sSXY ]. ▢

Before continuing, let us conclude in the following way. 
For . I and . J belonging to the interior of our circle, we construct the projec-

tivity of the circle . f := I ◦ J determined by the product of the given interior 
involutions. Suppose.M → N in this projectivity. For each.X ∈ I J , we construct 
.Y ∈ I J as in the previous theorem. The projectivity.X → Y on. I J is determined 
by . f . It is called the axial decomposition of the projectivity . f (of the circle) on 
the line .I J . This was the most important step towards the construction of a 
non-Euclidean distance in the interior of the circle. 

The next steps are the Theorems 3.3.1, 3.3.2 and 3.3.3 in the next section. 
Let us observe: Consider .S, S, ∈ l such that the chord .SS, is not a diameter; 

Then, the tangents at .S, S, meet at the centre of an orthogonal circle to . l. 
If .A ∈ intl and.S ∈ l, we know that the orthogonal circle to . l passing through 

. A and. S is constructed in the following way: the tangent at . S meet the perpendicular 
bisector of the segment .AS at the centre of the orthogonal circle.
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If.A, B ∈ intl the orthogonal circle to. l passing through. A and. B is constructed 
in the following way: we construct. A,, the  inverse of. A in the direct inversion.TO,R2 , 
where.O, R are the centre, respectively the radius of . l. The perpendicular bisectors 
of the triangle .ABA, meet at the centre of the orthogonal circle we are looking for. 
Observe that . B ,, the  inverse of . B in the same inversion belongs to this circle. 

Another more important observation is: 

Proposition 3.2.33 If .A, B,C, D ∈ l such that .{L} = AB ∩ CD, L ∈ intl, then 
the orthogonal circles determined by the chords .AB,CD denoted by . γAB, γCD

respectively, meet in .X, X , such that .O, X, L , X , are collinear. 

Proof .O and . L have equal powers with respect .γAB, γCD . 
The powers are .R2 for . O , .u := |L A| · |LB| = |LC | · |LD| for .L respectively, 

therefore they belong to the radical axis of the two circles. But the radical axis passes 
through the points of intersection of the two orthogonal circles, i.e. .O, X, L , X , are 
collinear. Extra, .|OX | · |OX ,| = R2, that is .X and .X , are inverse in .TO,R2 .. ▢

3.3 Poincaré Disk Model 

We underline some results proved above, results which are necessary to introduce 
the Poincaré disk model. If .I, J ∈ intl, . f := I ◦ J is a projective map on . l such 
that .I J is its axis. 

If .X → Y are the homologous points in the axial decomposition of . f on 
.a := I J , and.{s, S} = a ∩ l such that the order is .s, I, J, S; .s, X,Y, S respectively, 
then .[I J Ss] = [XY Ss] = k > 1. Therefore .[Ss I J ] = k is an invariant of the axial 
decomposition of . f . In fact . k depends on . I and . J , that is .k = kI J is an invariant 
attached to the involutions . I and . J on the axis of the projective map . f = I ◦ J . 

If we consider the orthogonal circle to . l through . s and . S, denoted . g, on the arc 
.g := gsS from the .intl we can consider two special points . I ,, J ,, {I ,} := OI ∩
gsS, {J ,} := OJ ∩ gsS.

A very important result will be proved: 

. [I J Ss] = [I , J ,Ss]2g.

Let us describe again the context. Consider the circle. l centred at.O and.intl the 
disk enclosed by . l. Let . I and . J be in .intl and denote by . s and . S the intersections 
of the line.I J with.l. Suppose the order is.s, I, J, S. Denote by. g the orthogonal arc 
to. l passing through. s and. S, and let . I , and.J , be the intersections of . g with.OI and 
.OJ , respectively (Fig. 3.16). 

We have to consider the direct inversion of pole . S and power . μ = (sS)2.

The point . s is fixed by this transformation. The circle . l, which passes through 
the pole of inversion, is transformed into the line .i(l) which passes through . s. The  
arc . g is transformed into the line .i(g), and.i(g)⊥i(l). Let .d1 := OI and.d2 := OJ.
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Fig. 3.16 . [I J Ss] =
[I , J ,Ss]2g
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The line . d1, which doesn’t pass through the pole of inversion, is transformed into 
the circle .c1 passing through . S. Furthermore, .c1 contains the images of .I , and . I , 
denoted by .G1 and . J1, respectively. In fact, since .d1 ⊥ l, then .c1 and .i(l) must 
also be orthogonal, which means that .c1 has the line .i(l) as a diameter. A similar 
reasoning can be done for the line . d2.

We introduce the following notations: .{G1,G ,
1} = c1 ∩ i(g), and . {G2,G ,

2} =
c2 ∩ i(g).

Finally, we remark that . S is mapped by this inversion into .∞. 
Then we have the following: 

. [I J Ss] = [J1 J2∞s] = |s J2|
|s J1| ,

. [I , J ,Ss]g = [G1G2∞S] = |sG2|
|sG1| .

The power of the point . s with respect to .c1 yields: 

. |Ss| · |s J1| = |sG1| · |sG ,
1| = |sG1|2.

Similarly, the power of . s with respect to .c2 yields: 

. |Ss| · |s J2| = |sG2| · |sG ,
2| = |sG2|2.

Therefore, we have 

. 
|s J1|
|s J2| =

( |sG1|
|sG2|

)2

.

This result actually means we proved the following
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Theorem 3.3.1 . [I J Ss] = [I , J ,Ss]2g.
It results that the points .I, J ∈ a generate .I ,, J , ∈ gsS such that the invariant 

.kI J = [I J Ss] generates the invariant .KI , J , = [I , J ,Ss]2g and . [I J Ss] = [I , J ,Ss]2g.
Therefore we move points and invariants from the axis of a projective map of a 

circle . l to an orthogonal arc . g to . l. 
On the initial configuration, we apply a symmetric inversion of pole.J , and power 

.μ,, where .μ, is the power of .J , with respect to the circle . l.

Consequently, the circle . l is mapped into . l itself by this transformation. 
The arc . g becomes the line .i(g), which is a diameter in . l.

The point. I , is transformed into.F ,
1,which lies on.i(g), such that. |J , I ,| · |J ,F ,

1| =
μ.

The pole .J , is mapped into . ∞.

The point .P ∈ l is transformed into .P , ∈ l, such that .|J ,P| · |J ,P ,| = μ, and 
.P , is the second intersection of . l with the line . J ,P.

Denote .i(s) and .i(S) the images of . s and . S through the previously described 
inversion. We have 

. [I , J ,Ss]g = [F ,
1∞i(S)i(s)] = |i(S)F ,

1|
|i(s)F ,

1|
= maxP ,∈l |P ,F ,

1|
minP ,∈l |P ,F ,

1|
.

Furthermore, 

. |P ,F ,
1| = μ, · |P I ,|

|J ,P| · |I , J ,| = μ,

|I , J ,| · |P I ,|
|P J ,| .

This shows us that .|P ,F ,
1| reaches its maximum and minimum in the same time as 

the ratio .
|P I ,|
|P J ,| (Fig. 3.17). 

Therefore, we have proved. 

Theorem 3.3.2 

. [I , J ,Ss]g = maxP∈l
|P I ,|
|P J , |

minP∈l
|P I ,|
|P J ,|

.

Fig. 3.17 Poincaré modified 
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Let see how these algebraic invariants generate distances in the interior of . l. 
Denote 

. da(I, J ) := 1

2
ln[I J Ss],

. dg(I
,, J ,) := ln[I , J ,Ss]g,

. d(I ,, J ,) := ln
maxP∈l

|P I ,|
|P J ,|

minP∈l
|P I ,|
|P J , |

.

The previously proven facts allow us to assert 

Theorem 3.3.3 .da(I, J ) = dg(I ,, J ,) = d(I ,, J ,). 

After Definition 3.3.4 we will prove that all three formulas are distances for the 
interior of the circle . l. Having this in mind, let us say that the first distance, .da is 
related to the Cayley-Klein model of a Non-Euclidean geometry. It is easy to see that 
if we choose a point .K on.I J line such that the order of points is .I, J, K , we obtain 
the following equality related to the Cayley-Klein distance, 

. da(I, K ) = da(I, J ) + da(J, K ).

Therefore the chord .I J becomes a line of this geometry. It is obvious that from a 
point . L which doesn’t belong to the line .I J , one can construct at least two chords, 
that is two lines of this distance, passing through . L which do not intersect .I J . This  
is the first model of Non-Euclidean geometry. A Differential Geometry treatment 
of this model can be seen later when we discuss the hyperboloid models of the 
Non-Euclidean geometry. 

The second and the third distances are related to the Poincaré model. 
Consider two arbitrary sets .K and . U.

Definition 3.3.4 The function. f : K ×U → R
∗+ is called an influence of the set . K

over .U if for any.A, B ∈ U the ratio.gAB(P) = f (P, A)

f (P, B)
has a maximum. MAB ∈ R

when . P ∈ K .

Note that.gAB : K → R
∗+. If we assume the existence of.max gAB(P), when. P ∈

K , then there also exists . mAB = minP∈K gAB(P) = 1

MBA
.

Consider .d : U ×U → R+ given by 

. d(A, B) = ln
maxP∈K gAB(P)

minP∈K gAB(P)
.

It is easy to prove that the previous formula leads to a semi-distance, i.e.: 
(1) if .A = B then .d(A, B) = 0; (2) .d is symmetric; (3) .d satisfies triangle 

inequality.
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(1) and (2) are obvious. For (3) let .A, .B, .C distinct points in . J and the pair of 
points .S0, s0 ∈ K , .S1, s1 ∈ K , .S2, s2 ∈ K such that 

. max
P∈K gAB (P) = f (S0, A)

f (S0, B)
, min

P∈K gAB (P) = f (s0, A)

f (s0, B)

. max
P∈K gAC (P) = f (S1, A)

f (S1,C)
, min

P∈K gAC (P) = f (s1, A)

f (s1,C)
,

. max
P∈K gBC (P) = f (S2, B)

f (S2,C)
, min

P∈K gBC (P) = f (s2, B)

f (s2,C)
.

If .S0, S2 are replaced by .S1 and .s0, s2 are replaced by .s1 we obtain 

. d (A, B) + d (B,C) = ln

[(
f (S0, A)

f (S0, B)
: f (s0, A)

f (s0, B)

)
·
(

f (S2, B)

f (S2,C)
: f (s2, B)

f (s2,C)

)]
≥

. ≥ ln

(
f (S1, A)

f (S1,C)
: f (s1, A)

f (s1,C)

)
= d (A,C) .

In particular for . f (P, A) = |PA|, .K = l is a circle and .U := intl its interior, 
we obtain that our last formula among the previous three is a semi-distance on.intl. 

But there is no pair.(A, B) ∈ U ×U,.A /= B, such that the ratio. gAB(P) = f (P, A)

f (P, B)
is constant for all.P ∈ K (in the case when.K = l is a circle and.U := intl), that is 
if.d(A, B) = 0 it results.A = B, i.e. all three equal formulas. da(I, J ) = dg(I ,, J ,) =
d(I ,, J ,) are distances. 

Definition 3.3.5 

. d(I ,, J ,) = ln
maxP∈l

|P I ,|
|P J ,|

minP∈l
|P I ,|
|P J ,|

.

is called a Poincaré distance between the points .I , and .J , of the disk. 

We prefer to consider this general form of the distance. d, because if we change. K
and. U , we can obtain available distances on .U which come only from the existence 
of the asked maximum. The reader will see this in the cases of the “semi-plane” and 
“exterior of the disk” models for Non-Euclidean Geometry. 

All these beautiful geometric facts were possible because of the axial projective 
map derived from a projective map of a circle. 

Problema 3.3.6 Show that for three points .A, B,C in this order on the orthogonal 
arc . g to the circle . l, .A, B,C ∈ intl, we have .d(A,C) = d(A, B) + d(B,C).
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Solution. Suppose the order is.s, A, B,C, S where.s, S are the “ends” of the arc. g

belonging to the centre. In fact, the ratios.
|PA|
PC | ,

|PA|
PB| ,

|PB|
PC | have their maximum 

when .P = S and the minimum when .P = s. And now just add.. ▢
When the orthogonal arc is a diameter and .s(−1), I (0), J (x), S(1), x > 0, then 

. d(I, J ) = ln
1 + x

1 − x
.

We can observe that when.J → S, i.e. x → 1 then.d(I, J ) → ∞. The disk becomes 
unbounded with respect to this distance. 

What kind of Geometry do we have inside the disk? Next, we prove that it is a 
Non-Euclidean one. We can expect at this result taking into account the Cayley–Klein 
model presented above. 

A point .I ∈ intl is called an n-point in our Geometry. The points of the circle . l

are called .∞-points. 
An orthogonal arc of a circle to . l is called an n-line. Such an n-line is uniquely 

determined by two n-points, by two.∞-points, or by an.∞-point and an n-point. Two 
n-lines intersect at most at an n-point. Three n-points are called n-collinear if they 
belong to an n-line. 

It is easy to show that there exist non-intersecting n-lines. If two chords .Ss and 
.S,s , do not intersect in the interior of the disk, then the orthogonal to .l arcs of 
circles having the same endpoints are n-lines with empty intersection, that is non-
intersecting n-lines. Through an n-point which doesn’t belong to a given n-line we 
can construct at least two non-intersecting n-lines with respect to the given n-line. 

In fact, if the given n-line is the orthogonal arc.γsS and.I /∈ γsS , among the infinitely 
many non-intersecting n-lines there exist two special ones, .γs I , γSI which are called 
n-parallels to .γsS . 

The angle between two n-lines is, by definition, the Euclidean angle between the 
tangents to the arcs at the common point. 

An n-triangle is determined by three non-n-collinear points. The sides of an n-
triangle are n-lines. 

What about the sum of the angles in an n-triangle? 
According to the theory described in the previous chapter, it is enough to study 

what happens in the case of one given triangle. We can choose a triangle with one 
vertex at the centre.O of. l and two other n-points, . A and. B. Consider the Euclidean 
triangle .AOB. The sum of the angles of the Euclidean triangle is . π. The angle at 
. O , i.e. .AOB is common to both triangles, but each other n-angle is less than the 
corresponding Euclidean angle. Therefore, the sum of the angles of the n-triangle is 
less than . π. 

More about this model of Non-Euclidean Geometry and some other models con-
nected to this one can be understood only after we study Differential Geometry.



Chapter 4 
Revisiting the Differential Geometry 
of Surfaces in 3D-Spaces 

If you want to understand the infinity you first feel the taste of 
stars ... 

The physicist in preparing for his work needs three things: 
Mathematics, mathematics, and mathematics. 

Wilhelm Röntgen 

We intend to present some basic facts related to the Differential Geometry of a surface 
in a.3D-space in the simplest form we imagined. All readers must know basic Calculus 
and they have to accept from the beginning that we work with functions which are 
smooth, that is they are indefinitely differentiable functions in one or several variables 
at each point of their domain of definition. 

The.3D-spaces in which we are looking at surfaces are endowed with Euclidean or 
Minkowski-type metrics induced by quadratic forms attached to bilinear products. 
We have to remember how the “objects” revealed by the application of Calculus 
in Geometry offer the new landscape that allows us to correctly understand the 
foundations of Geometry and to step to Relativity. Simple computations highlight 
all we need to know about the geometry of surfaces. The change of coordinates 
preserves the results described by theorems and preserves the nature of geometric 
“objects” we refer, changing only the space of the geometry studied. Looking at 
all these surfaces, we intend to obtain models for Euclidean, Non-Euclidean, and 
Elliptic geometries. This is possible because, in our journey through the Differential 
Geometry of surfaces, we will understand the crucial role of Theorema Egregium by 
Gauss. 

This is the approach when the ambient space of the set in which we intend to 
create a geometry becomes unnecessary. Only the set of coordinates, together with 
a metric, are necessary to describe the geometry. This point of view is continued in 
the next short chapter dedicated to basic Differential Geometry. The two chapters 
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are both made to simplify, to continue, and to deepen the ideas developed from the 
first edition of this book, A Mathematical Journey to Relativity (see [ 34]). 

4.1 Basic Notations and Definitions of the Geometry 
of Surfaces 

The complexity of formulas in Differential Geometry needs some simplifications. 
Therefore, before starting with the definitions, we introduce first some necessary 
notations: 

• .aibi means.
nE

i=1
aibi . This is the  Einstein summation convention, or simply  Einstein 

notation. 
• The index . i from the previous formula is called a dummy index because we can 
replace it by some other letter, say . s, without changing the meaning. That is . asbs

means .
nE

s=1
asbs . 

• It can be extended for double or triple sums, that is .ai j x i y j =
nE

i, j=1
ai j x i y j or 

.ai jk xi y j zk =
nE

i, j,k=1
ai jk xi y j zk . One can adopt this convention for multiple sums, 

the sums being thought before the indexes up and down or down and up denoted 
by the same letter. 

If below one reads something like .Ti
s jT

s
kl , this means .

nE

s=1
Ti
s jT

s
kl . 

• The number . n is related to the dimension of the set endowed with a coordinate 
system, set in which we develop Differential Geometry concepts. In the case of 
surfaces, .n = 2. 

• The Euclidean three-dimensional space, denoted by .E3, can be thought as the 
vector space .R

3 over the field . R endowed with the Euclidean inner product 

. <a, b> := a0b0 + a1b1 + a2b2,

where .a = (a0, a1, a2), b = (b0, b1, b2). Often we refer to this space as the 
Euclidean 3D space. 

• In a frame generated by the unit vectors .
→
i = (1, 0, 0),

→
j = (0, 1, 0) and . 

→
k=

(0, 0, 1), the components of a vector .
→
a with respect to this basis become coor-

dinates in the new frame, that is, we can assign them to a point . A. We can write 

.A(a0, a1, a2) and this point can be seen as the endpoint of the vector .
→
a whose 

origin is in the point .(0, 0, 0). To simplify, we often write directly . a to denote the 

vector . 
→
a .
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• Euclidean perpendicular vectors correspond to null inner product, i.e. . a and. b are 
perpendicular (or orthogonal) if .<a, b> = 0. With respect to the Euclidean inner 
product, the previous basis is an orthogonal one. 

• The length of the vector . a is, by definition, .||a|| := √<a, a> =
/
a20 + a21 + a22 . 

• The Cauchy–Schwarz inequality for the triples .(a0, a1, a2), (b0, b1, b2) is 

. (a0b0 + a1b1 + a2b2)
2 ≤ (a20 + a21 + a22)(b

2
0 + b21 + b22),

that is, for vectors, the inequality can be written in terms of inner product and 
norm in the form .<a, b>2 ≤ ||a||2 · ||b||2. The equality happens when the triples 
are proportional: this fact corresponds to collinear vectors. 

• If two vectors . a and . b are not collinear, they determine a plane. 
In this plane it makes sense to define the angle . α between the non-zero vectors . a
and . b by the formula 

. cosα := <a, b>
||a|| · ||b|| .

Written in the form 
. <a, b> = ||a|| · ||b|| cosα

this formula is known as Pythagoras generalized theorem for the triangle . OAB
determined by the vectors . a and . b. 

• The Euclidean distance between two points .A(a0, a1, a2), B(b0, b1, b2) is given 
by the formula 

. d(A, B) := ||a − b|| = /<a − b, a − b> =
/

(a0 − b0)2 + (a1 − b1)2 + (a2 − b2)2

The length of a vector . a becomes the distance between the origin .O(0, 0, 0) and 
the point .A(a0, a1, a2). The Euclidean distance is denoted by .||OA|| or by .|OA|. 
We prefer this last notation and we keep in mind that .||AB|| = |AB|. Looking 
again to the Pythagoras generalized theorem, according to the new notations, we 
have 

. |AB|2 = |OA|2 + |OB|2 + 2|OA||OB| cosα.

• The crossproduct of two vectors is the vector given by the formula 

. a × b = (a1b2 − a2b1,−a0b2 + a2b0, a0b1 − a1b0).

It is easier to remember it from the formal developing of the following determinant, 

.

|
|
|
|
|
|
|

→
i

→
j

→
k

a0 a1 a2
b0 b1 b2

|
|
|
|
|
|
|

.
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Since .<a × b, a> = 0 and.<a × b, b> = 0 the vector .a × b is orthogonal to the plane 
determined by the vectors . a and . b. The following formula holds, . ||a × b|| = ||a|| ·
||b|| · sinα. 

4.2 Surfaces, Tangent Planes and Gauss Frames 

After these preliminaries, we can define a surface. The algebraic point of view is 
related to equations..X2 + Y 2 + Z2 = 1 is the algebraic definition of a sphere centred 
at the origin with radius . 1. Or .2X + 3Y − Z = 6 is the equation of a plane, etc. 

In Differential Geometry, we deal with smooth functions describing a surface. 
The previous sphere can be seen as the smooth function . f : (0,π) × (0, 2π) →

E3, 

. f (x1, x2) = (sin x1 cos x2, sin x1 sin x2, cos x1), x1 ∈ (0,π), x2 ∈ (0, 2π).

Or, the previous plane can be seen as the smooth function . f : R × R → E3, 

. f (x1, x2) = (x1, x2, 2x1 + 3x2 − 6), x1 ∈ R, x2 ∈ R.

We will see that the vectors .
∂ f

∂x1
and .

∂ f

∂x2
are the key for describing the geometry 

of the surface . f . 

• A surface in the Euclidean three-dimensional space .E3 is a smooth mapping . f
of an open set .U ⊂ R

2 into .E3 with an extra property: at each point . f (x) of the 
surface, there must be a tangent plane (Figs. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8). 

Fig. 4.1 Surface and tangent space
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Fig. 4.2 The Gauss frames at . f (x) and. f (x ')

Fig. 4.3 Sphere 

Fig. 4.4 Tractrix and Pseudosphere
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Fig. 4.5 Parallel transport on a sphere and on a plane 

Fig. 4.6 Metric of the sphere induced by. ds2 = dX2 + dY 2

Which is the meaning of this definition? 
. f : U −→ R

3 is written as . f (x) = ( f 1 (x) , f 2 (x) , f 3 (x)
)
, where .x = (x1, x2). 

The two vectors 

. 
∂ f

∂x1
(x) =

(
∂ f 1

∂x1
(x) ,

∂ f 2

∂x1
(x) ,

∂ f 3

∂x1
(x)

)

,

.
∂ f

∂x2
(x) =

(
∂ f 1

∂x2
(x) ,

∂ f 2

∂x2
(x) ,

∂ f 3

∂x2
(x)

)
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Fig. 4.7 Euclidean parallel lines on a sphere induced by Euclidean parallel lines in a plane 

Fig. 4.8 Metric of the plane induced by.ds2 = du2 + sin2 u dv2
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form the matrix 

. 

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂ f 1

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x1
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x1
(x)

∂ f 3

∂x2
(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

If the previous matrix has rank . 2, then .
∂ f

∂x1
(x) and .

∂ f

∂x2
(x) are linear independent 

vectors and the tangent plane at . f (x) exists and it has the equation 

. 

|
|
|
|
|
|
|
|
|

X − f 1 (x) Y − f 2 (x) Z − f 3 (x)
∂ f 1

∂x1
(x)

∂ f 2

∂x1
(x)

∂ f 3

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x2
(x)

|
|
|
|
|
|
|
|
|

= 0.

• The tangent plane is denoted by .T f (x) f ; the linear independent vectors 

.

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

}

determine a basis for the tangent plane . T f (x) f.

• Any vector .X (x) which belongs to .T f (x) f can be written in the form 

. X (x) = X1 (x)
∂ f

∂x1
(x) + X2 (x)

∂ f

∂x2
(x)

where the coefficient .X1, X2 : U −→ R are smooth maps. 

• The vector .
∂ f

∂x1
× ∂ f

∂x2
generates the normal unitary vector . N (x) :=

∂ f

∂x1
(x)×

∂ f

∂x2
(x)

|
|
|
|
|
|

∂ f

∂x1
(x)×

∂ f

∂x2
(x)

|
|
|
|
|
|

. .N (x) is called the Gauss map of the surface . f at the point 

. f (x) or simply, the Gauss vector. The name of this map is related to the German 
mathematician Karl Friedrich Gauss, the founder of the Differential Geometry of 
surfaces. Almost all the results presented in this chapter were discovered by Gauss. 

• The frame .

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x) , N (x)

}

is called a Gauss frame attached to the 

surface . f at . f (x) . At each point of a surface this frame is a vector basis in .E3. 

A further comment is necessary about the tangent vectors .

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

}

.
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Denote by .TxU the two-dimensional vector space having the origin at .x ∈ U , 
determined by the vectors .e1 = (1, 0) and .e2 = (0, 1). Since the surface . f is the 
map . f : U −→ E3, it makes sense to consider the linear map .d fx : TxU −→ E3, 

. d fx =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ f 1

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x1
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x1
(x)

∂ f 3

∂x2
(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is easy to see that . d fx (e1) = ∂ f

∂x1
(x) , d fx (e1) = ∂ f

∂x2
(x).

Therefore a vector.X (x) = X1(x)e1 + X2(x)e2 ∈ TxU is mapped into the vector 

. d fx (X) = d fx [X1(x)e1 + X2(x)e2] = X1 (x)
∂ f

∂x1
(x) + X2 (x)

∂ f

∂x2
(x) ∈ T f (x) f.

4.3 The Metric of a Surface 

We have now all the ingredients to define the coefficients of the metric of a surface. f . 

• Denote by . gi j (x) :=
/
∂ f

∂xi
(x) ,

∂ f

∂x j
(x)

\

.

• It is easy to observe the symmetry of the .gi j coefficients, i.e. .gi j (x) = g j i (x). 
Where do these coefficients come from? 

If .X (x) = X1(x)e1 + X2(x)e2, Y (x) = Y 1(x)e1 + Y 2(x)e2 ∈ TxU , then the 
inner product.<X (x),Y (x)> in.TxU leads to the standard Euclidean 2D inner prod-
uct 

. <X (x), Y (x)> =
/
X1(x)e1 + X2(x)e2, Y

1(x)e1 + Y 2(x)e2
\
= X1(x)Y 1(x) + X2(x)Y 2(x),

because . 
>
ei , e j

< = δi j .

Now, if we compute .<d fx X, d fxY > in .T f (x) f , we obtain 

. <d fx X, d fxY > =
/

X1 (x)
∂ f

∂x1
(x) + X2 (x)

∂ f

∂x2
(x) , Y 1 (x)

∂ f

∂x1
(x) + Y 2 (x)

∂ f

∂x2
(x)

\

=

. = g11(x)X
1(x)Y 1(x) + g12(x)X

1(x)Y 2(x) + g21(x)X
2(x)Y 1(x) + g22(x)X

2(x)Y 2(x),
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therefore we highlight the .gi j coefficients. The Einstein summation convention 
simplifies the last formula, 

. <d fx X, d fxY > = gi j (x)X
i (x)Y j (x).

A direct consequence of the definition is 

. <d fx X, d fx X> = gi j (x)X
i (x)X j (x) > 0.

• The last formula highlights a quadratic form denoted by .ds2 which acts after the 
rule 

. ds2(X, X) = g11 · (X1)2 + g12 · X1X2 + g21 · X2X1 + g22 · (X2
)2

,

if the vector .X is thought as .X = (X1, X2). We cancelled the variable . x to give 
the image usually seen in textbooks. 
Taking into account that.dxi (X) = Xi , the previous formula of the quadratic form 
can be written in the simplified form 

. ds2 = g11 · (dx1)2 + g12 · dx1dx2 + g21 · dx2dx1 + g22 · (dx2)2

or, using the Einstein notation, 

. ds2 = gi j dx
idx j .

This quadratic form is called the metric for the surface . f . 
• The coefficients of the metric satisfy 

. det (gi j (x)) = g11(x)g22(x) − g12(x)g21(x) > 0

and 

. 

|
|
|
|

|
|
|
|
∂ f

∂x1
(x) × ∂ f

∂x2
(x)

|
|
|
|

|
|
|
| =

/
det (gi j (x)).

Both assertions are simple to prove. For the first, one takes into account the Cauchy– 

Schwartz inequality for the non-collinear vectors .
∂ f

∂x1
(x) and .

∂ f

∂x2
(x). It results 

. detgi j (x) =

. 

/
∂ f

∂x1
(x) ,

∂ f

∂x1
(x)

\ /
∂ f

∂x2
(x) ,

∂ f

∂x2
(x)

\

−
/

∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

\ /
∂ f

∂x2
(x) ,

∂ f

∂x1
(x)

\

. =
|
|
|
|

|
|
|
|
∂ f

∂x1
(x)

|
|
|
|

|
|
|
|

2 ||
|
|

|
|
|
|
∂ f

∂x2
(x)

|
|
|
|

|
|
|
|

2
−
/

∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

\2
> 0.
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The second equality is provided by the previous formula written in the form 

. ||a × b||2 = ||a||2 · ||b||2 · (1 − cos2 α)

for .a = ∂ f

∂x1
(x) and .b = ∂ f

∂x2
(x). 

Example 4.3.1 (Metric of the plane z = 0) Let us consider a plane having the 
algebraic equation .z = 0. When we study surfaces from the Differential Geom-
etry point of view, we prefer to write the previous plane as a function. It is 
. f (x1, x2) = (x1, x2, 0), x1 ∈ R, x2 ∈ R. The metric coefficients 

. gi j (x) =
/
∂ f

∂xi
(x) ,

∂ f

∂x j
(x)

\

are determined after we compute 

. 
∂ f

∂x1
(x) = (1, 0, 0)

. 
∂ f

∂x2
(x) = (0, 1, 0),

therefore the metric of the plane is 

. ds2 = (dx1)2 + (dx2)2

as we expected because it is related to the 2D restriction of the quadratic form attached 
to the 3d Euclidean inner product. 

Example 4.3.2 (Metric of the sphere) Consider the unit sphere as it appears at the 
beginning of Sect. 1.2: 

. f (x1, x2) = (sin x1 cos x2, sin x1 sin x2, cos x1), x1 ∈ (0,π), x2 ∈ (0, 2π).

In order to compute the metric coefficients .gi j (x), we first compute 

. 
∂ f

∂x1
(x) = (cos x1 cos x2, cos x1 sin x2,− sin x1)

. 
∂ f

∂x2
(x) = (− sin x1 sin x2, sin x1 cos x2, 0).

Then we use the formula .gi j (x) =
/
∂ f

∂xi
(x) ,

∂ f

∂x j
(x)

\

taking into account the 

Euclidean inner product, i.e. .<a, b> := a0b0 + a1b1 + a2b2.
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It results .g11(x) = 1, g12(x) = g21(x) = 0, g22(x) = sin2 x1, therefore the met-
ric of the unit sphere is 

. ds2 = (dx1)2 + sin2 x1 (dx2)2.

Often, textbooks present such formulas without the upper indexes, that is the 
sphere is parameterized in the form 

. f (u, v) = (sin u cos v, sin u sin v, cos u), u ∈ (0,π), v ∈ (0, 2π)

and the metric is visualized in the simpler form 

. ds2 = (du)2 + sin2 u (dv)2.

At the end of computations, we can say that “using.x1 = u and.x2 = v the formulas 
obtained are written in the following form...” and the formulas obtained have a more 
agreeable aspect. One more comment: if the sphere has radius . R, i.e. 

. f (u, v) = (R sin u cos v, R sin u sin v, R cos u), u ∈ (0,π), v ∈ (0, 2π)

the metric is  

. ds2 = R2(du)2 + R2 sin2 u (dv)2.

Example 4.3.3 (Metric of the pseudosphere) Another important example of surface 
is the pseudosphere proposed by Eugenio Beltrami. The pseudosphere is obtained 
from the rotation of a tractrix curve around an axis. The tractrix is imagined as “a 
curve whose tangents are all of equal length” in the sense we explain below. At a 
given point .A of the tractrix, we consider the tangent. The tangent intersects the 
tractrix asymptote at a second point denoted by . B. .AB is the segment of constant 
length we refer above. If the initial point is .(1, 0) and the asymptote is the .y−axis, 
the constant length becomes . 1. 

Identifying the tractrix equation .y = y(x) means to select the point where the 
tangent line equation 

. Y − y(x) = y'(x) · (X − x)

intersects the line .X = 0. It results .Y = y(x) − x · y'(x). The constant length, from 
the definition 

. (Y − y(x))2 + x2 = 1, x ∈ (0, 1) ,

leads to the tractrix differential equation 

.x2 · (y'(x))2 + x2 = 1, x ∈ (0, 1), y'(x) < 0.
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Therefore we have to solve the differential equation 

. − y'(x) =
√
1 − x2

x
.

The equivalent form.−dy

dx
=

√
1 − x2

x
leads to 

. 

{

dy = −
{ √

1 − x2

x
dx .

For .t := √
1 − x2 we have 

. 

{
t2

1 − t2
dt = −t − 1

2
ln

1 − t

1 + t
,

i.e. 

. y(x) = −
{ √

1 − x2

x
dx = −

/
1 − x2 − ln

1 − √
1 − x2

x
+ C.

The constant . C is determined by the condition .y(1) = 0, that is .C = 0. 
Finally we can consider the equation of the symmetric tractrix with respect to the 

.x−axis 

. y(x) =
/
1 − x2 + ln

1 − √
1 − x2

x
.

The pseudosphere is obtained when the tractrix is rotated around the .y−axis and its 
equation is 

. f (x, y) =
)

x, y,
/
1 − (x2 + y2) + ln

1 −/1 − (x2 + y2)
/
x2 + y2

)

, x, y ∈ (−1, 1).

We prefer the parameterization: . x1 ∈
)
0,

π

2

)
, x2 ∈ (0, 2π)

. f (x1, x2) =
(

sin x1 cos x2, sin x1 sin x2, cos x1 + ln

(

tan

(
x1

2

)))

,

which provides the metric 

.ds2 = cot2 x1
(
dx1
)2 + sin2 x1

(
dx2
)2

.
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Computations start from 

. 
∂ f

∂x1
(x) =

(

cos x1 cos x2, cos x1 sin x2,
cos2 x1

sin x1

)

. 
∂ f

∂x2
(x) = (− sin x1 sin x2, sin x1 cos x2, 0) .

The reader is invited to complete the exercise. Again, the form 

. ds2 = cot2 u (du)2 + sin2 u (dv)2

is more elegant, but not useful in the case when we are interested to find the Gaussian 
curvature, as we will see below. 

4.4 How Metric is Changing with Respect to Changes 
of Coordinates and Isometries 

• If we consider a change of coordinates.ϕ : U −→ U , our surface. f in the new coor-
dinates becomes. f̄ = f ◦ ϕ : U −→ E3. The metric coefficients are preserved by 
a change of coordinates in a sense we will understand after some computations. 
If .x̄ ∈ U , .x = ϕ (x̄) , X ∈ TxU and .X = dϕx̄ X ∈ TxU , we have  

. 
>
d f̄x̄ X , d f̄x̄ X

< = >d ( f ◦ ϕ)x̄ X , d ( f ◦ ϕ)x̄ X
< = >d fx

(
dϕx̄ X

)
, d fx

(
dϕx̄ X

)< = >d fx (X) , d fx (X)
<

• An isometry of the Euclidean three-dimensional space.E3 is a map. B : E3 −→ E3

which preserves distances. The initial surface. f is transformed by an isometry into 
another surface . f̃ = B ◦ f : U −→ E3. A vector is transformed by an isometry 
into another vector having the same length. Two vectors with the same application 
point.M0 are transformed into two vectors having as application point.B(M0). The  
transformed vectors have their lengths preserved. It is easy to observe that their 
initial angle between them is also preserved. 
Taking into consideration all these observations, the metric coefficients .gi j are 
preserved by isometries of the Euclidean space. 

• A smooth function .a : I ⊂ R −→ E3, . a(t) = (a1(t), a2(t), a3(t)) is called a 
curve of the Euclidean three-dimensional space .E3. 

• If .x = x(t) = (x1(t), x2(t)) in . U , we obtain . f (x(t)) = ( f 1 (x(t)) ,

f 2 (x(t)) , f 3 (x(t))
)
, that is a one-parameter function with the image contained 

in the image of our surface. It makes sense to define for .x : I ⊂ R −→ U ⊂ R
2, 

the map .c := f ◦ x : I ⊂ R −→ R
3. 

The map . c is called a curve on the surface . f : U −→ R
3.
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• Two properties of a curve on a surface are important. 
The tangent vector .ċ(t) belongs to the tangent plane to the surface .Tc(t) f . 
The length of this tangent vector depends on the coefficients .gi j of the metric. 
The first one comes from the computation: 

. ċ (t) = d

dt
( f ◦ x) (t) = ∂ f

∂x1
(x(t)) · ẋ1 (t) + ∂ f

∂x2
(x(t)) · ẋ2 (t) ∈ T f (x(t)) f.

The second assertion is a consequence of 

. |ċ (t)|2 = <ċ (t) , ċ (t)> =

. =
/

∂ f

∂x1
(x(t)) · ẋ1 (t) + ∂ f

∂x2
(x(t)) · ẋ2 (t) ,

∂ f

∂x1
(x(t)) · ẋ1 (t) + ∂ f

∂x2
(x(t)) · ẋ2 (t)

\

.

• Let us observe how the metric of the Euclidean 3D space produces the metric of a 
surface contained in the 3D Euclidean space. This will allow us to determine the 
metric of surfaces in a very simple way which will be present in examples. 
If .x = (x1, x2), the following equality holds 

. 

⎛

⎜
⎝

∂ f 1

∂x1
(x)

∂ f 2

∂x1
(x)

∂ f 3

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x2
(x)

⎞

⎟
⎠

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂ f 1

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x1
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x1
(x)

∂ f 3

∂x2
(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

. =
(

g11(x) g12(x)
g21(x) g22(x)

)

.

In fact, the above formula can be written as 

. d f Tx ·
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ · d fx =
(

g11(x) g12(x)
g21(x) g22(x)

)

and represents a metric change at the level of each tangent plane. To continue, it 
is simple to observe that the Euclidean 3D inner product determines a metric and 
this metric has the form.ds2 = dX2

1 + dY 2
1 + dZ2

1 . The Euclidean metric 

. ds2 = dX2
1 + dY 2

1 + dZ2
1

endows the surface with a metric induced by the coordinates 

. X1 = f 1(x1, x2); Y1 = f 2(x1, x2); Z1 = f 3(x1, x2),

that is with the metric
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. ds2 = gi j (x)dx
idx j .

How it works the previous formula when we intend to compute effectively the 
metric of surfaces? 

Example 4.4.1 (Metric of the sphere computed from the direct transfer of the ambi-
ent Euclidean metric) Let us see the example with the metric of the unit sphere. The 
metric of the ambient Euclidean 3D space is 

. ds2 = dX2
1 + dY 2

1 + dZ2
1,

while 
. X1 = sin x1 cos x2, Y1 = sin x1 sin x2, Z1 = cos x1.

Therefore 
. dX1 = cos x1 cos x2dx1 − sin x1 sin x2dx2

. dY1 = cos x1 sin x2dx1 + sin x1 cos x2dx2,

. dZ1 = − sin x1dx1.

Computing 
. dX2

1 + dY 2
1 + dZ2

1

it results the metric of the unit sphere in the form 

. ds2 = (dx1)2 + sin2 x1 (dx2)2.

Let see how it works the above approach in the case of the pseudosphere. 

Example 4.4.2 (Metric of the pseudosphere computed from direct transfer of the 
ambient Euclidean metric) The surface form 

. f (x1, x2) =
(

sin x1 cos x2, sin x1 sin x2, cos x1 + ln

(

tan

(
x1

2

)))

, x1 ∈
)
0,

π

2

)
, x2 ∈ (0, 2π),

makes us to consider the parameterization 

. X1 = sin x1 cos x2, Y1 = sin x1 sin x2, Z1 = cos x1 + ln

(

tan

(
x1

2

))

.

Therefore 
. dX1 = cos x1 cos x2dx1 − sin x1 sin x2dx2

.dY1 = cos x1 sin x2dx1 + sin x1 cos x2dx2,
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. dZ1 = cos2 x1

sin x1
dx1.

Computing 
. dX2

1 + dY 2
1 + dZ2

1

it results the metric of the pseudosphere in the form 

. ds2 = cot2 x1
(
dx1
)2 + sin2 x1

(
dx2
)2

.

So, it becomes clear that the metric of any surface can be easily determined after 
we compute the differentials .dX1, dY1 and .dZ1 of the given parameterization of 
the surface and we introduce them into the metric of the ambient space, here the 
Euclidean 3D one: . ds2 = dX2

1 + dY 2
1 + dZ2

1 .

To anticipate, the metric can be obtained with this very simple procedure even 
if the ambient space is not the Euclidean one. Supposing the metric of the ambient 
space is .ds2 = dX2

1 − dY 2
1 − dZ2

1 and replacing there the differentials . dX1, dY1
and .dZ1 of the given parameterization of the surface, we obtain the metric of the 
surface corresponding to the new ambient space. 

4.5 Intrinsic Properties of Surfaces 

• The length of a curve .c = f ◦ x : I −→ E3 on the surface . f between the points 
.c(a) and .c(b) is given by the formula 

. Lc =
b{

a

|ċ (t)| dt.

It can be expressed in terms of the metric in the form 

. Lc =
b{

a

/
gi j (x (t)) · ẋ i (t) · ẋ j (t)dt.

• For two curves .c = f ◦ x : I −→ E3 and .c̄ : f ◦ x̄ : Ī −→ R3 on the surface . f , 
the angle between them at the common point .c̄

(
t̄0
) = c (t0), is the acute angle 

between the two tangents to the curves at the common point. 
The angle . β of the curves . c and . c̄ at their common point .c (t0) = c̄

(
t̄0
)
can be 

computed by the formula
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. cosβ =
/
ċ (t0) ,

.

c̄
(
t̄0
)\

|ċ (t0)| ·
|
|
|

.

c̄
(
t̄0
)||
|

that is, it can be expressed in terms of the metric by the formula 

. cosα = gi j (x (t0)) · ẋ i (t0) ·
.

x̄ j
(
t̄0
)

√
grs (x (t0)) · ẋr (t0) · ẋ s (t0) ·

/

gpq
(
x̄
(
t̄0
)) · .

x̄ p
(
t̄0
) · .

x̄q
(
t̄0
) .

Therefore the lengths of tangent vectors to curves on a surface depend on the 
coefficients of the metric of the surface; the length of curves on a surface depends 
on the metric of the surface; the angle between two tangent vectors and, as a 
consequence, the angle between two curves depends on the metric of the surface. 
It can be proven that the area of a region on a surface depends on the metric of the 
surface. The formula for the area of a region . f (D), D ⊂ U is 

. σ f (D) =
{{

D

/
det
(
gi j (x)

)
dx1dx2.

All the possible geometric properties, depending on the metric of the surface, are 
called intrinsic geometric properties of a surface. Therefore, we can say that 

– the length of a curve, 
– the angle between two curves, 
– the area of a region, 

are concepts belonging to the intrinsic geometry of the surface. 
The change of coordinates and the isometries preserve the intrinsic nature of geo-
metric properties. 

Example 4.5.1 (Examples of the previous notions in the case of unit sphere) We  
start from 

. f (x1, x2) = (sin x1 cos x2, sin x1 sin x2, cos x1), x1 ∈ (0,π), x2 ∈ (0, 2π).

Consider the “equator” of the sphere which is determined by .x1 = π

2
, 

. ce(x
2) = (cos x2, sin x2, 0), x2 ∈ (0, 2π).

The tangent vector at each point of it is 

.ċe(x
2) = (− sin x2, cos x2, 0), x2 ∈ (0, 2π).
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The length . L of this curve is computed by the formula 

. L =
{ 2π

0
|ċe (t)| dt =

{ 2π

0
dt = 2π.

Same, consider the “meridian” obtained choosing .x2 = α, α ∈ (0,π), 

. cm(x1) = (sin x1 cosα, sin x1 sinα, cos x1), x1 ∈ (0,π).

In this case the tangent vector is 

. ċm(x1) = (cos x1 cosα, cos x1 sinα,− sin x1), x1 ∈ (0,π).

First, let us observe that the two curves meet at .(cosα, sinα, 0) that is at . ce(α) =
cm
)π

2

)
and 

. |ċe (α)| =
|
|
|ċm

)π

2

)|
|
| = 1.

The angle between the two curves is determined by the formula 

. cosβ =
/
ċe (α) , ċm

)π

2

)\

|ċe (α)| ·
|
|
|ċm

)π

2

)|
|
|
,

i.e. .cosβ = 0 which implies .β = π

2
as we expected. 

Let us consider also the “meridian” corresponding to .α = 0, here denoted by . c0. 
The two meridians determine a surface on the unit sphere . f parameterized with 
respect to the variables .x1 ∈ (0,π), x2 ∈ (0,α). Therefore . D := (0,π) × (0,α).

The area of this surface is computed by the formula 

. σ f (D) =
{{

D

/
det
(
gi j (x)

)
dx1dx2 =

{ π

0

{ α

0
sin x1dx1dx2 = α

{ π

0
sin x1dx1 = 2α.

4.6 Extrinsic Properties of Surfaces. The Weingarten 
Equations 

The Gauss frame contains also the Gauss map.N (x). The concepts involving Gauss 
map are related to the extra dimension of the surface . f . These concepts will be 
called extrinsic,, and the corresponding geometric properties will be called extrinsic 
geometric properties.
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• A first very interesting property we present is related to the partial derivatives of 
the Gauss map.N (x). It can be shown that they belong to the tangent plane.T f (x) f . 
Indeed, since the length of Gauss map .N (x) is . 1, if one considers the partial 
derivatives of 

. <N (x) , N (x)> = 1,

it results both .

/
∂N

∂x1
(x) , N (x)

\

= 0 and . 

/
∂N

∂x2
(x) , N (x)

\

= 0.

Therefore the vectors .
∂N

∂x1
(x) and .

∂N

∂x2
(x) are orthogonal to the Gauss vector . N

at each point . f (x) on the surface, i.e. .

{
∂N

∂x1
(x) ,

∂N

∂x2
(x)

}

⊂ T f (x) f . 

• Denote . hi j (x) := −
/
∂N

∂xi
(x) ,

∂ f

∂x j
(x)

\

.

• It is relatively easy to show that .h12(x) = h21(x). Starting from the relations 

.

/

N (x) ,
∂ f

∂x1
(x)

\

= 0 and . 

/

N (x) ,
∂ f

∂x2
(x)

\

= 0,

it results 

. 

/
∂N

∂x2
(x) ,

∂ f

∂x1
(x)

\

+
/

N (x) ,
∂2 f

∂x2∂x1
(x)

\

= 0

and 

. 

/
∂N

∂x1
(x) ,

∂ f

∂x2
(x)

\

+
/

N (x) ,
∂2 f

∂x1∂x2
(x)

\

= 0,

that is 

. h12(x) =
/

N (x) ,
∂2 f

∂x1∂x2
(x)

\

=
/

N (x) ,
∂2 f

∂x2∂x1
(x)

\

= h21(x).

• The coefficients .hi j (x) are preserved by changes of coordinates and isometries of 
the Euclidean three-dimensional space, the arguments being the same as for the 
coefficients .gi j of the metric. 

• Let us discover some very important relations called Weingarten’s relations. They 

express the fact that the partial derivatives .
∂N

∂xi
,

∂N

∂x j
belong to the tangent plane 

. T f (x) f.
It implies the existence of some coefficients .hij (x) .i, j ∈ 1, 2, such that 

. − ∂N

∂xi
(x) = hsi (x)

∂ f

∂xs
(x) .
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The two previous formulas (for .i = 1 and for .i = 2) are written in the Einstein 
notation, the dummy index being . s. The inner product of the previous relation(s) 

by .
∂ f

∂x j
(x), . j = 1 and . j = 2, leads to 

. hi j (x) =
/

−∂N

∂xi
(x) ,

∂ f

∂x j
(x)

\

= hsi (x)gs j (x) .

These formulas, i.e. the four relations, are called Weingarten’s formulas and they 
can be also written in a matrix form: 

. 

(
h11 h12
h21 h22

)

=
(
h11 h

2
1

h12 h
2
2

)(
g11 g12
g21 g22

)

.

• The Weingarten matrix .h j
i (x) can also be denoted by . W . 

• From.det (AB) = det A · det B, it results . det (h j
i (x)) = det (hi j (x))

det (gi j (x))
.

Example 4.6.1 (The Gauss map and Weingarten matrix in the case of plane 
z = 0) If . f (x1, x2) = (x1, x2, 0), the Gauss map 

. N (x) :=
∂ f

∂x1
(x) × ∂ f

∂x2
(x)

|
|
|
|

∂ f

∂x1
(x) × ∂ f

∂x2
(x)

|
|
|
|

is determined by 

. 
∂ f

∂x1
(x) × ∂ f

∂x2
(x) =

|
|
|
|
|
|
|

→
i

→
j

→
k

1 0 0
0 1 0

|
|
|
|
|
|
|
= (0, 0, 1),

i.e. .N (x) = (0, 0, 1). The matrix of the metric coefficients is 

. gi j (x) =
(
1 0
0 1

)

and the matrix .hi j has the form 

. hi j (x) =
(
0 0
0 0

)

.

The Weingarten matrix is determined by the equality 

.

(
0 0
0 0

)

=
(
h11 h21
h12 h22

)(
1 0
0 1

)

,
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therefore it is 

. hij (x) =
(
0 0
0 0

)

.

Example 4.6.2 (The Gauss map and Weingarten matrix in the case of the sphere of 
radius R) Let us consider the surface 

. f (x1, x2) = (R sin x1 cos x2, R sin x1 sin x2, R cos x1), x1 ∈ (0,π), x2 ∈ (0, 2π).

It allows the partial derivatives 

. 
∂ f

∂x1
(x) = (R cos x1 cos x2, R cos x1 sin x2,−R sin x1),

. 
∂ f

∂x2
(x) = (−R sin x1 sin x2, R sin x1 cos x2, 0).

The matrix of the metric coefficients is 

. gi j (x) =
(
R2 0
0 R2 sin2 x1

)

.

The Gauss map 

. N (x) :=
∂ f

∂x1
(x) × ∂ f

∂x2
(x)

|
|
|
|

∂ f

∂x1
(x) × ∂ f

∂x2
(x)

|
|
|
|

is now determined by 

. 
∂ f

∂x1
(x) × ∂ f

∂x2
(x) =

|
|
|
|
|
|
|

→
i

→
j

→
k

R cos x1 cos x2 R cos x1 sin x2 −R sin x1

−R sin x1 sin x2 R sin x1 cos x2 0

|
|
|
|
|
|
|

=

. = (R2 sin2 x1 cos x2, R2 sin2 x1 sin x2, R2 sin x1 cos x1)

and .

|
|
|
|

∂ f

∂x1
(x) × ∂ f

∂x2
(x)

|
|
|
| = R2 sin x1, therefore 

. N (x) = (sin x1 cos x2, sin x1 sin x2, cos x1).

Since .
∂N

∂xi
(x) = 1

R

∂ f

∂xi
(x), the matrix .hi j has the form 

.hi j (x) =
(−R 0

0 −R sin2 x1

)

.
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The equality 

. 

(−R 0
0 −R sin2 x1

)

=
(
h11 h

2
1

h12 h
2
2

)(
R2 0
0 R2 sin2 x1

)

determines the Weingarten matrix 

. hij (x) =
(−1/R 0

0 −1/R

)

.

4.7 The Gaussian Curvature of Surfaces 

When we express two vectors.{v1, v2} of a two-dimensional vector space with respect 
to a basis .{e1, e2}, it is highlighted a .2 × 2 matrix. 

The Weingarten matrix presented above is, as we mentioned, such a matrix 

which allows to express the vectors .

{

− ∂N

∂x1
(x) ,

∂N

∂x2
(x)

}

which belong to the 

two-dimensional vector space .T f (x) f with respect to its basis .

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

}

. 

We present now the definition of one of the most important concepts of the Dif-
ferential Geometry, the Gaussian curvature of a surface . f at a point . f (x). 
Denoted by .K (x), it is expressed by the formula 

. K (x) := det (hij (x)).

The determinant of the Weingarten matrix plays the role of a quantity which has 
to express the “bending” of a surface at a point. 

• A direct consequence is the formula 

. K (x) = det (hi j (x))

det (gi j (x))

which allows the quick computation of the curvature of surfaces at a point. 

The previous examples show us that 

• The Gaussian curvature of the plane .z = 0 at each point is .K (x) = 0, because 
.det hi j (x) = 0. 

• The Gaussian curvature of a sphere of radius . R at each point is .K (x) = 1

R2
, 

which can be computed directly using the Weingarten matrix formula.
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Besides, one can compute it using .det hi j (x) = R2 sin2 x1 and . det gi j (x) =
R4 sin2 x1.
We leave to the reader two problems related to the computation of the Gaussian 
curvature. It is important not only to compute it but also to understand how we 
establish the parameterizations for cylinder and cone surfaces below. The reader 
has to be inspired from how we established the parameterizations for plane, 
sphere, and pseudosphere. 

Problem 4.7.1 Compute the Gaussian curvature at a point of a circular cylinder. 

Hint: . f (x1, x2) = (R cos x1, R sin x1, x2); K (x) = 0;
Problem 4.7.2 Compute the Gaussian curvature at a point of a circular cone. 

Hint. . f (x1, x2) = (x2 cos x1, x2 sin x1, x2); K (x) = 0;

The result in both cases is .K = 0. We can understand now the word “bending” 
used above. There is a way of bending a plane, at least locally, to obtain a cylinder 
or a cone. The curvature .K = 0 allows this. The question is if there is a similar 
explanation for surfaces having non-zero Gaussian curvature. 
The answer will be obtained after understanding the nature of Gaussian curvature. 

• First, let us observe that Gaussian curvature of a surface . f at a point . f (x)
remains invariant under a change of coordinates. This happens because the metric 
coefficients .gi j and the matrix .hi j coefficients are preserved at the corresponding 
points by a change of coordinates. 

• The Gaussian curvature is related to the fact that the surface “lives” in the ambient 
3D Euclidean space .E3. So, the curvature seems to be an “extrinsic” property of 
a surface. In order to give more details, the Gaussian curvature depends on . hi j
matrix whose elements are described with respect to the Gauss map .N (x). If we  
look carefully, there is a determinant involving.hi j which is an area of a well chosen 
parallelogram. 
We can prove that this area can be written with respect to the metric components 
.gi j , i.e. the Gaussian curvature is part of the intrinsic geometry of a surface. 
Then, only the metric will be important because we can find a procedure to transfer 
it from a set to another. Say, if we transfer the metric of a plane to a sphere, our 
intuition regarding the “shape” of surfaces will be no longer important. Because 
the sphere has its Gaussian curvature depending on the transferred metric from 
the plane, it is .K = 0. 

In the same way, we can transfer the metric of a given sphere to a plane, offering 
the Gaussian curvature .K (x) = 1/R2 to the plane. The . 0 curvature intuition for the 
plane will disappear.
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4.8 The Geometric Interpretation of Gaussian Curvature 

Let us first understand the geometric meaning of Gaussian curvature in terms of the 
ratio of areas. 

The vectors.

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x) , − ∂N

∂x1
(x) , − ∂N

∂x2
(x)

}

, belonging to the tan-

gent plane .T f (x) f , are related by the Weingarten formulas 

. − ∂N

∂xi
(x) = hsi (x)

∂ f

∂xs
(x) , i ∈ {1, 2}.

Denote 

. ei j (x) :=
/
∂N

∂x1
(x) ,

∂N

∂x2
(x)

\

and recall the equality 

. 

|
|
|
|

|
|
|
|
∂N

∂x1
(x) × ∂N

∂x2
(x)

|
|
|
|

|
|
|
| =

/
det(ei j (x)).

Since 

. ei j (x) =
/
∂N

∂x1
(x) ,

∂N

∂x2
(x)

\

=
/

hsi (x)
∂ f

∂xs
(x) , hrj (x)

∂ f

∂xr
(x)

\

= hsi (x)h
r
j (x)grs (x)

it results 

. 

|
|
|
|

|
|
|
|
∂N

∂x1
(x) × ∂N

∂x2
(x)

|
|
|
|

|
|
|
|

2

= det(ei j (x)) = det hsi (x) · det hrj (x) · det(grs (x)),

therefore 

. 

|
|
|
|

|
|
|
|
∂N

∂x1
(x) × ∂N

∂x2
(x)

|
|
|
|

|
|
|
|

2

= [det(h j
i (x))]2 ·

|
|
|
|

|
|
|
|
∂ f

∂x1
(x) × ∂ f

∂x2
(x)

|
|
|
|

|
|
|
|

2

.

The absolute value of the Gaussian curvature of a surface . f at the point . f (x) is 

given by the ratio of the areas determined by the vectors . 

{

− ∂N

∂x1
(x) , − ∂N

∂x2
(x)

}

respectively . 

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

}

,

.|K (x)| =

|
|
|
|

|
|
|
|
∂N

∂x1
(x) × ∂N

∂x2
(x)

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
∂ f

∂x1
(x) × ∂ f

∂x2
(x)

|
|
|
|

|
|
|
|

.
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Therefore the absolute value of Gaussian curvature is the ratio of two areas of par-
allelograms determined by the vectors involved in Weingarten’s relations. 

A consequence of this result is: Gaussian curvature is preserved by isometries of 
the Euclidean space .E3. 

Why? Isometries are maps which preserve distances. And angles, too. Therefore 
areas of triangles are also preserved. So, the areas of parallelograms are preserved. 

4.9 Christoffel Symbols, Riemann Symbols and Gauss 
Formulas 

All the following results, i.e. Gauss formulas, Gauss equations, Theorema Egregium, 
were obtained by Gauss and they look different with respect to the modern view. 
Elwin Bruno Christoffel and Bernhard Riemann succeeded to simplify the form of 
Gauss results after they introduced the so-called Christoffel symbols and Riemann 
symbols we are going to study below. 

We define the Christoffel symbols of first kind, 

.. Ti j,k(x) := 1

2

(
∂gik

∂x j
(x) + ∂g jk

∂xi
(x) − ∂gi j

∂xk
(x)

)

and the Christoffel symbols of second kind, as  

. Ti
jk(x) := gis(x)T jk,s(x) = 1

2
gis(x)

(
∂g js

∂xk
(x) + ∂gks

∂x j
(x) − ∂g jk

∂xs
(x)

)

,

where .gi j (x) is the inverse of the matrix of the coefficients .gi j (x) of the metric. 
An important observation is the fact that these matrices, which are each other 

inverse, follow the formula 

. gs j (x)gis(x) = gis(x)g
s j (x) = δ

j
i

which is expressed using the Einstein notation. 
Of course, one can calculate each .gi j exactly as one did it when he studied the 

inverse of a matrix, that is .g11(x) = g22(x)

det (gi j )
, etc.  

In order to simplify the notation, we cancel . x in all the formulas below. 

The vector .
∂2 f

∂xi∂xk
can be expressed as a linear combination of the Gauss frame 

vectors .

{
∂ f

∂x1
,

∂ f

∂x2
, N

}

, that is
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. 
∂2 f

∂xi∂xk
= As

ik · ∂ f

∂xs
+ aik · N .

The inner product of both members of .N leads to .aik = hik, where .hik are the 
components of the matrix which appeared when we studied the Weingarten matrix. 
We obtain 

. 
∂2 f

∂xi∂xk
= As

ik · ∂ f

∂xs
+ hik · N .

Now, the inner product of both members of .
∂ f

∂x j
leads to 

. 

/
∂2 f

∂xi∂xk
,

∂ f

∂x j

\

= As
ik · gs j ,

which implies .As
ik = As

ki . On the other hand, if we apply the partial derivative with 

respect to .xk to the equality .gi j =
/
∂ f

∂xi
,

∂ f

∂x j

\

, we have  

. 
∂gi j

∂xk
=
/

∂2 f

∂xk∂xi
,

∂ f

∂x j

\

+
/
∂ f

∂xi
,

∂2 f

∂xk∂x j

\

,

and this can be written as 

. 
∂gi j

∂xk
= As

ik · gs j + As
jk · gsi .

If .i → j → k → i we obtain two further relations 

. 
∂g jk

∂xi
= As

ji · gsk + As
ki · gs j

. 
∂gki

∂x j
= As

k j · gsi + As
i j · gsk

Adding the first two and subtracting the last one, we have 

. 
∂g jk

∂xi
+ ∂gik

∂x j
− ∂gi j

∂xk
= 2As

i j · gsk,

and then 

. Ar
i j = Tr

i j .

Therefore, the Gauss formulas are
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. 
∂2 f

∂xi∂xk
= Ts

ik · ∂ f

∂xs
+ hik · N .

The above formulas 

. 
∂gi j

∂xk
= As

ik · gs j + As
jk · gsi

are called Ricci’s equations and, according to the Christoffel symbols, they are 

. 
∂gi j

∂xk
= Ts

ik · gs j + Ts
jk · gsi .

We can define 

• the Riemann symbols of second kind by 

. Rh
i jk := ∂Th

ik

∂x j
− ∂Th

i j

∂xk
+ Th

mjT
m
ik − Th

mkT
m
i j

• the Riemann symbols of first kind by .Ri jkl := gis Rs
jkl , and • the Ricci symbols by: .Ri j := Rs

is j . 
All these symbols depend only on.gi j , i.e. they belong to the intrinsic geometry of 
surfaces. 
Let us first observe that the metric coefficients .gi j allow us to lower indexes as in 
the formula 

. Ri jkl = gis R
s
jkl .

The components of the inverse matrix of the metric coefficients allow us to rise 
indexes, that is 

. Ri
jkl = gis Rs jkl .

The last formula can be derived if we multiply by .gmi and we consider the sum 
after the dummy index . i . It results .gmi Ri

jkl = gmig
is Rs jkl , that is the equality 

.Rmjkl = Rmjkl holds. 
If we have a multi-index quantity, say.T i j

lmn , we can derive.T
j

αlmn lowering the index 
. i by the rule 

. T j
αlmn := gαi T

i j
lmn.

The same from.T j
αlmn: we can obtain .T i j

lmn rising the index . α by the rule 

. T i j
lmn := giαT j

αlmn,

etc.
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4.10 The Gauss Equations and the Theorema Egregium 

The result we wish to prove, i.e. the celebrated Theorema Egregium, clarifies an 
important aspect of the Differential Geometry of surfaces. The Gaussian curvature of 
the surface depends only on the metric. Gauss called this important result Theorema 
Egregium, i.e. the Remarkable Theorem. The result appeared in 1827 in a paper 
entitled “General Investigations of Curved Surfaces”. The original title was in Latin, 
Disquisitiones Generales circa Superficies Curvas [105]. 

Theorem 4.10.1 For any surface the following equality holds 

. Ri jkl = hik · h jl − hil · h jk

Proof We consider the partial derivative with respect to .xi of the Gauss formulas 

. 
∂2 f

∂x j∂xk
= Ts

jk · ∂ f

∂xs
+ N · h jk .

We obtain 

. 
∂3 f

∂xi∂x j∂xk
= ∂Ts

jk

∂xi
· ∂ f

∂xs
+ Ts

jk · ∂2 f

∂xi∂xs
+ ∂N

∂xi
· h jk + N · ∂h jk

∂xi
.

Let us take into consideration the Gauss and Weingarten formulas, in particular 

. 
∂N

∂xi
= −hri

∂ f

∂xr
.

It results 

. 
∂3 f

∂xi∂x j∂xk
=
(

∂Tr
jk

∂xi
+ Tr

is · Ts
jk − h jk · hri

)

· ∂ f

∂xr
+
(

∂h jk

∂xi
+ Ts

jk · hsi
)

· N .

Using .i → j → k → i , we obtain the formula 

. 
∂3 f

∂x j∂xk∂xi
=
(

∂Tr
ki

∂x j
+ Tr

js · Ts
ki − hki · hrj

)

· ∂ f

∂xr
+
(

∂hki
∂x j

+ Ts
ki · hsj

)

· N .

Comparing the coefficients of .
∂ f

∂xr
and . N , the following equality holds: 

.
∂h jk

∂xi
+ Ts

jk · hsi = ∂hki
∂x j

+ Ts
ki · hsj
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for the coefficients of . N , and 

. 

∂Tr
jk

∂xi
+ Tr

is · Ts
jk − h jk · hri = ∂Tr

ki

∂x j
+ Tr

js · Ts
ki − hki · hrj

for the coefficients of.
∂ f

∂xr
. The first equality gives the Codazzi–Mainardi equations. 

The second one can be rearranged in the form 

. 

∂Tr
k j

∂xi
− ∂Tr

ki

∂x j
+ Tr

is · Ts
k j − Tr

js · Ts
ki = h jk · hri − hki · hrj ,

i.e. 
. Rr

ki j = h jk · hri − hki · hrj .

Multiplying by .glr we obtain the Gauss equations 

. Rlki j = glr · Rr
ki j = glr · hri · h jk − glr · hrj · hki = hli · h jk − hl j · hki = hli hk j − hl j hki .

Therefore, the Gauss equations can be written in the form 

.Ri jkl = hik · h jl − hil · h jk .

[

Corollary 4.10.2 The Riemann symbols .Ri jkl have the properties 

. Ri jkl = −Ri jlk;

. Ri jkl = −R jikl;

. Ri jkl = R jilk;

. Ri jkl = Rkli j ;

. Ri jkl + Rikl j + Ril jk = 0 (the Bianchi f irst identi t y).

Proof Let us use the previous Gauss equations 

. Ri jkl = hik · h jl − hil · h jk

and some replacements of indexes. [

A consequence of the first relation is .R2111 = −R2111, that is .R2111 = 0. In the  
same way.R1222 = 0, or in general, if three indexes coincide, then.R jiii = 0.Wemay  
also observe the following relations
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. R1212 = −R2112 = −R1221 = R2121.

In the same way .Riikl = −Riikl , i.e. .Riikl = 0. 

Theorem 4.10.3 (Theorema Egregium) The Gaussian curvature of a surface 
depends only on the metric coefficients. 

Proof This is a one line proof: 

.K (x) = det
(
hi j (x)

)

det
(
gi j (x)

) = h11 (x) · h22 (x) − h212 (x)

det
(
gi j (x)

) = R1212 (x)

det
(
gi j (x)

) .

[

The previous theorem shows that the Gauss curvature belongs to the intrinsic 
geometry of a surface. 

As we discussed earlier, this important result allows us to think about Differential 
Geometry in a more general frame, for example, considering sets of coordinates 
which are not necessarily embedded in a geometric structured space with an extra 
dimension. The Differential Geometry of such a set will be described only by a 
“metric tensor”, i.e. the matrix .gi j , which gives the metric 

. ds2 = gi j (x)dx
idx j .

The metric is the only ingredient we need to develop the Differential Geometry on 
sets of coordinates without extra dimensions. 

Example 4.10.4 (Gaussian curvature of pseudosphere computed by Theorema 
Egregium) Let us revisit the surface proposed by Eugenio Beltrami in his 1868 
paper [179] on models of hyperbolic geometries, the pseudosphere. 
Its metric 

. ds2 = cot2 x1
(
dx1
)2 + sin2 x1

(
dx2
)2

was obtained before when we studied the tractrix. The aim is to compute its curvature 
using the Theorema Egregium. The computations start with the Christoffel symbols 
of the first kind: 

. T22,2 = T12,1 = T21,1 = T11,2 = 0

. T12,2 = T21,2 = −T22,1 = sin x1 cos x1; T11,1 = − cot x1 · 1

sin2 x1
.

Then, the Christoffel symbols of the second kind: 

.T2
22 = T1

12 = T1
21 = T2

11 = 0
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. T2
12 = T2

21 = cot x1; T1
22 = − sin3 x1

cos x1
; T1

11 = − 1

sin x1 cos x1
.

It results 

. R1
212 = ∂T1

22

∂x1
− ∂T1

21

∂x2
+ T1

11T
1
22 + T1

21T
2
22 − T1

12T
1
21 − T1

22T
2
21 = − sin2 x1

and 
. R1212 = g1 s R

s
212 = g11R

1
212 = − cos2 x1; det (gi j ) = cos2 x1,

that is .K (x) = −1. 

Example 4.10.5 (Gaussian curvature of a sphere computed by Theorema Egregium) 
In the section devoted to extrinsic geometric properties of a surface, we computed 

the Gaussian curvature of sphere of radius .R and we found that .K (x) = 1

R2
. We  

intend to compute the same Gaussian curvature, now using the Theorema Egregium. 
We need only the metric of the sphere, 

. ds2 = R2(dx1)2 + R2 sin2 x1 (dx2)2.

Having the previous example in mind, now we can directly observe that the only 
non-zero Christoffel symbols are .T1

22 = − sin x1 cos x1 and .T2
12 = T2

21 = cot x1. It 
results 

. R1
212 = ∂T1

22

∂x1
− ∂T1

21

∂x2
+ T1

11T
1
22 + T1

21T
2
22 − T1

12T
1
21 − T1

22T
2
21 = sin2 x1

and 
. R1212 = g1 s R

s
212 = g11R

1
212 = R2 sin2 x1; det (gi j ) = R4 sin2 x1,

that is .K (x) = 1

R2
. 

Let us conclude. In some examples we noticed the existence of surfaces with null 
Gaussian curvature as the plane, the circular cylinder, and the circular cone. For these 
surfaces, the Theorema Egregium works easy: the null Gaussian curvature happens 
because all .Ti

jk = 0. We also highlighted spheres as surfaces of positive constant 
Gaussian curvature. On the other hand, the pseudosphere was a first example of a 
surface with constant negative curvature. Later in this book, we will study the con-
nection between surfaces of constant Gaussian curvature and classical geometries, 
i.e. Euclidean, Spherical, and Non-Euclidean.
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4.11 The Einstein Theorem 

Consider the Ricci symbols defined by the “contraction” of the Ricci symbol .Ri
jkl , 

i.e. 
. Ri j := Rs

is j = R1
i1 j + R2

i2 j

The name of these symbols is related to the Italian mathematician Gregorio Ricci 
Curbastro whose work, together with his student Tullio Levi-Civita in tensor calculus, 
made possible the development of General Relativity language. 

Theorem 4.11.1 (Einstein) For a surface . f , the Ricci tensor is proportional to the 
metric tensor via the Gaussian curvature, i.e. 

. Ri j (x) = K (x) · gi j (x).

Proof Let us drop . x in the notation and compute the four Ricci symbols. 

. R11 = Rs
1s1 = R1

111 + R2
121 = 0 + R2

121 = R2
121.

Since 
. R2

121 = g2 s · Rs121,

it results 
. R11 = g21 · R1121 + g22 · R2121 = 0 + g22 · R2121 =

. = g22 · R2121 = g11

det
(
gi j
) · R1212 = R1212

det
(
gi j
) · g11 = K · g11.

In a similar way, starting from the Ricci symbol .R22, we have  

. R22 = Rs
2s2 = R1

212 + R2
222 = R1

212 + 0 = R1
212.

Then 
. R1

212 = g1 s · Rs212

implies 

. R22 = g11 · R1212 + g12 · R2212 = g11 · R1212 + 0 = g22

det
(
gi j
) · R1212 = K · g22.

A little bit more complicated is for . R12.

. R12 = Rs
1s2 = R1

112 + R2
122 = g1 s · Rs112 + g2 s · Rs122 =

. = g11 · R1112 + g12 · R2112 + g21 · R1122 + g22 · R2122 =
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. = 0 + g12 · R2112 + 0 + 0 = −g12R1212 = − −g21

det
(
gi j
) · R1212 = R1212

det
(
gi j
) · g21 = K · g12.

In the same way, we can prove that .R21 = K · g21. [

A first consequence of the Einstein theorem is related to the symmetry of Ricci’s 
symbols for surfaces, so, for a given surface, it results .Ri j = R ji . This result is 
obtained in the case of two variables. A general result about the symmetry of the 
Ricci symbols and their geometric nature is presented in the next chapter. 
Why this result is related to Einstein? Let us rise one of the indexes, 

. Ri
j = gis Rs j

and define the scalar curvature . R or the Ricci curvature . R by the formula 

. R := Ri
i = R1

1 + R2
2 .

It is easy to see that 
. R1

1 = R2
2 = K , i.e. R = 2K .

Therefore the Einstein theorem can be written un the form 

. Ri j − 1

2
R · gi j = 0.

The left member of this equality is the Einstein tensor and it appears in the Einstein 
fields equations we will derive latter. 

4.12 Covariant Derivative, Parallel Transport 
and Geodesics 

Let .c = f ◦ x : I −→ E3 be a curve on the surface . f and let .X : I −→ E3 be a 
smooth map along the curve such that 

. X (t) = Xk (t) · ∂ f

∂xk
(x (t)) ∈ Tc(t) f.

Such a smooth map is called a vector field along the curve . c. Therefore .
dX

dt
(t) is a 

vector field along the curve . c, which, in general, does not belong to .Tc(t) f . Indeed, 

.
dX (t)

dt
= Ẋ k (t) · ∂ f

∂xk
(x (t)) + Xk (t) · ∂2 f

∂x j∂xk
(x (t)) · ẋ j (t) .



4.12 Covariant Derivative, Parallel Transport and Geodesics 99

Using Gauss’ formulas 

. 
∂2 f

∂x j∂xk
= Ti

jk · ∂ f

∂xi
+ h jk · N

after arranging the dummy indexes, we obtain 

. 
dX (t)

dt
= |Ẋ k (t) + Tk

i j (x (t)) · Xi (t) · ẋ j (t)
| ∂ f

∂xk
(x (t)) +

. + Xk (t) · x j (t) · hkj (x (t)) · N (x (t)) .

Let us project the vector .
dX (t)

dt
onto .Tc(t) f . This projection makes the normal 

component to vanish, therefore the vector field, obtained along the curve . c, is  

. prN
dX (t)

dt
= |Ẋ k (t) + Tk

i j (x (t)) · Xi (t) · ẋ j (t)
| ∂ f

∂xk
(x (t)) .

Let us denote the vector field obtained in .Tc(t) as 

. 
∇X (t)

dt
:= prN

dX

dt
(t) .

This result means that, at each point .c(t) of the curve . c, in each .Tc(t) f , the vector 

.
∇X (t)

dt
has the form given by the previous formula. We call this vector field the 

covariant derivative of the initial vector field . X . 
The covariant derivative of the vector field .X is 

. 
∇X (t)

dt
= |Ẋ k (t) + Tk

i j (x (t)) · Xi (t) · ẋ j (t)
| ∂ f

∂xk
(x (t)) .

One of the most important definitions of Differential Geometry of surfaces is the 
parallel transport of a vector field along a curve. The parallel transport along a curve 
. c of the vector field .X is given by the condition 

. 
∇X (t)

dt
=→
0 .

Therefore, the equations of the parallel transport are 

. Ẋ k (t) + Tk
i j (x (t)) · Xi (t) · ẋ j (t) = 0, k ∈ {1, 2}.

The parallel transport equations can be completely determined if we consider an 
initial condition. It is enough having a point . p of the curve and the initial vector .Vp
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at. p. Then, the system of equations has, as a unique solution, the vector field.X such 
that, at .p = c(t0), it is .X (t0) = Vp. 

Let us underline the following point. The system of differential equations 

. Ẋ k (t) + Tk
i j (x (t)) · Xi (t) · ẋ j (t) = 0, k ∈ {1, 2}

describing the parallel transport shows that the vector field 

. X (t) = Xi (t) · ∂ f

∂xi
(x (t))

is completely determined if we know .X at a given (known) point of the curve 
. c (t) = ( f ◦ x) (t) .

Example 4.12.1 The case of parallel transport along any curve of the plane We 
may consider, without loss of generality, that the algebraic equation of the plane is 
.z = 0. Then for the surface . f is . f (x1, x2) = (x1, x2, 0), the metric is 

. ds2 = (dx1)2 + (dx2)2,

all .Ti j,k = 0, all .Tk
i j = 0, and the equations of the parallel transport are 

. Ẋ k (t) = 0, k ∈ {1, 2}.

It results, by integration, that the vector field .X is a constant one, i.e. .X (t) = (a, b). 
If we are looking at the support lines of this vector field along a given line, we see 
Euclidean parallel lines, therefore we understand the meaning of the parallel transport 
above. 

Example 4.12.2 Parallel transport on sphere Consider the sphere 

. ds2 = R2(dx1)2 + R2 sin2 x1 (dx2)2

and its non-zero Christoffel symbols.T1
22 = − sin x1 cos x1 and . T2

12 = T2
21 = cot x1.

The equations of the parallel transport along the curve.c(t) = f (x(t)), where. x(t) =
(x1(t), x2(t)) ⊂ U , are  

. Ẋ1 (t) − sin x1(t) cos x1(t) · X2 (t) · ẋ2 (t) = 0

. Ẋ2 (t) + cot x1(t) · X1 (t) · ẋ2 (t) + cot x1(t) · X2 (t) · ẋ1 (t) = 0.

Let us choose the equator of the sphere obtained for.x(t) =
)π

2
, t
)
. Since.x1(t) = π

2
, 

the equations of the parallel transport become 

.Ẋ k (t) = 0, k ∈ {1, 2}



4.12 Covariant Derivative, Parallel Transport and Geodesics 101

with the solutions .X1(t) = a and .X2(t) = b. Therefore, taking into account that 

along the equator the vectors .
∂ f

∂xi
(x (t)) , i ∈ {1, 2} are 

. 
∂ f

∂x1

)π

2
, t
)

= (0, 0,−R),

. 
∂ f

∂x2

)π

2
, t
)

= (−R sin t, R cos t, 0),

the parallel transported vector along the equator has the form 

. X (t) = a · ∂ f

∂x1

)π

2
, t
)

+ b · ∂ f

∂x2

)π

2
, t
)

= (−bR sin t, bR cos t,−aR).

A first example is the vector.(0, 0, R)which is obtained when.a = 0 and.b = −1. 
This vector is always parallel to .z-axis and it is parallel transported at each point 
along the equator. Another important example is the tangent vector to the equator, 

.ċe(t) = (− sin t, cos t, 0) which is obtained when .a = 1

R
and .b = 0. The tangent 

vector is parallel transported at each point along the equator. 

In the particular case when the tangent field .ċ (t) to the curve . c is parallel trans-
ported along the curve, then the curve . c, by definition, is called a geodesic of the 
surface . f . 

The previous example shows that the equator of the sphere is a geodesic of the 
sphere because the tangent vector to equator is parallel transported. In an example 
below we will revisit the subject in the new formalism we are going to present. 

The equations of a geodesic are .
∇ ċ (t)

dt
=→
0 . In fact, as above, there are two 

equations and we highlighted this by using the arrow to define the null vector. Since 

.ċ (t) =
.

(̂ f ◦ x) (t) = ẋ i (t)
∂ f

∂xi
(x (t)), the equations are 

. ẍ k (t) + Tk
i j (x (t)) · ẋ i (t) · ẋ j (t) = 0, k ∈ {1, 2}.

The system of equations for geodesics is completely determined if we consider 
an initial condition which is similar to the one presented in the case of the parallel 
transport: 

• a point .c(t0) of the geodesic; 
• the initial vector .vc(t0) = (ẋ1(t0), ẋ2(t0)). 

Example 4.12.3 Geodesic of the plane Let us show that the geodesics of the plane 
.z = x3 = 0 are lines. 

Since . f (x1, x2) = (x1, x2, 0), all .Tk
i j = 0 and the equations of the geodesics are 

.ẍ k (t) = 0, k ∈ {1, 2}.
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It results, by integration, the curve .c(t) = (v1t + x10 , v2t + x20 , 0) which is a line 
in the Euclidean plane .z = 0. Along the curve, the speed is constant, i.e. . ||ċ(t)|| =/

(v1)2 + (v2)2. 

Example 4.12.4 Geodesic of the cylinder Find the geodesics of the cylinder 
. f (x1, x2) = (cos x1, sin x1, x2).

Following the same way as in the previous example, the geodesics are helices of 
the cylinder . f , 

. c(t) = (cos(v1t + α0), sin(v1t + α0), v2t + β0),

and the speed along the geodesic is constant, . ||ċ(t)|| = /(v1)2 + (v2)2.

Example 4.12.5 Geodesic of the sphere In this case, we have to study the geodesics 
of the metric 

. ds2 = R2dx2 + R2 sin2 xdy2.

In this example, we write the metric without upper indexes for variables. Clearly, 
this metric is the one of a sphere with radius . R. 

In order to perform the calculations, let us consider .x = x1, y = x2, i.e. 

.g11 = R2, g22 = R2 sin2 x1, g12 = g21 = 0, . g11 = 1

R2
, g22 = 1

R2 sin2 x1
, g12 =

g21 = 0. 
The Christoffel symbols are 

. T11,1 = T11,2 = T12,1 = T21,1 = T22,2 = 0, T12,2 = T21,2 = R2 sin x1 cos x1 = −T22,1

. T1
11 = T2

11 = T1
12 = T1

21 = T2
22 = 0, T2

12 = T2
21 = cot x1, T1

22 = − sin x1 cos x1.

Now we can replace the variables with the initial ones. The geodesic equation, written 
for the first variable, is 

. ẍ − sin x cos x · (ẏ)2 = 0.

For the second variable . y, the geodesic equation is 

. ÿ + 2 cot x · ẋ ẏ = 0.

We may observe that .x = π

2
, y = s is a solution, therefore . c(s) = (R cos s,

R sin s, 0) is a geodesic of the sphere. It is the great circle obtained at the inter-
section of the plane .z = 0 with the sphere. We found this geodesic and presented 
it in the example related to the parallel transport. If we rotate the sphere around its 
centre, another great circle replaces the equator and therefore becomes a geodesic. 
So the geodesics of the spheres are the great circles of the sphere. The terminology 
is related to the fact that among all circles obtained at the intersection of a sphere by
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planes, the maximum radius is for the circles obtained at the intersection of planes 
passing through the centre of the sphere. 

A comment is important at this point: a rotation of the sphere around the origin 
means a change of coordinates of the sphere. The above result can be reformulated 
as “the change of coordinates mapping a geodesic into another geodesic”. This result 
is proved in the next chapter but we mentioned it now to show that all great circles 
are geodesics of the sphere. 

In all examples, the tangent vector to geodesic has constant length. This is a 
general property for geodesics and the proof of this fact is also provided in the next 
chapter. 

Before continuing, it is better to add something about curves in a .3D-Euclidean 
space. The differential properties of curves are described by a special frame, called 
the Frenet frame. Such a frame depends on the vectors .ċ(t) and.c̈(t) which describe 
the osculating plane. Using these two vectors one can construct another two vectors, 
.{e1(t), e2(t)}, which form an orthonormal frame in the osculating plane. Considering 
.e3 := e1 × e2 the set.{e1(t), e2(t), e3(t)} becomes the Frenet frame at each point. c(t)
of the curve. The Frenet frame describes the curvature.K1(t) and the torsion.K2(t) at 
each point of the curve. Curves included in a plane are characterized by null torsion. 
In this case .e3(t) is a constant vector along . c and .e1 and .e2 are obviously included 
in the plane where the curve lies. 

If the curve lies on a surface. f , we can define the Darboux frame. This is formed 

by the previous unit speed vector .e1 = ċ

||ċ|| and another two vectors. One of them 

is the Gauss vector .N (t) which is part of the Gauss frame and.e(t) := N (t) × e1(t). 
The frame .{e1(t), N (t), e(t)} coexists together with the Frenet frame if a curve is 
part of a surface. A very nice result which can be proved is the following: 

The curve. c is  a geodesic of. f if and only if .e2(t) and.N (t) are collinear vectors. 

To prove this statement, let us consider a sphere with a great circle. This circle is 
included in a plane, therefore the torsion of it is . 0 at each point .c(t). It results that 
.e1 is tangent to the circle and .e2 is included in the plane of the curve such that the 
line containing .e2 passes through the centre of the sphere. The same line contains 
the Gauss vector . N , therefore .N and .e2 are collinear. The great circle is a geodesic. 

The theory presented above is true in the Minkowski spaces, therefore planes con-
taining the origin intersects Minkowski spheres after geodesic curves. More proper-
ties about the Minkowski spaces will be discussed below, when we will consider the 
possibility that the ambient .3D space is not an Euclidean one. 

Example 4.12.6 Gaussian curvature and parallel transport Consider the previ-
ous sphere, its equator and two meridians. The meridians are part of great circles, 
therefore they are geodesics. The same holds for the equator. 

Denote by .N the “North Pole” of the sphere and by .A and .B the intersections 
between the two meridians and the equator. In this way, we obtained the spherical 
triangle .ABN .
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We can choose the coordinates of the points .N , A and .B as . (0, 0, R), (R, 0, 0)
and .(cosα, sinα, 0) respectively. 

Consider the vector .(0, 0, R). This vector is a tangent vector to the first meridian 
at . A. 

If it is parallel transported to the North Pole . N , it becomes .V = (−R, 0, 0). 
If now we parallel transport it from. A to. B, it remains.(0, 0, R). Finally, if we parallel 
transport it from. B to . N , it becomes .W = (R cos(π + α), R sin(π + α), 0). 
The angle between .V and .W is . α. 

Let us observe that if we act in the Euclidean plane and we parallel transport a 
given vector . v along the contour of the .ABC triangle in the same way, that is from 
. A to . B, respectively, from. A to .C then from.C to . B, it results in the same vector . v, 
therefore the angle between the two final vectors is . 0. The null Gaussian curvature 
of the plane allows this result. 

The angle . α between.V and.W obtained in the case of the sphere is related to the 
curvature of the sphere. 

4.13 Changes of Coordinates 

Let 
. ds2 = gi j (x)dx

idx j

be a metric written with the Einstein notation and .x = (x1, x2) be a point which 
belongs to.U ⊂ R

2. Suppose we wish to change the coordinates, i.e. we consider the 
transform 

. 

{
x1 = x1(x1, x2)
x2 = x2(x1, x2),

where .x = (x1, x2) is a point belonging to .U ⊂ R
2. The transformation can be 

described by.x = x(x) or, another possible notation is. xh = xh(xr ), h ∈ {1, 2}, r ∈
{1, 2}. 

How the metric coefficients change with respect to the new coordinates? 
The old.gi j depending on.x = (x1, x2) are replaced by new coefficients.gkl depend-

ing on .x = (x1, x2). Therefore we are interested to find the new metric form 

.. ds2 = gkldx
kxl

corresponding to the coordinate transformation. 

To do this it is enough to observe that .dxi = ∂xi

∂xk
dxk and .dx j = ∂x j

∂xl
dxl , i.e. 

.gi j (x)dx
idx j = gi j (x(x))

∂xi

∂xk
∂x j

∂xl
dxkdxl = gkldx

kxl ,
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so the coefficients are changed according to the rule .gkl = gi j
∂xi

∂ x̄ k
∂x j

∂ x̄ l
. 

First of all, let us observe that the number of variables does not affect the previous 
considerations. If the change of coordinates is. xh = xh(xr ), h ∈ {1, 2, 3, ..., n}, r ∈
{1, 2, 3, ..., n}, the formulas.dxi = ∂xi

∂xk
dxk and.dx j = ∂x j

∂xl
dxl hold. Therefore the 

same happens with the equality 

. gi j (x)dx
idx j = gi j (x(x))

∂xi

∂xk
∂x j

∂xl
dxkdxl = gkldx

kxl .

The transformation formula .gkl = gi j
∂xi

∂ x̄ k
∂x j

∂ x̄ l
is preserved for any number of vari-

ables. 
Let us give some examples. 

Example 4.13.1 Euclidean metric in polar coordinates Let see how the Euclidean 
metric 

. ds2 = dx2 + dy2

transforms if 

. 

{
x = x(r, θ) = r cos θ
y = y(r, θ) = r sin θ.

We have 

. 

{
dx = dr cos θ − r sin θdθ
dy = dr sin θ + r cos θdθ,

therefore 
. ds2 = dr2 + r2dθ2.

This is the Euclidean metric in polar coordinates. Some textbooks use .ds2 instead 
of .ds2 because, if you look at the proof above, you can see explicitly the equality 
between the two forms. 

This is also an argument for the statement: a change of coordinates preserves the 
Gaussian curvature at corresponding points. 

Example 4.13.2 Transforming the metric of the pseudosphere into the metric 
of the Poincaré half-plane Let us consider the metric of the pseudosphere 

.ds2 = cot2 u du2 + sin2 u dv2,
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where .u ∈ (0,
π

2
), v ∈ (0, 2π). The transformation of coordinates 

. 

⎧
⎨

⎩

u = u(x, y) = arcsin
1

y
v = v(x, y) = x, x ∈ R, y > 0

leads to 

. 

⎧
⎨

⎩

du = − 1

y
/
y2 − 1

dy

dv = dx

and the two equalities .sin2 u = 1

y2
; cot2 u = y2 − 1. It results 

. ds2 = dx2 + dy2

y2
,

which, as we will see later, is the metric of the Poincaré half-plane involved in 
the description of a Non-Euclidean geometry model. Therefore the pseudosphere is 
related to the Non-Euclidean geometry. 

Let us see how the Christoffel symbols change. We start from the same obser-
vation: the obtained formulas are the same even if our change of coordinates is 
.xr = xr (xh), r ∈ {0, 1, ..., n}, h ∈ {0, 1, ..., n}. 

The Christoffel symbols of first kind 

. Ti j,k = 1

2

(
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

)

transform under the rule 

. Ti j,k = Trs,p
∂xr

∂xi
∂xs

∂x j

∂x p

∂xk
+ grs

∂2xr

∂xi∂x j

∂xs

∂xk
.

This formula is not difficult to obtain. See also [ 34]. It is important because it offers 
the possibility to obtain the transformation of Christoffel symbols of the second kind, 
.Ti

jk = gisT jk,s . In the same Ref. [ 34], it is proven that Christoffel symbols of the 
second kind transform under the rule 

.
∂2xk

∂xi∂x j = −Tk
rs

∂xr

∂xi
∂xs

∂x j + T
r
i j

∂xk

∂xr
.
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The last two formulas are necessary to know how Riemann and Ricci symbols trans-
form under a change of coordinates. They are 

. 

⎧
⎪⎨

⎪⎩

R
a
bgd

∂xi

∂xa = Ri
jkl

∂x j

∂xb
∂xk

∂xg
∂xl

∂xd

Rebgd = Rr jkl
∂xr

∂xe
∂x j

∂xb
∂xk

∂xg
∂xl

∂xd

Rbg = R jl
∂x j

∂xb
∂xl

∂xg

and a complete proof can be seen in [ 34] or in Chap. 13 when we discuss the Levi-
Civita connection. Here, we propose an argument for the coordinates transformation 
in the case of Ricci symbols. 

Let us start from the definition .Rbg = R
a
bad . Then . Rbg

∂xi

∂xa
= R

a
bad

∂xi

∂xa
=

Ri
jil

∂x j

∂xb
∂xi

∂xa
∂xl

∂xg , therefore 

. Rbg = R jl
∂x j

∂xb
∂xl

∂xg .

It is worth observing that for 

• the metric coefficients . gi j
• the Riemann symbols of second kind . Ri

jkl• the Riemann symbols of first kind . Ri jkl

• the Ricci symbols . Ri j

the change of coordinates has a sort of regularity. In the next chapter we find out that 
all these geometric objects are tensors and they describe the language of General 
Relativity. 

In the next chapter we prove both the tensorial aspect of the geodesic equations 
and the fact that a geodesic with respect to a metric is transformed by a change of 
coordinates into a geodesic of the transformed metric. 

4.14 What if the Ambient Space is Not an Euclidean One? 

Differential Geometry of surfaces was developed in the case when the ambient space 
is an Euclidean one. The Euclidean metric 

. ds2 = dX2 + dY 2 + dZ2

transfers its geometry to surfaces contained in it. We know how it works, the param-
eterization of the surface 

.S :
⎧
⎨

⎩

X = X (x1, x2)
Y = Y (x1, x2)
Z = Z(x1, x2)
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leads to 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX = ∂X

∂x1
dx1 + ∂X

∂x2
dx2

dY = ∂Y

∂x1
dx1 + ∂Y

∂x2
dx2

dZ = ∂Z

∂x1
dx1 + ∂Z

∂x2
dx2,

therefore the metric of the surface results from the following equalities 

. ds2 =
|(

∂X

∂x1

)2

+
(

∂Y

∂x1

)2

+
(

∂Z

∂x1

)2
|

(dx1)2 +
|

∂X

∂x1
∂X

∂x2
+ ∂Y

∂x1
∂Y

∂x2
+ ∂Z

∂x1
∂Z

∂x2

|

dx1dx2 +

. +
|

∂X

∂x2
∂X

∂x1
+ ∂Y

∂x2
∂Y

∂x1
+ ∂Z

∂x2
∂Z

∂x1

|

dx2dx1 +
|(

∂X

∂x2

)2

+
(

∂Y

∂x2

)2

+
(

∂Z

∂x2

)2
|

(dx2)2 =

. = gi j dx
idx j .

After obtaining the metric, we have all we need for the intrinsic geometry of a 
surface because we can compute: 

• The Christoffel symbols of first kind: 

. Ti j,k := 1

2

(
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

)

;

• The Christoffel symbols of second kind: 

. Ti
jk := gisT jk,s = 1

2
gis
(

∂g js

∂xk
+ ∂gks

∂x j
− ∂g jk

∂xs

)

;

• The Riemann symbols of second kind: 

. Rh
i jk := ∂Th

ik

∂x j
− ∂Th

i j

∂xk
+ Th

mjT
m
ik − Th

mkT
m
i j

• The Riemann symbol of first kind: 

. Ri jkl := gis R
s
jkl ;

• The Ricci symbols 
. Ri j = Rs

is j ,

which are obtained from Riemann symbols of second kind.Rs
imj by contracting the 

indexes .s = m.
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• The geodesics, i.e. curves on the surface such that the coordinates satisfy the 
equations: 

. ẍ k (t) + Tk
i j (x (t)) · ẋ i (t) · ẋ j (t) = 0, k ∈ {1, 2}.

Let us observe that the previous equations can be written in the form 

. 
d2xk

dt2
+ Tk

i j

dxi

dt

dx j

dt
= 0, k ∈ {1, 2}.

• We can also compute the Gaussian curvature using the formula 

. K (x) = R1212

det gi j
.

• Furthermore, we can compute angles between geodesics or surfaces of triangles 
determined by geodesics. We can study the geometry of such surfaces as done in 
the numerous examples previously presented. 

• How can we proceed if the surface is contained in a space endowed with a metric 
as 

. ds2 = dX2 − dY 2 − dZ2 ?

This space transfers its geometry to surfaces contained in it exactly in the same 
way as the Euclidean space. Only the form of the metric coefficients is different. 
Let see why. Consider the parameterization of a surface in the new space in the 
same form as in the Euclidean space, 

. S :
⎧
⎨

⎩

X = X (x1, x2)
Y = Y (x1, x2)
Z = Z(x1, x2).

Then we have the same formulas for 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX = ∂X

∂x1
dx1 + ∂X

∂x2
dx2

dY = ∂Y

∂x1
dx1 + ∂Y

∂x2
dx2

dZ = ∂Z

∂x1
dx1 + ∂Z

∂x2
dx2.

The metric of the surface is obtained using now 

. ds2 = dX2 − dY 2 − dZ2,

therefore
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. ds2 =
|(

∂X

∂x1

)2

−
(

∂Y

∂x1

)2

−
(

∂Z

∂x1

)2
|

(dx1)2 +
|

∂X

∂x1
∂X

∂x2
− ∂Y

∂x1
∂Y

∂x2
− ∂Z

∂x1
∂Z

∂x2

|

dx1dx2 +

. +
|

∂X

∂x2
∂X

∂x1
− ∂Y

∂x2
∂Y

∂x1
− ∂Z

∂x2
∂Z

∂x1

|

dx2dx1 +
|(

∂X

∂x2

)2

−
(

∂Y

∂x2

)2

−
(

∂Z

∂x2

)2
|

(dx2)2 =

. = ḡi j dx
idx j .

Having now the metric coefficients .ḡi j , all the formulas involving the Christoffel 
symbols, Riemann symbols, Ricci symbols, Gaussian curvature, geodesics are 
the same as above. The intrinsic geometry of the surface is preserved. 

• The same happens if the metric of the surrounding space is 

. ds2 = dX2 + dY 2 − dZ2.

The metric coefficients are computed taking into account the following equalities 

. ds2 =
|(

∂X

∂x1

)2

+
(

∂Y

∂x1

)2

−
(

∂Z

∂x1

)2
|

(dx1)2 +
|

∂X

∂x1
∂X

∂x2
+ ∂Y

∂x1
∂Y

∂x2
− ∂Z

∂x1
∂Z

∂x2

|

dx1dx2 +

. +
|

∂X

∂x2
∂X

∂x1
+ ∂Y

∂x2
∂Y

∂x1
− ∂Z

∂x2
∂Z

∂x1

|

dx2dx1 +
|(

∂X

∂x2

)2

+
(

∂Y

∂x2

)2

−
(

∂Z

∂x2

)2
|

(dx2)2 =

. = ¯̄gi j dxidx j .

And again all information about the intrinsic geometry is related to the same 
symbols now computed using the metric coefficients . ¯̄gi j . 
Let us present now examples induced by the previous two metrics. 

Example 4.14.1 The time-like sphere in a Minkowski .(+ − −) space In the case 
when the .3D space is endowed with the metric 

. ds2 = dX2 − dY 2 − dZ2,

we look at the geometry of the surface 

. X2 − Y 2 − Z2 = −R2.

According to the signs, the above metric is a Minkowski .(+ − −) metric and it is 
induced by the quadratic form.<u, u> attached to the Minkowski product 

.<u, v> = uxvx − uyvy − uzvz .
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We have three types of vectors according to the above Minkowsky product. 

• Timelike vectors, when.<u, u> > 0. An example is the vector .u = (2, 1, 1), or the  
vector . u = (2x2 + 1, x2, x2), x ∈ R.

• Space-like vectors, when .<u, u> < 0. An example is the vector .u = (1, 1, 1), or  
the vector . u = (x2, x2, x2 + 2), x ∈ R.

• Null vectors, also known as lightlike vectors, if .<u, u> = 0. An example is the 
vector .u = (2,−1,

√
3), or the vector .u = (2x2,

√
2x2,

√
2x2), x ∈ R. All the 

lightlike vectors can be thought as part of the cone having the equation 

. X2 − Y 2 − Z2 = 0.

The time-like vectors have the origin (the application point) and the end in the 
interior of the previous cone, while the space-like vectors have the end outside 
the previous cone. 
In a Minkowski .3D space there are two types of spheres. 

• Space-like spheres, if the normal are time-like vectors. The sphere having the 
equation 

. X2 − Y 2 − Z2 = R2

is such a sphere. To imagine it from the Euclidean point of view, this Minkowski 
sphere is two sheets hyperboloid. 

• Timelike spheres, where normals are space-like vectors. The sphere having the 
equation 

. X2 − Y 2 − Z2 = −R2

is such a sphere. In our Euclidean intuition, it corresponds to a one-sheet Euclidean 
hyperboloid. Accordingly the geometry, this is a Minkowski sphere. Therefore, in 
this example, we are interested to understand the intrinsic geometry features of 
this time-like sphere. 
We can parameterize the above time-like sphere as 

. 

⎧
⎨

⎩

X = X (x1, x2) = R sinh x1

Y = Y (x1, x2) = R cosh x1 cos x2

Z = Z(x1, x2) = R cosh x1 sin x2.

It results 

.

⎧
⎨

⎩

dX = R cosh x1dx1

dY = R sinh x1 cos x2dx1 − R cosh x1 sin x2dx2

dZ = R sinh x1 sin x2dx1 + R cosh x1 cos x2dx2.
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The metric of the Minkowski time-like sphere is obtained using now 

. ds2 = dX2 − dY 2 − dZ2,

therefore it is 
. ds2 = R2 (dx1)2 − R2 cosh2 x1 (dx2)2.

The non-zero Christoffel symbols are 

. T2
12 = T2

21 = tanh x1, T1
22 = cosh x1 sinh x1

and 

. R1
212 = ∂T1

22

∂x1
− ∂T1

21

∂x2
+ T1

s1T
s
22 − T1

s2T
s
21 = cosh2 x1.

It results .R1212 = g11R1
212 = R2 cosh2 x1, that is the Gaussian curvature of the 

Minkowski time-like sphere is . K = − 1

R2
.

The equations of geodesics are 

. 

{
ẍ1 (t) + cosh x1 sinh x1 (x (t)) · (ẋ2(t))2 = 0
ẍ2 (t) + 2 tanh (x (t)) · ẋ1 (t) · ẋ2 (t) = 0

and solutions are for . x1(t) = t, x2(t) = α, where . α is a constant. Therefore the 
geodesics are “great Minkowski circles” meridian type, i.e. Euclidean hyperbolas 

. c(t) = (R sinh t, R cosh t cosα, R cosh t sinα).

Arbitrary planes, passing through the origin which intersect the time-like 
Minkowsky sphere, produce curves which are geodesics too, the proof is related to 
a change of coordinates. They are the equivalent of the great circles of an Euclidean 
sphere. 

Example 4.14.2 The time-like sphere in a Minkowski .(+ + −) space In the case 
where the .3D space is endowed with the metric 

. ds2 = dX2 + dY 2 − dZ2,

we look at the geometry of the surface 

. X2 + Y 2 − Z2 = −R2.

The above metric is a Minkowski .(+ + −) metric and it is induced by the quadratic 
form.<u, u> attached to the Minkowski product
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. <u, v> = uxvx + uyvy − uzvz .

As in the above example, three kinds of vectors exist according to the new 
Minkowsky product. 

• Timelike vectors, where .<u, u> > 0. An example is the vector .u = (2, 1, 1), or  
the vector . u = (x2 + 1, x2 + 1, x2), x ∈ R.

• Space-like vectors, where .<u, u> < 0. An example is the vector .u = (1, 1, 3), or  
the vector . u = (x2, x2, 2x2 + 2), x ∈ R.

• Null vectors, also known as lightlike vectors, where .<u, u> = 0. An example is 
the vector .u = (1,−1,

√
2), or the vector .u = (x2, x2,

√
2x2), x ∈ R. All the 

lightlike vectors can be thought as part of the cone having the equation 

. X2 + Y 2 − Z2 = 0.

The time-like vectors have the origin (application point) and the end in the 
interior of the previous cone, while the space-like vectors have the end outside 
the previous cone. 
These properties are exactly those of the other Minkowski space presented above. 
In this Minkowski .3D space, there are also two types of spheres. 

• Space-like spheres, where the normals are time-like vectors. The sphere having 
the equation 

. X2 + Y 2 − Z2 = R2

is such a sphere. To imagine it, from the Euclidean point of view, this Minkowski 
sphere is a one-sheet hyperboloid. 

• Timelike spheres, where the normals are space-like vectors. The sphere having the 
equation 

. X2 + Y 2 − Z2 = −R2

is such a sphere. This time-like Minkowski sphere corresponds to two sheets hyper-
boloid. Therefore, in this example, we are interested to understand the geometry 
of this time-like sphere. 
We can parametrize the above time-like sphere as 

.

⎧
⎨

⎩

X = X (x1, x2) = R sinh x1 cos x2

Y = Y (x1, x2) = R sinh x1 sin x2

Z = Z(x1, x2) = R cosh x1.
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Then we have 

. 

⎧
⎨

⎩

dX = R cosh x1 cos x2dx1 − R sinh x1 sin x2dx2

dY = R cosh x1 sin x2dx1 + R sinh x1 cos x2dx2

dZ = R sinh x1dx1.

The metric of the Minkowski time-like sphere is obtained using now 

. ds2 = dX2 + dY 2 − dZ2,

therefore it is 
. ds2 = R2 (dx1)2 + R2 sinh2 x1 (dx2)2.

The non-zero Christoffel symbols are 

. T2
12 = T2

21 = coth x1, T1
22 = − cosh x1 sinh x1

and 

. R1
212 = ∂T1

22

∂x1
− ∂T1

21

∂x2
+ T1

s1T
s
22 − T1

s2T
s
21 = − sinh2 x1.

It results .R1212 = g11R1
212 = −R2 sinh2 x1, that is the Gaussian curvature of the 

Minkowski time-like sphere is . K = − 1

R2
.

In this case, the equations of geodesics are 

. 

{
ẍ1 (t) − cosh x1 sinh x1 (x (t)) · (ẋ2(t))2 = 0
ẍ2 (t) + 2 coth (x (t)) · ẋ1 (t) · ẋ2 (t) = 0

with solutions for . x1(t) = t, x2(t) = α, where . α is a constant. Therefore the 
geodesics are again “great Minkowski circles” meridian type but corresponding 
to this sphere, i.e. Euclidean hyperbolas 

. c(t) = (R sinh t cosα, R sinh t sinα, R cosh t)

contained on the surface of the two sheets Euclidean hyperboloid which represent 
the time-like Minkowski sphere. 
Again, arbitrary planes passing through the origin, which intersect the time-like 
Minkowsky sphere, produce curves which are geodesics too, the proof being 
related to a change of coordinates. 
These curves are the equivalent of the great circles of an Euclidean sphere, too.
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4.15 Transferring Metrics. Is Our Geometric Intuition 
Intrinsically Related to the Reality? 

Let us consider the .3D Euclidean ambient space endowed with the metric 

. ds2 = dX2 + dY 2 + dZ2.

The metric of the plane .Z = 0 is 

. ds2 = dX2 + dY 2

with null Gaussian curvature, .K = 0. 
To relate this result with the content of this section, let us take into account the 
translated unit sphere having the center at .(0, 0, 1), i.e. its equation being 

. X2 + Y 2 + (Z − 1)2 = 1.

The parameterization 

. 

⎧
⎨

⎩

X = sin u cos v

Y = sin u sin v

Z = 1 + cos u

leads to the metric 
. ds2 = du2 + sin2 u dv2

with constant Gaussian curvature, .K = 1. In the case of a sphere of radius .R the 
metric is 

. ds2 = R2du2 + R2 sin2 u dv2,

with constant Gaussian curvature .K = 1

R2
. 

Therefore our intuition associates the null curvature to planes and non-null con-
stant positive curvatures to spheres. 

We have the right to think at the “form of geometric objects” having the Gaussian 
curvatures as above. This intuition emerges because we see the plane and the sphere 
as parts of the Euclidean .3D space. 

More formally is thinking that the forms of objects has to be understood with 
respect to their intrinsic geometry, given by a metric, which is not necessarily induced 
by the Euclidean .3D space. 

What can we prove if a sphere is endowed with a null Gaussian curvature metric? 

Transferring the null Gaussian curvature to a sphere We start with the same 
images, the plane.Z = 0 and the unit sphere.X2 + Y 2 + (Z − 1)2 = 1 parameterized 
in the same way
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. 

⎧
⎨

⎩

X = sin u cos v

Y = sin u sin v

Z = 1 + cos u.

Let us consider a line starting from the North Pole of the sphere, .N (0, 0, 2), which 
passes through a point of the sphere, .(sin u cos v, sin u sin v, cos u), different from 
the North Pole. 

Its equation is 

. 
X

sin u cos v
= Y

sin u sin v
= Z − 2

cos u − 1
.

This line from the North Pole, called stereographic projection, intersects the plane 
.Z = 0 at 

. 

(
2 sin u cos v

1 − cos u
,
2 sin u sin v

1 − cos u
, 0

)

.

Therefore the parameterization 

. 

⎧
⎪⎨

⎪⎩

X = 2 sin u cos v

1 − cos u

Y = 2 sin u sin v

1 − cos u

with respect to the metric of the plane 

. ds2 = dX2 + dY 2

induces on the “set of points of the unit sphere” the metric 

. ds2 = 1

sin4
u

2

(
du2 + sin2 u dv2

)
.

If the initial sphere has radius . R, the final metric is 

. ds2 = 1

sin4
u

2

(
R2du2 + R2 sin2 u dv2) .

Both metrics have null constant Gaussian curvature because we are transferring 
a null constant Gaussian curvature on the points of a sphere. 
Our imagine about spheres as balls of constant positive Gaussian curvature has to be 
generalized. 

The geometry of a sphere depends only on the metric on it. In this case, the sphere 
has a metric transferred from an Euclidean plane. 

This sphere, without the North Pole . N , becomes an image of an Euclidean plane 
with its Euclidean geometry.
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The geometry of the sphere has geodesics (i.e. lines) transfered from the lines of 
the plane .Z = 0 (which are geodesics). How they look like? 
The line. d, included in.Z = 0 together the North Pole, determines a plane. This plane 
intersects the sphere after a circle . C passing through the missing point . N , the  North  
Pole. So, the point .N is missing from the “line” . C. 
We can observe that the tangent to . C at the missing point .N is parallel to . d. . C is a 
line of the sphere having exactly the same properties as an Euclidean line. 
Therefore two Euclidean parallel lines.d1 and.d2 of.Z = 0 determines two Euclidean 
parallel lines, .C ' and .C '' on the sphere. These two lines are tangent at the missing 
point . N . 
All figures drawn into the plane .Z = 0 have an image on the sphere, therefore the 
Euclidean figures we know in the plane have now “another aspect” on the sphere, 
which is now another form of the Euclidean plane. 

The old Euclidean intuition can be replaced. And at least for very intelligent 
fishes in a spherical aquarium, there is a chance to visualize the figures for solving 
Euclidean geometry problems. 

In the same way, we can generate a positive constant Gaussian curvature of a 
plane. 

Transferring the constant positive Gaussian curvature to a plane We start from 

. 

⎧
⎪⎨

⎪⎩

X = 2 sin u cos v

1 − cos u

Y = 2 sin u sin v

1 − cos u
.

It is easy to see that 

. 

⎧
⎪⎨

⎪⎩

tan
u

2
= 2√

X2 + Y 2

tan v = Y

X
,

that is .sin2 u = 16(X2 + Y 2)

(X2 + Y 2 + 4)2
and 

. 

⎧
⎪⎨

⎪⎩

du = −4√
X2 + Y 2(X2 + Y 2 + 4)

(XdX + YdY )

dv = 1

X2 + Y 2
(−YdX + XdY ).

Using 
. ds2 = du2 + sin2 u dv2

we obtain the metric of the plane in the form 

..ds2 = 16

(X2 + Y 2 + 4)2
(dX2 + dY 2).
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Its Gaussian curvature is .K = 1. 
From the intrinsic geometric point of view the plane is no longer a plane. It is 

another image of a unit sphere. 
The stereographic projection transfers the geodesics of the initial unit sphere into 

geodesics of the new “sphere”. Among them, the reader can recognize lines passing 
through the South Pole.(0, 0, 0) and a circle centred at the South Pole corresponding 
to the equator of the initial unit sphere. 

Any two distinct geodesics will intersect in exact two distinct points. Lines passing 
through the South Pole have the second intersection point “at infinity”, where the 
image of the North Pole.N can be imagined. Furthermore, we have another possible 
description of the elliptic geometry. 

The intrinsic geometric is then related only to coordinates and metric and it is not 
related to our corresponding intuition of geometric properties of structures of the 3D 
Euclidean space. 

Next example is particularly important. 

Transferring the constant positive metric of a unit sphere to a plane where 
all geodesics are straight lines Let us consider the unit sphere . X2 + Y 2 + Z2 = 1
centred at the origin. As we know, its metric is 

. ds2 = dφ2 + sin2 φdθ2.

We transfer this metric to the tangent plane at the North Pole .N (0, 0, 1), denoted 
here by .TN , in the following way. Let .(u, v, 1) be an arbitrary point of the tangent 
plane .TN . The straight line 

. 
X

u
= Y

v
= Z

1

which passes through the origin .O(0, 0, 0) intersects the unit sphere at 

. M

(
u√

1 + u2 + v2
,

v√
1 + u2 + v2

,
1√

1 + u2 + v2

)

because .X = uZ , Y = vZ and .u2Z2 + v2Z2 + Z2 = 1. 
Choosing 

. 

{
u = tan φ cos θ
v = tan φ sin θ

and replacing in the coordinates of the point. M , we obtain the usual parameterization 
of the sphere 

. (sin φ cos θ, sin φ sin θ, cosφ)

whose metric was written above, i.e. 

.ds2 = dφ2 + sin2 φdθ2.
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Having this in mind, we intend to find the metric of the tangent plane.TN in terms of 
. u and . v. 

We have .1 + u2 + v2 = 1

cos2 φ
and 

. 

⎧
⎪⎨

⎪⎩

du = 1

cos2 φ
cos θdφ − tan φ sin θdθ

dv = 1

cos2 φ
sin θdφ + tan φ cos θdθ,

therefore 

. 
1

1 + u2 + v2
(du2 + dv2) = sin2 φ + cos2 φ

cos2 φ
dφ2 + sin2 φdθ2 = tan2 φdφ2 + ds2.

Since .φ = arctan
√
u2 + v2, it results 

. dφ = udu + vdv√
u2 + v2(1 + u2 + v2)

,

which leads us to the .K = 1 metric in . TN

. ds2 = 1

1 + u2 + v2
(du2 + dv2) − (udu + vdv)2

(1 + u2 + v2)2
.

The geodesics in.TN are straight lines obtained from the intersection of the planes of 
the sphere geodesics with .TN . 

Of course, we can force to define parallel lines in.TN , and the axiom of parallelism 
is fulfilled. 

Let us observe that each straight line is in fact doubled by the antipodal points 
corresponding to . M . The order of points can be distorted. 

This is a very good example of geometry satisfying the Euclidean parallelism 
axiom without to be an Euclidean geometry. At the same time, this is an example of 
elliptic geometry of the plane where the intersection points of geodesics are seen “at 
infinity”. 

Taking into account the results of this section, i.e. Differential Geometry is only 
related to sets of coordinates and metrics and it is not related to our current intuition, 
we are going to introduce a chapter dedicated to the basic Differential Geometry 
concepts and their applications.



Chapter 5 
Basic Differential Geometry Concepts 
and Their Applications 

The theory of gravitation will not find its way into my colleagues’ 
head for longtime yet, no doubt. Only one, Levi-Civita in Padua, 
has probably grasped the main point completely, because he is 
familiar with the mathematics used. 

Albert Einstein 

Einstein’s point of view written above may seem malicious. But almost all the math-
ematics we present in this chapter is related to the work by Tullio Levi-Civita. And 
this work is standing on Gregorio Ricci-Curbastro contribution on tensor calculus. 
Let us recall: the previous chapter allowed us to step into the intrinsic geometry 
of surfaces. In fact we can step into another picture of geometry: the one where 
only the system of coordinates and the metric are necessary. Therefore the surface 
is no longer necessary, the form of the “geometric universe” we study is no longer 
important. The symbols, i.e. the multi-index quantities we studied before, will allow 
us to advance in the geometric structure induced by the metric. We do not know the 
nature of these symbols yet, but we know that, except for the Christoffel ones, they are 
invariant with respect to the changes of coordinates. The same seems to happen with 
the equations of geodesics. The covariant derivative was used with respect to vectors. 
We can think of extending it to the multi-index quantities and obtain new interesting 
geometric laws using it. It is important to see that all formulas we obtained, using the 
additional dimension of the space, can be obtained in the new context when we have 
only the system of coordinates and the metric. In this chapter, we will realize that it 
does not matter that we work with two variables or more in the coordinate system. 
From the very beginning, we shall work with coordinate systems of . n components. 
All these possible features were somehow suggested by the formulas of coordinate 
changes for the coefficients of the metric, Christoffel symbols, Riemann symbols, 
Ricci symbols, etc. 

To step forward, let us say that this is the language we need for General Relativity. 
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The physical objects described through multi-index quantities have to preserve 
their nature when changes of coordinates are applied. The substance of the Gen-
eral Relativity is related to the invariance of changes of coordinates for geometric 
objects which describe physical objects and this is related to the deep meaning of 
the Equivalence Principle formulated by Einstein generalizing the Galilei one. 

5.1 Tensors in Differential Geometry. Definition 
and Examples 

Differential Geometry deals with a set .M endowed with a coordinate system 
.(x1, x2, .., xn), . xi ∈ R. In Physics, the system of coordinates has four components 
and starts from .x0 instead .x1 to make a distinction between the first coordinate 
which represents time and the other three coordinates representing spatial coordi-
nates, often denoted by Greek letters, .α,β and . γ. We may keep this notation with 
Greek letters even if the number of coordinates is greater than . 4 or we can use the 
standard mathematical notation .(x0, x1, .., xn−1), . xi ∈ R. 

The dimension of our set.M is. n without insisting here on other possible structures 
of . M . The reader has to imagine .M as an open set of .Rn whose geometry depends 
on a metric defined on it. 

Let us observe that there is no extra dimensions to study. M . In geometric examples 
below, we choose to use the coordinate system starting with. x1, or we use directly the 
letters. x ,. y, etc. because the physical meaning will be discussed in the other chapters 
below. 

The fundamental object we start to study is the tensor. 
In simple words, a tensor is a multi-index quantity which, under a change of 

coordinates, is transforming linearly with respect to the indexes. The components of 
a tensor depend smoothly on the points of the space, in our case . M . So, tensors are 
functions having derivatives of all order everywhere in . M . 

Let us suppose we have a quantity .T i1i2...ik
l1l2...l p

(x) in a given system of coordinates 

.(x1, x2, ..., xn) and let us consider a change of coordinates 

. xi = xi (x) = xi (x1, x2, ..., xn), i ∈ {1, 2, ..., n}.

In a simpler form, it is 

. xi = xi (x j ), i, j ∈ {1, 2, ..., n}.

The inverse transformation of coordinates is .xi = xi (x j ), i, j ∈ {1, 2, ..., n}. It is  
worth noticing that the Einstein notation.aibi = En

i=1 aib
i can be used in this form or 

in its multi-index form. With these notations in mind, we can denote by.T
j1 j2... jk
q1q2...qp

(x), 

the quantity .T i1i2...ik
l1l2...l p

(x) written with respect to the new coordinates.
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Definition 5.1.1 .T i1i2...ik
l1l2...l p

is a tensor contravariant of rank. k and covariant of rank. p, 

or simply a .(k, p) tensor, if, under the previous change of coordinates .xi = xi (x j ), 

the formula of .T
j1 j2... jk
q1q2...qp

is 

. T
j1 j2... jk
q1q2...qp

(x) = T i1i2...ik
l1l2...l p

(x)
∂xl1

∂xq1
∂xl2

∂xq2
...

∂xlp

∂xqp

∂x j1

∂xi1
∂x j2

∂xi2
...

∂x jk

∂xik
.

Example 5.1.2 .ak(x) is a covariant tensor of rank. 1, or a covariant vector, if, under 
a change of coordinates .xi = xi (x j ), .ai (x) is defined as 

. ai (x) = ak(x)
∂xk

∂xi
;

Example 5.1.3 .akl(x) is a covariant tensor of rank. 2, if after a change of coordinates 
.xi = xi (x j ), .ai j (x) is defined as 

. ai j (x) = akl(x)
∂xk

∂xi
∂xl

∂x j ;

We can observe that the metric coefficients are the components of a covariant tensor 
of rank . 2. 

Example 5.1.4 .apqr (x) is a covariant tensor of rank. 3, if after a change of coordinates 
.xi = xi (x j ), .ai jk(x) is defined as 

. ai jk(x̄) = apqr (x)
∂x p

∂xi
∂xq

∂x j

∂xr

∂xk
;

Example 5.1.5 .Ti1i2...i p (x) is a covariant tensor of rank . p, if after a change of coor-
dinates .xi = xi (x j ), .T j1 j2... jp (x) is defined as 

. T j1 j2... jp (x) = Ti1i2...i p (x)
∂xi1

∂x j1

∂xi2

∂x j2
...

∂xip

∂x jp
.

Let us observe that, in the above definition of .(k, p) tensor, the contravariant 
indexes change using the inverse transformation of coordinates. The matrix of change 
of coordinates is called Jacobian matrix. The transformation is regular, if the deter-
minant of the Jacobian matrix is always finite and different from zero. Otherwise, the 
transformation is a singular one. In general, if an object transforms under any change 
of coordinates with a non-singular Jacobian determinant, the object is a tensor. In 
this case the transformation is called linear. The rank of the tensor determines the 
number of Jacobian matrixes concurring in the transformation. For example, a rank 
2 tensor transforms, under coordinate changes, by the multiplication of two Jacobian 
matrices, one for each index. The same happens with contravariant tensors.
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Example 5.1.6 .ak(x) is a contravariant tensor of rank . 1, or simply a contravariant 
vector, if at a change of coordinates .xi = xi (x j ), .ai (x) is defined as 

. ai (x) = ak(x)
∂xi

∂xk
.

It is shown below that the tangent vector to a curve is a contravariant vector. 

Observe that we have used the inverse change of coordinates formula. 

Example 5.1.7 .T i1i2...ik (x) is a contravariant tensor of rank . k, if under a change of 

coordinates .xi = xi (x j ), .T
j1 j2... jk

(x) is defined as 

. T
j1 j2... jk

(x) = T i1i2...ik (x)
∂x j1

∂xi1
∂x j2

∂xi2
...

∂x jk

∂xik
.

The geometry on .M is assigned by the following objects: 
. • The metric .ds2 = gi j (x1, x2, ..., xn)dxidx j where the matrix 

. G = (gi j ), gi j = gi j (x
1, x2, ..., xn), i, j ∈ {1, 2, ..., n},

is a rank-2 tensor called metric tensor. The name is related to the transforming 
formula proved in the previous chapter, 

. ḡkl = gi j
∂xi

∂xk
∂x j

∂xl
.

Before continuing, we will show that, apart from the direct calculation, there is 
another way to find the coefficients of the metric after a change of coordinates. This 
way will be used in some cases in the chapter devoted to General Relativity. 

Proposition 5.1.8 A change of coordinates .xr = xr (xh), r, h ∈ {0, 1, ..., n} trans-
forms the metric under the rule .Ḡ x̄ = (dMx̄)

t · Gx · (dMx̄). 

Proof Suppose that.M : Ū → U is the previous change of coordinates which trans-
forms.(x̄0, ..., x̄ n) into the coordinates.(x0, ..., xn). The first metric is described by the 
matrix.Ḡ = (ḡi j (x̄)) and the second metric is described by the matrix.G = (grs(x)). 

We first suggest why the formula should be as it is in the statement before. 
Consider a quadratic form.

En
i, j=1 αi j yi y j written in its matrix form 

. yt · α · y,

where. y is a column vector such that its transposed is.yt = (y1, ..., yn) and the matrix 
. α is .α = (αi j ), i ∈ {1, ..., n}, j ∈ {1, ..., n}. 

The change of coordinates .y = A · x leads to 

.yt · α · y = (A · x)t · α · (A · x),
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that is .(xt · At ) · α · (A · x), i.e. 

. xt · (At · α · A) · x.

So, the transformed quadratic form has its matrix . B given by the formula . B = At ·
α · A. 

In our case, using Einstein’s rule, the second metric is 

. grs(x)dxrdxs =
nE

r,s=0

grs(x)dxrdxs .

Since the change of coordinates in terms of differentials is .dx =
(

∂xi

∂ x̄ j

)

dx̄, i.e. 

.dMx̄ =
(

∂xi

∂ x̄ j

)

, the previous formula .B = At · α · A for . B = Ḡ x̄ , α = Gx, A =
dMx̄ leads to 

.Ḡ x̄ = (dMx̄)
t · Gx · (dMx̄).

[

Obviously, we have a similar formula for the inverse of our initial coordinates 
transformation. 

Corollary 5.1.9 A change of coordinates . xr = xr (xh), r ∈ {0, 1, ..., n}, h ∈
{0, 1, ..., n} transforms the metric according to the rule . Gx = (dMx̄(x))

t · Ḡx(x) ·
(dMx̄(x)). 

Going back to the coefficients of a metric, we notice the following properties: 

1. .gi j (x) is a smooth function of . x on . M ; 
2. at each point . x , the metric tensor is symmetric, i.e. .gi j (x) = g ji (x); 
3. at each point . x , it exists the  inverse .G−1 = (gi j ); using the Einstein notation, the 

inverse is described by the relations: .gi j g jk = δik , g jsgsk = δkj . 

Imagine the attached bilinear form with coefficients .gi j , denoted . S(u, v) =
gi j uiv j . 

This one can have the property .S(u, u) > 0, ∀u /= 0, u = (u1, ..., un). 
In this case, the metric is called a Riemannian metric. 
Otherwise, if there are vectors such that .S(u, u) > 0 and other vectors such that 

.S(v, v) < 0, it is called a non-Riemannian metric; some textbooks use the equivalent 
terminology: semi-Riemannian or pseudo-Riemannian. 

The signature of a metric is defined as the signature of the corresponding quadratic 
form. For the Minkowski metric, the signature can be.(+ − −−) or.(− + ++). Both  
signatures can be used. It is important to mention that if we decide to use a signature, 
the sign which decides the time-like vectors has to be given by the first sign in the
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signature, i.e. if the signature is.(+ − −−), the time-like vectors satisfy.S(u, u) > 0. 
If the signature is .(− + ++) the time-like vectors satisfy .S(u, u) < 0. 

Some examples: the Euclidean metric .ds2 = (dx1)2 + (dx2)2 + (dx3)2 is a 
Riemannian metric. Its signature is .(+ + +) while the Minkowski metric . ds2 =
(dx1)2 − (dx2)2 − (dx3)2 is a non-Riemannian metric with .(+ − −) signature. 
In a previous example, we saw a Minkowski space endowed with the metric 
.ds2 = (dx1)2 + (dx2)2 − (dx3)2 whose signature is .(+ + −). In four dimensions 
such Minkowski metrics, i.e. with signatures .(+ − −−) and.(+ + −−), are used to 
describe de Sitter and Anti-de Sitter space-times, which are examples of universes 
without matter. In three dimensions, we already saw the time-like Minkowski spheres 
of these spaces. They can be used as models for Non-Euclidean geometries as we 
will see later in this book. 
. •At each point. x , it exists a  tangent space of. M , denoted by.TxM , whose coordinates 
are .(ẋ1, ẋ2, ..., ẋ n). Consider a curve .x(t) in . M , and the vector 

. ẋ(t) = dx

dt
= (ẋ1(t), ẋ2(t), ..., ẋ n(t)).

This vector belongs to the tangent space and, under a change of coordinates . xi =
xi (x̄ j ), we have  

. ẋ i (t) = dxi

dt
= dxi

dx j

dx j

dt
= ˙̄x j (t)

dxi

dx j ,

that is 

. ˙̄x j (t) = ẋ i (t)
dx j

dxi
.

Therefore, a tangent vector to a curve is a contravariant vector. 
Considering vectors, we prefer to write.V = (V 1, V 2, ..., V n) in the simpler form 

.V = V k , or only .V k as we did before. That is, a vector can be seen through its 
components. 
. • The Christoffel symbols of first kind are: 

. Ti j,k := 1

2

(
∂gik
∂x j

+ ∂g jk

∂xi
− ∂gi j

∂xk

)

.

A change of coordinates transforms this formula into 

. 
∂2xk

∂xi∂x j = −Tk
rs

∂xr

∂xi
∂xs

∂x j + T
r
i j

∂xk

∂xr
.

The above formula shows that the Christoffel symbols of first kind are not tensors. 
. • The Christoffel symbols of second kind: 

.Ti
jk := gisT jk,s = 1

2
gis

(
∂g js

∂xk
+ ∂gks

∂x j
− ∂g jk

∂xs

)

.
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are also not tensors as can be easily shown. 
. • The mixed Riemannian curvature tensor is: 

. Rh
i jk := ∂Th

ik

∂x j
− ∂Th

i j

∂xk
+ Th

mjT
m
ik − Th

mkT
m
i j

The name is provided by the formula presented in the previous chapter when we 
discussed how the Riemann symbol of second kind is changing under the action of 
a transformation of coordinates, 

. R
a
bgd

∂xi

∂xa
= Ri

jkl

∂x j

∂xb
∂xk

∂xg
∂xl

∂xd
,

which can be written as 

. R
a
bgd = Ri

jkl

∂x j

∂xb
∂xk

∂xg
∂xl

∂xd
∂xa

∂xi
.

Therefore the mixed Riemman curvature tensor is a .(1, 3) type tensor. 
The same for the next two symbols. 

. • The covariant Riemannian curvature tensor is: .Ri jkl := gis Rs
jkl . Its transformation 

formula is 

. Rebgd = Rr jkl
∂xr

∂xe
∂x j

∂xb
∂xk

∂xg
∂xl

∂xd
,

providing a .(0, 4) type tensor. 
. • The Ricci tensor: .Ri j = Rs

is j which is obtained from the curvature tensor .Rs
imj by 

contracting the indexes .s = m. Its transformation formula is 

. Rbg = R jl
∂x j

∂xb
∂xl

∂xg
,

providing a .(0, 2) type tensor. 
. • The geodesics, i.e. curves .c(t) = (x1(t), x2(t), ..., xn(t)) which satisfy the equa-
tions 

. 
d2xr

dt2
+ Tr

pq

dx p

dt

dxq

dt
= 0, r ∈ {1, 2, ..., n}.

In the previous chapter, we proved that a change of coordinates . xr =
xr (xh), r, h ∈ {1, 2, ..., n} transforms the metric coefficients under the rule 

. gkl = gi j
∂xi

∂ x̄ k
∂x j

∂ x̄ l
.

This is a .(0, 2) type tensor.
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Therefore we may summarize: the Christoffel symbols are not tensors, while 
.gi j , Ri

jkl , Ri jkl , Ri j are tensors and their form is preserved under any change of 
coordinates. Below, we will prove that geodesics equations are tensors, too. 

5.2 Properties of Riemann and Ricci Tensors in the New 
Geometric Context 

In the case of surfaces, the Riemann symbols were obtained by considering the partial 
derivatives of Gauss formulas. In this way Gauss equations 

. Ri jkl = hik · h jl − hil · h jk

are highlighted. 
Gauss equations were used to prove the symmetric properties 

. 

Ri jkl = −Ri jlk;
Ri jkl = −R jikl;
Ri jkl = Rkli j ;
Ri jkl + Rikl j + Ril jk = 0.

Can we prove such formulas in this abstract framework which does not contain 
an extra dimension? The next theorem presents a formula for the covariant Riemann 
tensor. 

Theorem 5.2.1 

. Ri jkl = 1

2

(
∂2gil

∂x j∂xk
+ ∂2g jk

∂xi∂xl
− ∂2g jl

∂xi∂xk
− ∂2gik

∂x j∂xl

)

+ gmp(T
m
il T

p
jk − Tm

ikT
p
jl).

Proof The first step of the proof is related to the chain of equalities 

. Ri jkl = gis R
s
jkl = gis

(
∂Ts

jl

∂xk
− ∂Ts

jk

∂xl
+ Ts

mkT
m
jl − Ts

mlT
m
jk

)

=

. = gis

(
∂Ts

jl

∂xk
− ∂Ts

jk

∂xl

)

+ gis
(
Ts
mkT

m
jl − Ts

mlT
m
jk

) =

. = gis

(
∂gsa

∂xk
T jl,a − ∂gsa

∂xl
T jk,a

)

+
(

∂T jl,i

∂xk
− ∂T jk,i

∂xl

)

+ gis(T
s
mkT

m
jl − Ts

mlT
m
jk) =

. = gis

(
∂gsa

∂xk
T jl,a − ∂gsa

∂xl
T jk,a

)

+ 1

2

(
∂2gli

∂xk∂x j
+ ∂2g jk

∂xl∂xi
− ∂2g jl

∂xk∂xi
− ∂2gki

∂xl∂x j

)

+

. + gis(T
s
mkT

m
jl − Ts

mlT
m
jk)
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In the last equality, we replace 

. 
∂gsa

∂xk
:= −Ts

kr g
ra − Ta

kr g
sr

and 

. 
∂gsa

∂xl
:= −Ts

lr g
ra − Ta

lr g
sr .

It results 

. gis

(
∂gsa

∂xk
T jl,a − ∂gsa

∂xl
T jk,a

)

= gis [T jl,a(−Ts
kr g

ra − Ta
kr g

sr ) + T jk,a(T
s
lr g

ra + Ta
lr g

sr )].

Continuing, 

. gisT jl,a(−Ts
kr g

ra − Ta
kr g

sr ) = −gisT
r
jlT

s
kr − Ta

kiT jl,a =

. = −Tkr,iT
r
jl − Ta

kiT jl,a = −Tm
kiT jl,m − Tm

jlTkm,i .

Analogously 

. gisT jk,a(T
s
lr g

ra + Ta
lr g

sr ) = Tm
li T jk,m + Tm

jkTlm,i ,

i.e. 

. gis

(
∂gsa

∂xk
T jl,a − ∂gsa

∂xl
T jk,a

)

= −Tm
kiT jl,m − Tm

jlTkm,i + Tm
li T jk,m + Tm

jkTlm,i .

The next step is to compute 

. gis(T
s
mkT

m
jl − Ts

mlT
m
jk) − Tm

kiT jl,m − Tm
jlTkm,i + Tm

li T jk,m + Tm
jkTlm,i

which means 

. �������gisg
saTmk,aT

m
jl −�������gisg

saTml,aT
m
jk − Tm

kiT jl,m −����Tm
jlTkm,i + Tm

li T jk,m +����Tm
jkTlm,i ,

that is 
. gmp(T

m
li T

p
jk − Tm

kiT
p
jl).

The formula we obtain, after arranging the indexes, is 

.Ri jkl = 1

2

(
∂2gil

∂x j∂xk
+ ∂2g jk

∂xi∂xl
− ∂2g jl

∂xi∂xk
− ∂2gik

∂x j∂xl

)

+ gmp

(

Tm
il T

p
jk − Tm

ikT
p
jl

)

.

[
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It is now an exercise for the readers to quickly derive the following formulas 

. 

Ri jkl = −Ri jlk;
Ri jkl = −R jikl;
Ri jkl = Rkli j ;
Ri jkl + Rikl j + Ril jk = 0.

in their intrinsic form. 
The last identity, .Ri jkl + Rikl j + Ril jk = 0 is known as Bianchi’s first formula 

and will be used to obtain the symmetry of the Ricci tensor. Let us recall that, in the 
case of surfaces when there are only two variables .x1 and. x2, the symmetry of Ricci 
symbols was obtained using Einstein theorem which states .Ri j = K · gi j . 
Theorem 5.2.2 The Ricci tensor is symmetric, that is . Ri j = R ji .

Proof We multiply the Bianchi first identity .Ri jkl + Rikl j + Ril jk = 0 by .g jl . It  
results 

. gl j R jilk + g jl Rikl j − gl j R jkli = 0,

that is 
. Rl

ilk + g jl Rikl j − Rl
kli = 0,

or simply 
. Rik + g jl Rikl j − Rki = 0.

If we show that .g jl Rikl j = 0, we complete the proof. This is a consequence of 

.g jl Rikl j = gl j Rik jl = −gl j Rik jl .

[

5.3 Covariant Derivative for Vectors. Geodesics and Their 
Properties 

In the abstract context described in the first section of this chapter, let 

. x(t) = (x1(t), x2(t), ..., xn(t))

be a curve in the space of coordinates.(x1, x2, ..., xn). We can define the contravariant 
vector .V k(t) := V k(x(t)). We call this .V k(t) a contravariant vector along the curve 
.x(t). 

Having in mind the covariant derivative in the case of surfaces, we consider the 
vector with the components
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. 
dV k

dt
+ Tk

i j V
j dx

i

dt
.

Let us show that this is a contravariant vector (or a .(1, 0) tensor) attached to this 
curve, i.e. the following formula holds 

. 
dV k

dt
+ Tk

i j V
j =

(
dV

r

dt
+ T

r
pqV

q

)
∂xk

∂xr
.

We start from the contravariant vector .V having the components .V r (x). Being a 
contravariant vector, under a change of coordinates.xi = xi (x j ), i, j ∈ {1, 2, , ..., n}, 
its components change according to the rule 

. V
r
(x̄) = V j (x)

∂xr

∂x j
.

The partial derivative with respect to .xi leads to 

. 
∂V

r

∂x p

∂x p

∂xi
= ∂V j

∂xi
∂xr

∂x j
+ V j ∂2xr

∂xi∂x j
.

Multiplying by .
∂xk

∂xr
, it results 

. 
∂V

r

∂x p

∂x p

∂xi
∂xk

∂xr
= ∂V j

∂xi
∂xr

∂x j

∂xk

∂xr
+ V j ∂2xr

∂xi∂x j

∂xk

∂xr
= ∂V k

∂xi
+ V j ∂2xr

∂xi∂x j

∂xk

∂xr
,

which can be written in the form 

. 
∂V k

∂xi
= ∂V

r

∂x p

∂x p

∂xi
∂xk

∂xr
− V j ∂2xr

∂xi∂x j

∂xk

∂xr
.

From the Christoffel symbols of second kind transformation formula 

. Tk
i j = T

r
pq

∂x p

∂xi
∂xq

∂x j

∂xk

∂xr
+ ∂2x p

∂xi∂x j

∂xk

∂x p ,

we deduce 

. V jTk
i j = V jT

r
pq

∂x p

∂xi
∂xq

∂x j

∂xk

∂xr
+ V j ∂2x p

∂xi∂x j

∂xk

∂x p = V
q
T
r
pq

∂x p

∂xi
∂xk

∂xr
+ V j ∂2x p

∂xi∂x j

∂xk

∂x p .

If we add the two relations obtained above, it results 

.
∂V k

∂xi
+ V jTk

i j =
(

∂V
r

∂x p + V
q
T
r
pq

)
∂x p

∂xi
∂xk

∂xr
.
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Considering the coordinates . x and. x̄ as functions of . t , we can write the last equality 
in the form 

. 
∂V k

∂xi
dxi

dt
+ V jTk

i j

dxi

dt
=

(
∂V

r

∂x p + V
q
T
r
pq

)
∂x p

∂xi
∂xk

∂xr
dxi

dt
,

or equivalently 

. 
dV k

dt
+ Tk

i j V
j =

(
dV

r

dt
+ T

r
pqV

q

)
∂xk

∂xr
.

. [
Now, let us understand the implications of the previous computations. 
The formula 

. 
∂V k

∂xi
+ V jTk

i j =
(

∂V
r

∂x p + V
q
T
r
pq

)
∂x p

∂xi
∂xk

∂xr

shows that the expression .
∂V k

∂xi
+ V jTk

i j is a .(1, 1) tensor type, while the formula 

. 
dV k

dt
+ Tk

i j V
j =

(
dV

r

dt
+ T

r
pqV

q

)
∂xk

∂xr

highlights a .(1, 0) tensor type. We can consider the following two definitions sug-
gested by the two tensor types seen above. 

Definition 5.3.1 For the contravariant vector .V k(x), the covariant derivative is the 
.(1, 1) tensor with the components 

. 
∂V k

∂xi
+ V jTk

i j .

We denote the covariant derivative of the contravariant vector .V (x) = V k(x) as 

. V k
;i := ∂V k

∂xi
+ V jTk

i j

Other possible notations for .V k
;i are .

∇V k

∂xi
or .

∇V

∂xi
. 

Definition 5.3.2 For the contravariant vector .V k(t), the covariant derivative is the 
contravariant vector 

.
dV k

dt
+ Tk

i j V
j dx

i

dt
.
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We denote this in the form 

. V k
; := dV k

dt
+ Tk

i j V
j dx

i

dt

Other possible notations for .V k
; are .

∇V k

dt
or .

∇V

dt
. 

Let us specifically write the connection: 

. 
∇V k

dt
= V k

; = V k
;i
dxi

dt
= ∇V k

∂xi
dxi

dt

which comes from 

. 
∇V k

dt
= dV k

dt
+ Tk

i j V
j dx

i

dt
=

(
∂V k

∂xi
+ V jTk

i j

)
dxi

dt
= ∇V k

∂xi
dxi

dt
.

We can follow the approach used in the case of surfaces. 

Definition 5.3.3 The contravariant vector .V k(t) is parallel transported along the 
curve .x(t) if 

. 
dV k

dt
+ Tk

i j V
j dx

i

dt
= 0, k ∈ {1, 2, ..., n}.

Definition 5.3.4 The curve .x = x(t) = (x1(t), x2(t), ..., xn(t)) is a geodesic if its 
contravariant tangent vector .ẋ(t) is parallel transported along the curve. 

Proposition 5.3.5 A curve .x(t) = (x1(t), x2(t), ..., xn(t)) whose components sat-
isfy the equations 

. 
d2xk

dt2
+ Tk

i j

dxi

dt

dx j

dt
= 0, k ∈ {1, 2, ..., n}

is a geodesic of . M. 

Proof We replace .V k by .
dxk

dt
in the formula 

. 
dV k

dt
+ Tk

i j V
j dx

i

dt
= 0,

and we obtain 

.
d2xk

dt2
+ Tk

i j

dxi

dt

dx j

dt
= 0.

[
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The following statement shows that a change of coordinates transforms a geodesic 
into a geodesic. 

Theorem 5.3.6 The change of coordinates . xr = xr (xh), r ∈ {1, 2, ..., n}, h ∈
{1, 2, ..., n} transforms the equations 

. 
d2xh

dt2
+ T

h
i j

dxi

dt

dx j

dt
= 0

for the curve .c(t) = (x1(t), x2(t), ..., xn(t)) into the equations 

. 
d2xr

dt2
+ Tr

pq

dx p

dt

dxq

dt
= 0

for the curve .c(t) = (x1(t), x2(t), ..., xn(t)). 

Proof We use the result of the previous proposition for the contravariant vector . ċ: 

. 
d2xh

dt2
+ T

h
i j

dxi

dt

dx j

dt
=

(
d2xr

dt2
+ Tr

pq

dx p

dt

dxq

dt

)
∂xh

∂xr
.

If 

. 
d2xh

dt2
+ T

h
i j

dxi

dt

dx j

dt
= 0

then 

. 
d2xr

dt2
+ Tr

pq

dx p

dt

dxq

dt
= 0,

which ends the proof. [

Another important fact about geodesics is 

Theorem 5.3.7 If .c(t) is a geodesic, then .||ċ(t)|| is a constant. 
Proof Recall first that the length of a vector in a given metric . ds2 = gi jdxidx j

obviously depends on the type of the vector. Therefore, in our case, the formula is 

. ||ċ(t)||2 :=−+ gi j (x
0(t), x1(t), ..., xn(t))

dxi (t)

dt

dx j (t)

dt
.

We continue using the .+ sign, in the other case the computations are the same. 
Having in mind that 

. 
d2xi

dt2
= −Ti

lm

dxl

dt

dxm

dt

we start to compute .
d

dt

(||ċ(t)||2). We obtain
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. 
d

dt

(||ċ(t)||2) = ∂gi j
∂xk

dxk

dt

dxi

dt

dx j

dt
+ gi j

d2xi

dt2
dx j

dt
+ gi j

dxi

dt

d2x j

dt2
=

. = ∂gi j
∂xk

dxk

dt

dxi

dt

dx j

dt
+ 2gi j

d2xi

dt2
dx j

dt
=

. = ∂gi j
∂xk

dxk

dt

dxi

dt

dx j

dt
− 2gi jT

i
lm

dxl

dt

dxm

dt

dx j

dt
= ∂gi j

∂xk
dxk

dt

dxi

dt

dx j

dt
− 2Tlm, j

dxl

dt

dxm

dt

dx j

dt
=

. = ∂gi j
∂xk

dxk

dt

dxi

dt

dx j

dt
−

(
∂gl j
∂xm

+ ∂gmj

∂xl
− ∂glm

∂xl

)
dxl

dt

dxm

dt

dx j

dt
= 0.

This expression contains four terms. After we relabel the summation indexes in the 

last  three terms, we have in fact  the term .
∂gi j
∂xk

dxk

dt

dxi

dt

dx j

dt
written four times, two 

with the sign plus and two with minus. It results.
d

dt

(||ċ(t)||2) = 0, i.e..||ċ(t)||2 = b, 

where . b is a constant. [

The concept of covariant derivative of tensors allows us to obtain the same result 
in the next section. The fact that, along a geodesic, the length of the tangent vector at 

the geodesic is a constant one, allows us to replace the parameter . t with .s = t√|b| . 
The geodesic .c = c(s) has the property . ||ċ(s)|| = 1.

Definition 5.3.8 A curve which fulfils such a property, i.e. .||ċ(s)|| = 1, is called a 
canonically parameterized curve. 

These last two theorems will be used later to understand how geodesics of the 
disk are transformed by inversion in geodesic of the Poincaré half-plane. And 
more, how geodesics of the disk are transformed by inversion in geodesics outside 
the disk. All these facts will allow us to better understand the connections among 
Non-Euclidean Geometry basic models. 

5.4 Covariant Derivative of Tensors and Applications 

The previous definitions of covariant derivative for contravariant vectors allow us to 
think on how a covariant derivative for .(k, p) type tensors looks like. 

Definition 5.4.1 The covariant derivative of a .(k, p) tensor .T i1i2..ik
l1l2..l p

(x) is the 
.(k, p + 1) tensor defined by 

. T i1i2..ik
l1l2..l p; j (x) =

. =
T i1i2..ik
l1l2..l p

∂x j
+ Tmi2..ik

l1l2..l p
T
i1
mj + · · · + T i1i2..ik−1m

l1l2...l p
T
ik
m j − T i1i2...ik

ml2..l p
Tm
l1 j − · · · − T i1i2..ik

l1l2..l p−1m
Tm
lp j .
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If we look at some particular cases we better understand the way in which the 
previous formula can be derived. 

• The covariant derivative of a covariant vector is the .(0, 2) covariant tensor 

. Vi; j = ∂Vi

∂x j
− VkT

k
i j .

• The covariant derivative of a covariant .(0, 2) tensor is the .(0, 3) covariant tensor 

. ai j;k = ∂ai j
∂xk

− asjT
s
ik − asiT

s
jk .

• The covariant derivative of a contravariant .(2, 0) tensor is the .(2, 1) tensor 

. bi j;k = ∂bi j

∂xk
+ bl jTi

lk + bilT j
kl .

• The covariant derivative of a .(1, 1) tensor is the .(1, 2) tensor . a j
i;k =

∂a j
i

∂xk
+ ami T

j
mk − a j

mTm
ik . 

• For two tensors .T I
L and .SJ

P , where .I, L , J, P are multi-index quantities, it makes 
sense to define the tensor .T I

L S
J
P and the product rule of covariant derivative, that 

is 
. (T I

L S
J
P);m = (T I

L );mSJ
P + T I

L (SJ
P);m .

For the metric tensor .gi j we can prove. 

Theorem 5.4.2 . gi j;k = 0

Proof We have 

.gi j;k = ∂gi j
∂xk

− gsjT
s
ik − gsiT

s
jk = ∂gi j

∂xk
− gsj g

slTik,l − gsi g
slT jk,l

= ∂gi j
∂xk

− Tik, j − T jk,i = 0

[

A very important consequence appears. 
Consider two contravariant vectors .V k and .W j and their “dot product” via the 

metric tensor, .
<
V k,W j

> = gkj V kW j .
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Suppose that .V k and .W j are parallel transported along a curve .x(t), that is 

. 
dV k

dt
+ Tk

i j V
j dx

i

dt
= 0,

and 

. 
dW j

dt
+ T

j
ilW

l dx
i

dt
= 0,

or simply, .
∇V k

dt
= V k

; (t) = 0 and .
∇W j

dt
= W j

; (t) = 0. The covariant derivative of 

the metric tensor .gi j vanishes, 

. gi j;k = ∂gi j
∂xk

− gsjT
s
ik − gsiT

s
jk = 0

and this can be written as 

. 
∇gi j
dt

= gi j;(t) =
(

∂gi j
∂xk

− gs jT
s
ik − gsiT

s
jk

)
dxk

dt
= 0.

The derivative with respect to. t of the “dot product” is, in fact, the covariant derivative 
of .gkj V kW j . Applying the product rule for the covariant derivative, we obtain 

. 
(
gkj V

kW j
)
;i = gkj;i V kW j + gkj V

k
;i W

j + gkj V
kW j

;i .

Therefore 

. 

)
gk j V

kW j
)

;i
dxi

dt
= gk j;i

dxi

dt
V kW j + gk j V

k
;i
dxi

dt
W j + gk j V

kW j
;i
dxi

dt
,

which can be written in the form 

. 
∇ (

gk j V kW j
)

dt
= ∇gi j

dt
V kW j + gk j

∇V k

dt
W j + gk j V

k ∇W j

dt
.

All covariant derivatives in the right member of the equality are . 0. Therefore the 
derivative of the “dot product” is . 0. It results: 

Theorem 5.4.3 (i) The length of a vector is conserved if the vector is parallel trans-
ported along a curve. 
(ii) The length of the tangent vector to a geodesic is a constant. 

In each geometric space where the meaning of 

.

<
V k ,W j

>

|V k | |W j | = gk j V kW j

/
|gk j V kV j |

/
|gk jWkW j |
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is related to an angle via a trigonometric function. f (α) the following theorem holds: 

Theorem 5.4.4 (i) The angle between two parallel transported vectors along a curve 
is conserved. 
(ii) The angle between a parallel transported vector along a geodesic and the tangent 
vector to a geodesic is the same at each point of the geodesic. 

For the inverse .gi j of the metric tensor .gi j we have 

Exercise 5.4.5 .gi j;k = 0. 

Hint: Consider the covariant derivative of the expression .gisgs j = δ
j
i . It results  

. δ
j
i;k = ∂δ

j
i

∂xk
+ δmi T

j
mk − δ j

mTm
ik = 0

and 
. 0 = (gisg

s j );k = gis;kgs j + gisg
s j
;k = gisg

s j
;k ,

i.e. 
. gmi gisg

s j
;k = gmj

;k = 0.

5.5 A Step Towards General Relativity: The Bianchi 
Second Formula 

Next Lemma is necessary if we intend to offer a shorter proof to Bianchi’s second 
formula. 

Lemma 5.5.1 The following equality holds: 

. 

∂Rs
i jk

∂xl
+ ∂Rs

ikl

∂x j
+ ∂Rs

il j

∂xk
+ Ra

i jkT
s
al + Ra

iklT
s
a j + Ra

il jT
s
ak

= Rs
mjkT

m
il + Rs

mklT
m
i j + Rs

ml jT
m
ik .

Proof The proof is simple. We have to compute 

. 

∂Rs
i jk

∂xl
+ ∂Rs

ikl

∂x j
+ ∂Rs

il j

∂xk

and to add 
. Ra

i jkT
s
al + Ra

iklT
s
a j + Ra

il jT
s
ak .

Arranging in an adequate form, we obtain the desired result stated in the Lemma. 

We start from.

∂Rs
i jk

∂xl
+ ∂Rs

ikl

∂x j
+ ∂Rs

il j

∂xk
which means
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. 
∂

∂xl

(
∂Ts

ik

∂x j
− ∂Ts

i j

∂xk
+ Ts

a jT
a
ik − Ts

akT
a
i j

)

+ ∂

∂x j

(
∂Ts

il

∂xk
− ∂Ts

ik

∂xl
+ Ts

akT
a
il − Ts

alT
a
ik

)

+

+ ∂

∂xk

(
∂Ts

i j

∂xl
− ∂Ts

il

∂x j
+ Ts

alT
a
i j − Ts

a jT
a
il

)

,

that is 

. 
∂

∂xl

)
Ts
a jT

a
ik − Ts

akT
a
i j

)
+ ∂

∂x j

(
Ts
akT

a
il − Ts

alT
a
ik

) + ∂

∂xk

)
Ts
alT

a
i j − Ts

a jT
a
il

)
.

If we continue in computing and add the missing part 

. Ra
i jkT

s
al + Ra

iklT
s
a j + Ra

il jT
s
ak

we obtain 

. 
∂Ts

a j

∂xl
Ta
ik + ∂Ta

ik

∂xl
Ts
a j − ∂Ts

ak

∂xl
Ta
i j − ∂Ta

i j

∂xl
Ts
ak + ∂Ts

ak

∂x j
Ta
ik + ∂Ta

il

∂x j
Ts
ak − ∂Ts

al

∂x j
Ta
i j − ∂Ta

ik

∂x j
Ts
al +

. + ∂Ts
al

∂xk
Ta
i j + ∂Ta

i j

∂xk
Ts
al − ∂Ts

a j

∂xk
Ta
il − ∂Ta

il

∂xk
Ts
a j + Ra

i jkT
s
al + Ra

iklT
s
a j + Ra

il jT
s
ak

which can be successively arranged as 

. Ts
al

(

Ra
i jk − ∂Ta

ik

∂x j
+ ∂Ta

i j

∂xk

)

+ Ts
a j

(

Ra
ikl − ∂Ta

il

∂xk
+ ∂Ta

ik

∂xl

)

+ Ts
ak

(

Ra
il j − ∂Ta

i j

∂xl
+ ∂Ta

il

∂x j

)

+

. + Ta
ik

(
∂Ts

a j

∂xl
− ∂Ts

al

∂x j

)

+ Ta
i j

(
∂Ts

al

∂xk
− ∂Ts

ak

∂xl

)

+ Ta
il

(
∂Ts

ak

∂x j
− ∂Ts

a j

∂xk

)

=

. = Ts
al

)
Ta
mjT

m
ik − Ta

mkT
m
i j

)
+ Ts

a j

(
Ta
mkT

m
il − Ta

mlT
m
ik

) + Ts
ak

)
Ta
mlT

m
i j − Ta

mjT
m
il

)
+

. + Tm
ik

(
∂Ts

mj

∂xl
− ∂Ts

ml

∂x j

)

+ Tm
i j

(
∂Ts

ml

∂xk
− ∂Ts

mk

∂xl

)

+ Tm
il

(
∂Ts

mk

∂x j
− ∂Ts

mj

∂xk

)

=

. Tm
ik

(
∂Ts

mj

∂xl
− ∂Ts

ml

∂x j
+ Ts

alT
a
mj − Ts

a jT
a
ml

)

+ Tm
i j

(
∂Ts

ml

∂xk
− ∂Ts

mk

∂xl
+ Ts

akT
a
ml − Ts

alT
a
mk

)

. + Tm
il

(
∂Ts

mk

∂x j
− ∂Ts

mj

∂xk
+ Ts

a jT
a
mk − Ts

akT
a
mj

)

= Rs
ml jT

m
ik + Rs

mklT
m
i j + Rs

mjkT
m
il .

[
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Theorem 5.5.2 (Bianchi’s second formula) 

. Rs
i jk;l + Rs

ikl; j + Rs
il j;k = 0.

Proof Consider the covariant derivative of the .(1, 3) type Riemann tensor .Rs
i jk . 

According to the definition formula we have: 

. Rs
i jk;l = ∂Rs

i jk

∂xl
+ Ra

i jkT
s
al − Rs

mjkT
m
il − Rs

imkT
m
jl − Rs

i jmTm
kl .

In the same way, we obtain 

. Rs
ikl; j = ∂Rs

ikl

∂x j
+ Ra

iklT
s
a j − Rs

mklT
m
i j − Rs

imlT
m
jk − Rs

ikmTm
l j

and 

. Rs
il j;k = ∂Rs

il j

∂xk
+ Ra

il jT
s
ak − Rs

ml jT
m
ik − Rs

imjT
m
lk − Rs

ilmTm
kj .

We add the three equalities and use the obvious equality .Rs
i jk = −Rs

ik j . 
It results 

. Rs
i jk;l + Rs

ikl; j + Rs
il j;k =

= ∂Rs
i jk

∂xl
+ ∂Rs

ikl

∂x j
+ ∂Rs

il j

∂xk
+ Ra

i jkT
s
al + Ra

iklT
s
a j + Ra

il jT
s
ak

− Rs
mjkT

m
il − Rs

mklT
m
i j − Rs

ml jT
m
ik .

The previous Lemma asserts that the right member is . 0 and this ends the 
proof. [



Chapter 6 
Differential Geometry at Work: Two 
Ways of Thinking the Gravity. 
The Einstein Field Equations 
from a Geometric Point of View 

Lectures which really teach will never be popular; 
lectures which are popular will never really teach. 

Michael Faraday 

The gravitational field in General Relativity is described by the Einstein field equa-
tions. They look like 

. Ri j − 1

2
R · gi j = kTi j

and they act in a four-dimensional coordinate space . (x0, x1, x2, x3).
We first observe that tensors involved in the left-hand side of the equality come 

from our previous Differential Geometry considerations. In the case of surfaces, i.e. 
.n = 2, the left-hand side gives the so-called Einstein theorem, 

. Ri j − 1

2
R · gi j = 0.

In the right-hand side,. k is a constant and.Ti j is the so-called stress–energy tensor 
which satisfies the condition 

. Ti j;a = 0 ,

which is a conservation law. 
But if we can somehow “prove” that .Ti j;a = 0, we have to prove that 

. 

(
Ri j − 1

2
R · gi j

)
;a

= 0.

The null covariant derivative for both tensors is followed by their proportionality 
through the constant . k. 
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However, since these tensors have to be well chosen, an analogy can be derived 
from the Newtonian Mechanics. The next chapter will be devoted to the Newtonian 
Mechanics and all the details of the short story we are going to tell here can be seen 
there. The same about the General Relativity aspects presented here: they will be 
discussed later in this book. Now we want to highlight how we can move from the 
Foundations of Geometry, through Differential Geometry, to General Relativity. This 
fact is almost amazing. 

6.1 From Newtonian Gravity to the Geometry 
of Space-Time 

General relativity is a theory describing gravity. Gravity was first described as a 
force in the framework of Newtonian Mechanics, so our short story passes through 
the definition offered by Isaac Newton. If the masses .M1 and .m are concentrated at 
the points .(x1, y1, z1), .(x, y, z), respectively, the gravitational force induced by the 
body of mass .M1 which acts on the body of mass .m, M1 > m has the intensity 

. F = G
mM1

r21
,

where 
. r1 :=

/
(x − x1)2 + (y − y1)2 + (z − z1)2

is the distance between the two bodies and .G = 6.67 · 10−11 is the gravitational 
constant measured in the well-known SI units for length, mass, and time, i.e. . (m)3 ·
(kg)−1(s)−2. 

The gravitational force vector has the form 

. 
→
F = −GmM1

r21

→
r 1

r1
= −GmM1

r21
·
(
x − x1
r1

,
y − y1
r1

,
z − z1
r1

)
.

If we denote the unit vector in the brackets by .− →
u , the previous formula becomes 

. 
→
F = m

GM1

r21

→
u .

Later, in this book, the reader will find a chapter devoted to basic Newtonian Mechan-
ics principles and consequences. According to the Second Principle of Newtonian 
Mechanics, the above formula can be written in the form 

.
→
F = m

→
A1,
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where 

. 
→
A1 = GM1

r21

→
u

is the gravitational acceleration or the gravitational field induced by the body of 
mass .M1. 

The last formula can be seen in coordinates as 

. 
→
A1 (x, y, z) = −GM1

r21
·
(
x − x1
r1

,
y − y1
r1

,
z − z1
r1

)
.

Let us define the gravitational potential of the field .
→
A1 to be the function 

. Φ1(x, y, z) = −GM1

r1
.

This definition makes sense at all points of the Euclidean three-dimensional space 
except .(x1, y1, z1) where the gravitational source is located. 

The following mathematical facts can be proven in the case of a Universe in which 
only a mass exists: 

. 1. ∇Φ1(x, y, z) = GM1

r21
·
(
x − x1
r1

,
y − y1
r1

,
z − z1
r1

)
= − →

A1 (x, y, z),

where .∇ :=
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
is the gradient operator of simply, the gradient. 

. 2. ∇2Φ1(x, y, z) = ∂2Φ1

∂x2
+ ∂2Φ1

∂y2
+ ∂2Φ1

∂z2
= 0,

where 

. V2 := ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

is the Laplace operator or simply, the Laplacian. 
If we have more masses, denoted .Mk , located at the points . (xk, yk, zk), k ∈

{1, 2, ..., N }, we can define the gravitational field of these masses as 

.
→
A (x, y, z) :=

NE
k=1

→
Ak (x, y, z) = −

NE
k=1

GMk

r2k
·
(
x − xk
rk

,
y − yk
rk

,
z − zk
rk

)
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and the gravitational potential of these masses as 

. Φ(x, y, z) :=
NE

k=1

Φk(x, y, z) = −
NE

k=1

GMk

rk
.

Of course, .rk := /
(x − xk)2 + (y − yk)2 + (z − zk)2 and we kept .(x, y, z) as the 

coordinate of the point in which it is located the mass . m, now attracted by all the 
masses considered. Therefore, if the Universe contains only the masses . Mk, k ∈
{1, 2, ..., N }, it is governed by the previous acceleration field .→A and the considered 
gravitational potential . Φ. This Universe obeys the rules: 

. 1'. ∇Φ = − →
A,

. 2'. ∇2Φ = 0.

If the masses are in a medium described by its density function . ρ = ρ(x, y, z),
(x, y, z) /= (xk, yk, zk), k ∈ {1, 2, ..., N }, the last formula becomes 

. 3'. ∇2Φ = 4πGρ,

and these are not simple. A complete proof can be seen in [ 34, 46]. 
Let us consider again a Universe "with only one mass .M1. This time we are not 

interested to add more masses to the system, therefore this mass attached to the point 
.(x1, y1, z1) will be denoted by . M . All the formulas written in the case of the index 
. 1 are now without index, i.e. 

. 
→
F = m

→
A,

where 

. 
→
A= GM

r2
→
u ;

. r =
/

(x − x1)2 + (y − y1)2 + (z − z1)2,

and for the gravitational potential is 

. Φ(x, y, z) = −GM

r
.

Since 

.
→
A= −∇Φ,
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the trajectories of free-falling particles, everyone of mass . 1, are described by the 
equations 

. 
d2xk

dt2
(t) = − ∂Φ

∂xk
(x̄(t)) , k ∈ {1, 2, 3}.

If the starting point of the system is the curve.c(q) = (x(q), y(q), z(q)), the equations 
before are in fact 

. 
d2xk

dt2
(t, q) = − ∂Φ

∂xk
(x̄(t, q)) , k ∈ {1, 2, 3},

where 
. x̄(t, q) = (x1(t, q), x2(t, q), x3(t, q))

is a point of the trajectory of the system of particles. We see the difference between 
the two parameters. The parameter. t is an evolution parameter, we can name it “time”. 
The second one, . q, indicates only the initial point of the curve .c(q) from which the 
trajectory starts. If we consider a nearby initial point, say .c(q + /q), the previous 
equations become 

. 
d2xk

dt2
(t, q + /q) = − ∂Φ

∂xk
(x̄(t, q + /q)), k ∈ {1, 2, 3}.

Now, 

. lim
/q→0

d2xk

dt2
(t, q + /q) − d2xk

dt2
(t, q)

/q
= − lim

/q→0

∂Φ

∂xk
(x̄(t, q + /q)) − ∂Φ

∂xk
(x̄(t, q))

/q
,

that is, 

. 
d2

dt2
∂xk

∂q
(t, q) = − ∂2Φ

∂q∂xk
(x̄(t, q)) = −

3E
i=1

∂2Φ

∂xi∂xk

∂xi

∂q
(x̄(t, q))

for each .k ∈ {1, 2, 3} and the last equality is obtained from the chain rule. 
We highlighted the tidal vector 

. 
∂ x̄

∂q
=

(
∂ x̄1

∂q
,
∂ x̄2

∂q
,
∂ x̄3

∂q

)

which satisfies the so-called tidal acceleration equations 

.
d2

dt2
∂ x̄

∂q
= −d2Φx̄

∂ x̄

∂q
,
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where the Hessian matrix.d2Φx̄ =
(

∂2Φ(x̄)

∂xi∂xk

)
i,k

encapsulates in its trace the vacuum 

field equation 
. ∇2Φ = 0.

The tidal vector measures the variation of nearby trajectories and the above result is 
a very geometric one, because it is related to the trajectories of a free-falling system 
of particles in a gravitational field generated by a mass. 

The reader has to notice: all above results are obtained in the Euclidean space, 
therefore the Christoffel symbols .Ti

jk are all null. Why are we telling this fact? 

6.2 The Einstein Field Equations 
and the Energy–Momentum Tensor 

Let us think how the equations of the tidal acceleration looks like in a four-
dimensional space .(x0, x1, x2, x3) endowed with the metric .ds2 = gi j dxidx j . 

In such a space, the Christoffel symbols .Ti
jk are not necessarily null. In the 

same way as in the Euclidean case, we consider that each coordinate depends on 
two parameters denoted .(τ , q), therefore each point of the space-time has the form 
. (x0(τ , q), x1(τ , q), x2(τ , q), x3(τ , q)).

Differential geometry highlighted the curves determined by the null covariant 
derivative condition 

. 
∇
dτ

dxk

dτ
= d2xk

dτ 2
+ Tk

i j

dxi

dτ

dx j

dτ
= 0,

i.e. the geodesics of the space-time. Therefore the equations described by 

. 
d2xk

dt2
(t, q) = − ∂Φ

∂xk
(x̄(t, q)) , k ∈ {1, 2, 3}

in the Euclidean space are now replaced by the geodesic equations 

. 
d2xk

dτ 2
+ Tk

i j

dxi

dτ

dx j

dτ
= 0, k ∈ {0, 1, 2, 3}.

We can consider that each geodesic starts from the point of a curve 

. a(0, q) = (x0(0, q), x1(0, q), x2(0, q), x3(0, q))

in the direction 

.V (0, q) =
(
dx0

dτ
(0, q),

dx1

dτ
(0, q),

dx2

dτ
(0, q),

dx3

dτ
(0, q)

)
.



6.2 The Einstein Field Equations and the Energy–Momentum Tensor 147

As in the previous case, the vector 

. 
∂x

∂q
:=

(
∂x0

∂q
,
∂x1

∂q
,
∂x2

∂q
,
∂x3

∂q

)

is called a geometric tidal vector and measures the rate of separation of the geodesics. 

We start from the covariant derivative .
∇
dτ

of the tidal vector . 
∂xh

∂q
:

. 
∇
dτ

∂xh

∂q
= d

dτ

(
∂xh

∂q

)
+ Th

i j

dxi

dτ

∂x j

∂q
.

We apply again the covariant derivative formula, 

. 
∇2

dτ 2

∂xh

∂q
= ∇

dτ

( ∇
dτ

∂xh

∂q

)
= d

dτ

( ∇
dτ

∂xh

∂q

)
+ Th

mk

( ∇
dτ

∂xm

∂q

)
dxk

dτ
=

. = d

dτ

|
d

dτ

(
∂xh

∂q

)
+ Th

i j

dxi

dτ

∂x j

∂q

|
+ Th

mk

|
d

dτ

(
∂xm

∂q

)
+ Tm

i j

dxi

dτ

∂x j

∂q

|
dxk

dτ
=

. = ∂

∂q

d2xh

dτ 2
+ ∂Th

i j

∂xk
dxk

dτ

dxi

dτ

∂x j

∂q
+

. + Th
i j

d2xi

dτ 2

∂x j

∂q
+ Th

i j

dxi

dτ

∂2x j

∂τ∂q
+ Th

mk

∂2xm

∂τ∂q

dxk

dτ
+ Th

mkT
m
i j

dxi

dτ

∂x j

∂q

dxk

dτ
.

Now, we replace.
d2xk

dτ 2
by.−Tk

i j

dxi

dτ

dx j

dτ
and, in some terms, we replace the dummy 

indexes in a convenient way. It results 

. 
∇2

dτ2
∂xh

∂q
= ∂

∂q

(
−Th

ik
dxi

dτ

dxk

dτ

)
+ ∂Th

i j

∂xk
dxi

dτ

∂x j

∂q

dxk

dτ
+ Th

i j

(
−Tm

ik
dxi

dτ

dxk

dτ

)
∂x j

∂q
+

. + Th
i j

dxi

dτ

∂2x j

∂τ∂q
+ Th

mk

∂2xm

∂τ∂q

dxk

dτ
+ Th

mkT
m
i j

dxi

dτ

∂x j

∂q

dxk

dτ
=

. = −∂Th
ik

∂x j

∂x j

∂q

dxi

dτ

dxk

dτ
−������

2Th
ik

∂2xi

∂τ∂q

dxk

dτ
+ ∂Th

i j

∂xk
dxi

dτ

∂x j

∂q

dxk

dτ
− Th

i jT
m
ik
dxi

dτ

dxk

dτ

∂x j

∂q
+

. +
������
2Th

i j
dxi

dτ

∂2x j

∂τ∂q
+ Th

mkT
m
i j
dxi

dτ

∂x j

∂q

dxk

dτ
,
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that is 

. 
∇2

dτ 2

∂xh

∂q
=

(
∂Th

i j

∂xk
− ∂Th

ik

∂x j
+ Th

mkT
m
i j − Th

mjT
m
ik

)
dxi

dτ

∂x j

∂q

dxk

dτ
.

Therefore, we have obtained the tidal acceleration equations 

. 
∇2

dτ 2

∂xh

∂q
= Rh

ik j

dxi

dτ

∂x j

∂q

dxk

dτ
= −Rh

i jk

dxi

dτ

∂x j

∂q

dxk

dτ
.

The last line can be written in the more suggestive form 

. 
∇2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q
,

where 

. Kh
j = Rh

i jk

dxi

dτ

dxk

dτ
.

If we have tides, mathematically they can be treated in the Newtonian way. In fact, 
the field equation 

. V2Φ = 0

is hidden in the trace of the Hessian matrix .d2Φ involved in the tidal equations 

. 
d2

dt2
∂ x̄

∂q
= −d2Φx̄

∂ x̄

∂q
.

Geometric tides can be treated in the new geometric way expressed above. The 
null trace of the Hessian matrix is now 

. Kh
h = Rh

ihk

dxi

dτ

dxk

dτ
= 0,

that is, the field equations are expressed via the Ricci tensor in the form 

. Rik = 0.

The major step made by Einstein was replacing the three-dimensional flat 
Euclidean space with a four-dimensional space-time endowed with a metric 

. ds2 = gi j dx
idx j .

He was the first one who realized that the laws of Nature have to be expressed by 
equations involving tensors, which are covariant at all changes of coordinates.
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For Einstein, the metric coefficients .gi j play the role of gravitational potential . Φ. 

The Christoffel symbols .Ti
jk play the role of gravitational field . 

→
A. In fact the changes 

he did can be summarized in the following table containing the two ways of thinking 
at the gravity 

. Newton Einstein

. Φ ←→ gi j

. 
→
A ←→ Ti

jk

. V2Φ = 0 ←→ Ri j = 0

. V2Φ = 4πGρ ←→ Ri j − 1

2
R gi j = k Ti j .

The change of paradigm is related to the equations of tidal acceleration, the 
geometric tidal acceleration, and the conclusion drawn above. 

In order to achieve the last equality, we need to construct the correct framework. 
We follow the line sketched in [ 34]. 

Let us start from a symmetric contravariant tensor .(T i j ), expressed as a . 4 ×
4 matrix and consider a four-dimensional space of coordinates . (x0, x1, x2, x3)
endowed with a metric 

. ds2 = gi j dx
idx j , i, j ∈ {0, 1, 2, 3, }

such that the parallel transport depends on the Christoffel symbols .Ti
jk not all zero. 

The tensor .(T i j ) looks like 

. (T i j ) =

⎛
⎜⎜⎝
T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

⎞
⎟⎟⎠

Because of symmetry, the first line .T 1i = (T 10, T 11, T 12, T 13) coincides with the 
first column .T i1 = (T 01, T 11, T 21, T 31), and can be seen as the representation of a 
contravariant 4-vector denoted by.T 1, the same for the other rows and corresponding 
columns. 

Before discussing about the physical aspects involved in the components of the 
energy–momentum tensor, let us assert that we can analyse the tensor like we analyse 
a vector .F used to represent the flow of an incompressible fluid. 

We can suppose the existence of a flow associated to the above tensor. For each line 
of the given tensor we have the corresponding force.T k described above. We can also 
think about a.4-parallelepiped centred at a given point.(x0, x1, x2, x3)with sides par-
allel to the axes of coordinates and having the small dimensions./x0,/x1,/x2,/x3.
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Small enough to let us suppose the vector .T k having the same components at each 
point of considered face. 

The total outflow determined by each.T k through the parallel faces, corresponding 
to .xi direction, is analysed in the following way. 

If .i = 1, we have the differences 

. T k1
(
x0, x1 + /x1

2
, x2, x3

)
/x0/x2/x3 − T k1

(
x0, x1 − /x1

2
, x2, x3

)
/x0/x2/x3,

where . k ∈ {0, 1, 2, 3}.
We have to consider the differences with respect to the parallel transport of 

the given vectors.

(
0, T k1

(
x0, x1 − /x1

2
, x2, x3

)
, 0, 0

)
, k ∈ {0, 1, 2, 3} along the 

vector .(0,/x1, 0, 0), therefore we have 

. 

|
T k1

(
x0, x1 + /x1

2
, x2, x3

)
− T k1

(
x0, x1 − /x1

2
, x2, x3

)
+ T1

k1T
k1/x1

|
/x0/x2/x3

with the approximation 

. 

|
∂T k1

∂x1
/x1 + T1

k1T
k1/x1

|
/x0/x2/x3, k ∈ {0, 1, 2, 3},

that is, 

. T k1
;1 /x0/x1/x2/x3, k ∈ {0, 1, 2, 3}.

It results in a total outflow for the 4-parallelepiped equal to 

. T kl
;l /x0/x1/x2/x3.

What is happening in the interior of this small 4-parallelepiped? The quantity of 
matter and energy which enters in the interior of the given 4-parallelepiped leaves 
completely the interior. Therefore, at each moment of time, the quantity of matter 
inside can be considered a constant. The energy–momentum tensor is conserved, 
and since it is conserved as ./xk → 0, the limiting net flow approaches to . 0, that is, 
.T kl

;l = 0. 
Let us underline the fact that this is a sort of axiom. We suppose that the matter 

does not disappear and does not appear from nowhere inside the parallelepiped, 
and we are talking here about the matter and energy seen as an incompressible fluid 
described by the tensor. This “axiom” is in fact the key of the fact that these equations 
never match in a quantum mechanics context. 

We know how to lower indexes using the metric tensor: .T l
i = gikT kl . Since the 

covariant derivative of the metric tensor is . 0, it is  

.T l
i;l = gik;l T kl + gikT

kl
;l = 0 .
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Lowering again the indexes, it is .Tji = g jl T l
i . In the  same  way  

. Tji;l = g jl;l T l
i + g jl T

l
i;l = 0.

We have proved an important property of the energy–momentum tensor, i.e. 

. Ti j;l = 0 ,

which is a conservation law. 
Therefore, to obtain the previous equality, we have to prove that the so-called 

Einstein tensor .Ei j := Ri j − 1

2
R · gi j has the property 

. Ei j;a = 0.

This is the aim of the next theorem. Before proving it, the following comment is 
necessary. .Ei j;a = 0 holds also if dimensions are different from four. 

Theorem 6.2.1 (Covariant derivative of Einstein tensor) If .gi j is the .(0, 2) metric 
tensor, .gi j its inverse contravariant .(2, 0) tensor, .Ri j is the Ricci tensor, . R := Rs

s
is the Ricci curvature scalar derived from the .(1, 1) mixed tensor .Ri

j = gis Rs j , it is  
possible to define the Einstein tensor 

. Ei j := Ri j − 1

2
R · gi j .

Then 
. Ei j;a = 0.

Proof First of all, let us observe that . R can be written as .gi j Ri j . Indeed, 

. gi j Ri j = gi j R ji = Ri
i = R.

We have to prove that the covariant derivative of the Einstein tensor is null, i.e. 

. 

(
Ri j − 1

2
R · gi j

)
;a

= 0.

We start from the Bianchi identity 

.Rs
i jk;l + Rs

ikl; j + Rs
il j;k = 0 ,
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and contract the indexes . j = s. It results 

. Rs
isk;l + Rs

ikl;s + Rs
ils;k = 0

and we use .Rik;l = Rs
isk;l , Rs

ils;k = −Rs
isl;k = −Ril;k . We obtain 

. Rik;l + Rs
ikl;s − Ril;k = 0.

Using the fact that the covariant derivative of .gi j is null, we can write 

. (gia Rik);l + (gia Rs
ikl);s − (gia Ril);k = 0,

i.e. 
. Ra

k;l + (gia Rs
ikl);s − Ra

l;k = 0.

We contract .a = l and we have 

. Ra
k;a + (gia Rs

ika);s − Ra
a;k = 0.

Now, .gia Rs
ika = giagsb Rbika = giagsb Ribak = gsbgia Ribak = gsb Ra

bak = Rs
k and we 

replace in the previous equality. 
It results .Ra

k;a + Rs
k;s − R;k = 0, that is .2Ra

k;a − R;k = 0, which can be written 
in the form 

. 

(
Ra
k − 1

2
δak R

)
;a

= 0.

Because the covariant derivative of the metric tensor is null, then we have 

. 

(
gma R

a
k − 1

2
δak gma R

)
;a

= 0,

that is, 

.

(
Rmk − 1

2
Rgmk

)
;a

= 0.

[

A comment is necessary now. Let us consider the mixed matter–energy tensor 
.T i

j = g jkT ki . The formula .T := T i
i highlights a scalar derived from the matter– 

energy tensor in the same way as the Ricci scalar is derived from the Ricci tensor 
.Ri j . . T is known as the Laue scalar and allows us to write the Einstein field equations 
in the equivalent form: 

.Ri j = k ·
(
Ti j − 1

2
T · gi j

)
.
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This form is useful when we are considering a Universe described by the condition 
.Ti j = 0. For such Universes .T = 0, too. Therefore their equations are 

. Ri j = 0.

If we are looking at the Einstein field equations 

. Ri j − 1

2
R · gi j = kTi j ,

in the left-hand side, we see the geometry of the space expressed in terms of tensors; 
in the right-hand side, there is a tensor describing mass and energy. The equality 
shows that the mass and energy together create the geometric structure of the space-
time. Therefore, the geodesics of the space-time, i.e. the curves followed by “material 
points” under the action of the geometry itself, depends on the geometry created by 
the matter–energy tensor .Ti j . 

John Archibald Wheeler gave the most impressive description of the facts 
explained above: 

Space-time tells matter how to move; matter tells space-time how to curve. 

6.3 Including the Cosmological Constant 

In order to achieve a static universe, Einstein proposed a modified left member of 
his equations of the form 

. Ri j − 1

2
R · gi j + / · gi j ,

where the constant ./ is the so-called cosmological constant . Its role was thought 
by Einstein to be a counterbalance at the attractive action of gravity. Later on, when 
Hubble discovered the expansion of the Universe, Einstein cancelled the term . /gi j
considering it a blunder. Recently, as we will discuss below, this term has been 
resumed in order to describe the accelerated expansion of the Universe. 

Since .gi j;l = 0, it results 

. 

(
Ri j − 1

2
R · gi j + / · gi j

)
;l

= 0.

Therefore the new Einstein field equations with cosmological constant become 

.Ri j − 1

2
R · gi j + / · gi j = k · Ti j .
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The Einstein field equations with cosmological constant are 

. Ri j − / · gi j = k

(
Ti j − 1

2
T · gi j

)
,

where. T is the Laue scalar. Again, in the case when.Ti j = 0, since.T = 0, the Einstein 
equations of such spaces reduce to 

. Ri j − / · gi j = 0.

The cosmological constant has a geometric nature in these cases.



Chapter 7 
Differential Geometry at Work: 
Euclidean, Non-Euclidean, and Elliptic 
Geometric Models from Geometry 
and Physics 

Measure what can be measured, and make 
measurable what cannot be measured. 

Galileo Galilei 

We are ready to present the two big pictures of non-Euclidean geometry models. The 
first one is the consequence of Euclidean .3D structure. The second one is revealed 
by Physics. 

7.1 Euclidean, Non-Euclidean, and Elliptic Geometric 
Models from Geometry 

We have already seen models of Euclidean geometry. In the case of plane.z = 0, the  
metric 

. ds2 = dx2 + dy2 + dz2

induces directly the metric 
. ds2 = dx2 + dy2

with null Gaussian curvature and straight lines as geodesics. The parallel transport 
is exactly the one which makes the lines to have the same slope in a system of 
coordinate .(x, y). Therefore, for a line . d and a point . A not belonging to . d, there is 
only a parallel line through .A to . d. This one is the geodesic through .A having the 
slope . m. 

Having in mind this model of Euclidean geometry, which may be called the 
classical one, we can transfer it on a sphere using the stereographic projection. We 
did it in Sect. .1.15 when we obtained the metric with null Gaussian curvature 
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. ds2 = 1

sin4
u

2

(
R2du2 + R2 sin2 u dv2

)
.

We have explained there how the geodesics look like and how the parallel lines look 
like. We can transfer the Euclidean metric in the same way on a different surface. 
In all these models, through a point .A /∈ d, there is only a parallel line to the given 
straight line . d. We have to consider that straight line means geodesic. In the same 
way, all geodesics of the basic Euclidean model are transferred into geodesics in 
models derived after appropriate changes of coordinates. 

Similarly, we studied how the metric 

. ds2 = dx2 + dy2 + dz2

is transferred on a sphere. The metric we obtained, 

. ds2 = R2du2 + R2 sin2 u dv2,

has constant positive Gaussian curvature,.K = 1

R2
. Geodesics of this metric are great 

circles; therefore, two geodesics intersect in two antipodal points. Denoting the two 
geodesics by .c1 and .c2 and 

. {A, B} := c1 ∩ c2,

.A, B and the centre of the sphere are collinear points. Therefore, in this elliptic 
geometry of the sphere, there are no parallel lines. 

So, until now we saw only geometries in which there exists only one parallel line 
or no parallel lines. Not entering in technical details, let us call non-secant lines two 
lines which do not intersect. 

Are there geometries in which through .A /∈ d we can construct more than one 
non-secant line to . d? Again, do not forget the meaning of line, i.e. a geodesic. The 
answer is yes, but we need some steps to describe it. 

Step 1. Example 1.3.3 was related to the existence of a surface obtained by the 
rotation of a tractrix around an axis. The 3D metric 

. ds2 = dx2 + dy2 + dz2

acts on the parameterization of the pseudosphere producing the metric 

. ds2 = cot2 u du2 + sin2 u dv2,

where .u ∈ (0,
π

2
), v ∈ (0, 2π). 

Step 2. In Example .4.10.4, we determined its Gaussian constant curvature, .K =
−1.
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Step 3. In Example.4.13.2, we have transferred the metric of the pseudosphere to 
the “half-plane” 

. H 2 := {(x, y)|x, y ∈ R, y > 0}

using the transformation of coordinates 

. 

⎧
⎨

⎩
u = u(x, y) = arcsin

1

y
v = v(x, y) = x, x ∈ R, y > 0.

The metric of half-plane becomes 

. ds2 = dx2 + dy2

y2

and its Gaussian curvature is .K = −1. 
The half-plane.H 2 endowed with the previous metric is called Poincaré half-plane 

and it is involved in the description of a non-Euclidean geometry model, in which, 
through .A /∈ d pass more than two non-secant lines to given line . d. We show this 
below. 

Finally, it remains something obvious: using the inverse transform of coordinates, 
the pseudosphere will be the surface involved in the description of non-Euclidean 
geometry. 

So, let us study the geodesics of the metric 

. ds2 = dx2 + dy2

y2
.

We denote .x := x1, y := x2. The Christoffel symbols are 

. T11,1 = T22,1 = T12,2 = T21,2 = 0, T12,1 = T21,1 = T22,2 = − 1

y3
, T11,2 = 1

y3
,

. T1
11 = T1

22 = T2
12 = T2

21 = 0, T1
12 = T1

21 = T2
22 = −1

y
, T2

11 = 1

y
.

The equations of the geodesics are 

.

⎧
⎨

⎩

ẍ − 2
y ẋ ẏ = 0

ÿ + 1
y ẋ

2 − 1
y ẏ

2 = 0.



158 7 Differential Geometry at Work: Euclidean, Non-Euclidean …

Fig. 7.1 Parallel lines through. A to the line. d in Poincaré half-plane. H2

Let us observe that 

. x = x(s) = a + R tanh s; y = y(s) = R

cosh s
,

where . a is a constant. It is a solution of the previous equations. 
This first solution satisfies the equation 

. (x − a)2 + y2 = R2.

This is, from the Euclidean point of view, the equation of a semicircle in the Poincaré 
half-plane. So, we draw the semicircle, but this is a geodesic, a straight line in the 
Poincaré half-plane. Another simple computation shows that . x = x(s) = a; y =
y(s) = es satisfy the equations of geodesics. 

From the Euclidean point of view, this is the parameterization of straight line 
perpendicular to.y = 0. In fact, this geodesic is a straight line in Poincaré half-plane, 
too (Fig. 7.1). Now, it is only an exercise for the reader to write the equations of the 
geodesics of the pseudosphere. 

Consider two semicircles, .d1 and .d2 which intersect at a point denoted . A. Let  
us consider a bigger semicircle, . d, such that .d1 and .d2 are drawn in its interior. 
Therefore, we are considering two geodesic lines through .A non-secant to . d. The  
Poincaré half-plane becomes a model of non-Euclidean geometry. Transferring this 
figure on pseudosphere, we give rise there to a model of non-Euclidean geometry. It 
is a simple exercise for the reader imagining a figure with a line. d and two non-secant 
lines through . A, one having the equation .x = a. 

Some remarks are now necessary. In the two-dimensional Euclidean plane.E2, let  
us consider the unit circle with the centre at .M(0,−1). Denote by .A(0,−2) a point 
which belongs to the circle, .B(X, Y ) in the interior of the circle and .B '(x, y) in the 
superior half-plane such that .A, B, B ' are collinear and .AB · AB ' = 4. Using  the  
previous two conditions, we can compute the coordinates. x and. y with respect to the 
coordinates .(X,Y ): 

. x(X, Y ) = 4X

X2 + (Y + 2)2
,

.y(X,Y ) = −2(X2 + (Y + 1)2 − 1)

X2 + (Y + 2)2
.
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Then 

. dx2 + dy2 = 16

(X2 + (Y + 2)2)2
(dX2 + dY 2)

and 

. 
1

y2
= (X2 + (Y + 2)2)2

4(X2 + (Y + 1)2 − 1)2
,

therefore the metric of the half-plane 

. ds2 = 1

y2
(dx2 + dy2)

is transferred inside the unit circle centred at .M as 

. ds2 = 4

(1 − X2 − (Y + 1)2)2
(dX2 + dY 2).

If we translate the disc such as .M(0,−1) becomes.O(0, 0), the metric of the disc is 

. ds2 = 4

(1 − X2 − Y 2)2
(dX2 + dY 2).

The unit disc endowed with this metric is called the Poincaré disc. The Gaussian 
curvature of the metric is .K = −1 and the geodesics of the disc are obtained trans-
ferring the geodesics of the half-plane inside the disc through the transformation of 
coordinates described above. Since the transformation is a geometric inversion (see 
[ 34]), we obtain two types of geodesics. Diameters of the Poincaré disc and arcs of 
circles inside the disc which are orthogonal to the circumference of the unit disc. 
Transforming a configuration like in Figure .2.1, we can see a non-Euclidean model 
of the geometry inside the Poincaré disc. 

7.2 Euclidean, Non-Euclidean, and Elliptic Geometric 
Models from Physics 

Let us prove that the metric 

. ds2 = −dT 2 + dX2 + dY 2 + dZ2

is related to Physics. 
This is the Minkowski.(− + ++) metric of Special Relativity in geometric coor-

dinates, that is when the speed of light is calibrated at .c = 1. It comes from the 
quadratic form.<U,U > attached to the Minkowski product



160 7 Differential Geometry at Work: Euclidean, Non-Euclidean …

. <U, V > = −UT VT +UXVX +UY VY +UZVZ .

In order to explain quickly why this metric is related to Special Relativity, let us 
consider only two coordinates . T and .X and a Lorentz transformation described as 

. T (t, x) = t + x v√
1 − v2

; X (t, x) = t v + x√
1 − v2

.

As we know, this Lorentz transformation describes how the coordinates .(t, x) of 
a frame which moves at constant speed . v are seen in a frame at rest in coordinates 
.(T, X). The Lorentz transformation implies the invariance of the quantity. −T 2 + X2

because 

. − T 2 + X2 = −
(

t + x v√
1 − v2

)2

+
(

t v + x√
1 − v2

)2

= −t2 + x2.

Since this quantity depends on the Minkowski product 

. <U,U > = −(UT )2 + (UX )2

it results that Lorentz transformations preserve the square of the Minkowski norm 
of vectors. The metric highlights this geometric aspect. In fact, if .v = tanhα, the  
Lorentz transformation is a hyperbolic rotation of coordinates. All these facts will 
be completely explained and understood later in the chapter dedicated to Special 
Relativity. 

Returning to geometric models, let us fix the time. At .T = T0, the space–time 
metric becomes 

. ds2 = dX2 + dY 2 + dZ2

which is an Euclidean one. 
This metric allows to obtain both the elliptic and the Euclidean geometries as we 

have in the first part of this section. 
When we will discuss non-Euclidean models, a slice through a Minkowski sphere 

is involved. The sphere is related to the condition 

. − T 2 + X2 + Y 2 + Z2 = −1

and the slice will be described by the condition .Z = 0. 
Let us first understand why the unit space-like sphere 

. − T 2 + X2 + Y 2 + Z2 = −1

is important.
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The parameterization we choose is 

. 

⎧
⎪⎪⎨

⎪⎪⎩

T = cosh t
X = sinh t cos x1 cos x2
Y = sinh t cos x1 sin x2
Z = sinh t sin x1.

The space–time metric 

. ds2 = −dT 2 + dX2 + dY 2 + dZ2

endows the space-like sphere with the metric 

. ds2 = dt2 + sinh2 t dx21 + sinh2 t cos2 x1dx
2
2 .

After some computations, we can show that 

. Ri j + 2gi j = 0 and R = −6,

i.e. 

. Ri j − 1

2
R gi j + / gi j = 0

if the cosmological constant is ./ = −1. 
Therefore, the Einstein field equations are satisfied for ./ = −1 and .Ti j = 0. 
We face a remarkable physics structure, a space-like unit sphere which is in fact 

a .3D Universe without matter called Anti-de Sitter space–time. 
Let us now consider the .3D slice when .Z = 0. This slice has the Minkowski 

.(− + +) metric 
. ds2 = −dT 2 + dX2 + dY 2.

The slice contains the surface 

. − T 2 + X2 + Y 2 = −1,

which is still a Minkowski space-like sphere. From the Euclidean point of view, this 
space-like sphere is a two-sheeted hyperboloid .H located in the interior of the light 
cone 

. − T 2 + X2 + Y 2 = 0.

The parameterization of the space-like sphere is obtained for .x1 = 0 in the parame-
terization of the Anti-de Sitter space–time, i.e.



162 7 Differential Geometry at Work: Euclidean, Non-Euclidean …

. H :
⎧
⎨

⎩

T = cosh t
X = sinh t cos x2
Y = sinh t sin x2.

The space–time metric 
. ds2 = −dT 2 + dX2 + dY 2

endows the unit space-like sphere .H with the metric 

. ds2 = dt2 + sinh2 t dx22 .

This metric can be obtained directly from the Anti-de Sitter space–time metric for 
.x1 = 0 (Fig. 7.2). 

The Christoffel symbols are 

. T0
11 = − sinh t cosh t, T1

01 = T1
10 = coth t,

Fig. 7.2 Poincaré metric of the disc induced by a Minkowski sphere
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therefore.R0
101 = − sinh2 t; R0101 = g00R0

101 = − sinh2 t . The Gaussian curvature is 
.K = −1. 

Next, we show that this Minkowski unit sphere is a model of non-Euclidean 
geometry. 

Consider a point .B with coordinates .(T, X,Y ), T > 0 which belongs to . H. We  
can consider the variables in the .3D slice to be  .(τ , u, v). Let  .S(−1, 0, 0) be the 
“South Pole” of .H and denote by . A the intersection of .SB with the plane .τ = 0. 

The equation of the line .SB is 

. 
τ − T

τ + 1
= u − X

u
= v − Y

v
,

therefore the intersection with .τ = 0 leads to 

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = X

1 + T

v = Y

1 + T
.

Using the parameterization of . H, the point . A has the .(u, v) coordinates 

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = sinh t cos x2
1 + cosh t

v = sinh t sin x2
1 + cosh t

.

It is easy to observe that 
. u2 + v2 < 1,

that is the point. A belongs to a disc.D in the plane.τ = 0. Moreover, these coordinates 
can be written as 

. 

⎧
⎪⎪⎨

⎪⎪⎩

u(t, x2) = tanh
t

2
cos x2

v(t, x2) = tanh
t

2
sin x2.

The inverse transform is 

.

⎧
⎪⎨

⎪⎩

t (u, v) = 2 tanh−1(u2 + v2)

x2(u, v) = arctan
v

u
.
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After we compute the differentials .dt and .dx2, it is relatively easy to replace into 

. ds2 = dt2 + sinh2 t dx22 .

The metric in .D becomes 

. ds2 = 4

(1 − u2 − v2)2
(du2 + dv2)

which is the metric of the Poincaré disc. Since this Poicaré disc highlights a non-
Euclidean geometry, the same non-Euclidean geometry exists on the unit Minkowski 
sphere . H. The geodesics are the images through . S of the geodesics of .D. In fact, 
the transformation we choose is a stereographic projection corresponding to the unit 
Minkowski sphere. 

In the same way, let us obtain the Cayley–Klein metric of the non-Euclidean 
geometry. Consider the unit Minkowsky space-like sphere . −T 2 + X2 + Y 2 = −1
centred at the origin. As we know, its metric is (Fig. 7.3) 

Fig. 7.3 The metric of Cayley–Klein non-Euclidian geometry
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. ds2 = dt2 + sinh2 tdx22 .

We transfer this metric to the tangent plane at the North Pole .N (1, 0, 0), denoted 
here by .TN , in the following way. Let .B(T, X,Y ) be a point of . H. The straight line 
determined by this point . B and the origin.O(0, 0, 0) intersects.TN at .(1, u, v). From  

. 
T

1
= X

u
= Y

v

we find the coordinates of . B in the form 

. M

(
1√

1 − u2 − v2
,

u√
1 − u2 − v2

,
v√

1 − u2 − v2

)

because .X = uT, Y = vT and .−T 1 + u2T 2 + v2T 2 = −1. 
Choosing 

. 

{
u = tanh t cos x2
v = tanh t sin x2

and replacing in the coordinates of the point. M , we obtain the usual parameterization 
of the Minkowski space-like sphere 

. (cosh t, sinh t cos x2, sinh sin x2)

whose metric was written above, i.e. 

. ds2 = dt2 + sinh2 tdx22 .

We intend to find the metric of the tangent plane .TN in terms of . u and . v. 

We have.1 − u2 − v2 = 1

cosh2 t
and.u2 + v2 = tanh2 t < 1; therefore, the metric 

will be only in the interior of a unit disc .D of .TN . From  

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du = 1

cosh2 t
cos x2dt − tanh t sin x2dx2

dv = 1

cosh2 t
sin x2dt + tanh t cos x2dx2,

it results 

. 
1

1 − u2 − v2
(du2 + dv2) = cosh2 t − sinh2 t

cosh2 t
dt2 + sinh2 tdx22 = − tanh2 tdt2 + ds2.

Since
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. udu + vdv = sinh t

cosh3 t
dt,

we obtain 

. 
(udu + vdv)2

(1 − u2 − v2)2
= tanh2 tdt2,

which leads us to the .K = −1 metric in . D

. ds2 = 1

1 − u2 − v2
(du2 + dv2) + (udu + vdv)2

(1 − u2 − v2)2
.

The geodesics in .D are straight lines obtained from the intersection of the planes of 
the geodesics of the Minkowski space-like sphere with. D. The Cayley–Klein model 
of non-Euclidean geometry appears in . D. 

7.3 The Physical Interpretation 

At the internet address https://archive.org/details/lascienceetlhypo00poin, it can be 
found the Poincaré famous book.Science et Hypothèse [161]. Pages 83–87 offer a 
beautiful physical example of the Universe related to the non-Euclidean geometry in 
the disc model. The example is given in the interior of a sphere. Let us consider the 
interior of a sphere .S(O, 1) where .O is the centre and . 1 is the radius. This interior 
is the Universe for some intelligent inhabitants. 

According to Poincaré, who conceived this particular Universe, both the Euclidean 
geometry and a temperature law are acting in the interior of the sphere. 

The temperature is maximum at the centre and decreases to . 0 on the surface of 
the sphere in which this Universe is included. The law of temperature variation is: 
if .M is a point such that .OM = r then, the temperature at .M is proportional to 
.1 − r2. Poincaré allows the temperature to contract or to dilate the length of the 
creatures according to their position after a rule he describes as the length of a ruler 
is proportional to its absolute temperature. So, a ruler having a side in.O and the other 
side in . M , such that the Euclidean length is .|OM | = r , has a length proportional to 
.1 − r2. 

The last Poincaré axiom is about how light travels in this Universe: the index of 
refraction of this Universe is inversely proportional to .1 − r2. We can suppose it as 

.
4

1 − r2
. 

Having all these facts in mind, let us understand how the inhabitants will perceive 
their Universe. First of all, it is enough to understand the geometry of a disc containing 
the centre of the sphere. For Poincaré, this disc is Euclidean and it has the form of an 
open radius.1-disc. For the inhabitants, their length is smaller and smaller when they 
try to reach the border of this slice of Universe. They become shorter and shorter, their 
legs become shorter, and their steps become shorter. These things happen because

https://archive.org/details/lascienceetlhypo00poin
https://archive.org/details/lascienceetlhypo00poin
https://archive.org/details/lascienceetlhypo00poin
https://archive.org/details/lascienceetlhypo00poin
https://archive.org/details/lascienceetlhypo00poin
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the temperature acts by contracting the dimensions when they step to the border. The 
finite Euclidean Universe for Poincaré seems to be infinite for the small creatures. 
The rule established by Poicaré for distance will be understood by the inhabitants as 

. dn(O, M) = 1

2
· ln 1 − x

1 − 0
: −1 − x

−1 − 0
,

that is, when . x approaches . 1, .dn approaches infinity. Of course, here .OM is the 
.x-axis. One inhabitant, mister . “. H”, will observe that it is possible to describe this 
distance for two arbitrary points .A, B in the form 

. dn(A, B) := ln
maxP∈K gAB(P)

minP∈K gAB(P)
, gAB = |PA|

|PB|
where .K is the boundary, that is the circle of radius . 1, and .|PA| is the Euclidean 
distance between .P in .K and . A in the interior of the disc. 

The intelligent inhabitants will understand that light is moving on the “straight 
lines” of the Geometry of their Universe. Since the law of light propagation depends 
on the index of refraction, they will deduce the metric of their Universe as 

. ds2 = 4

(1 − (x2 + y2))2
(dx2 + dy2).

The straight lines (the geodesics), induced by the trajectories of ray lights, are diam-
eters or arcs of circles bi-orthogonal to the border as we explained above. 

There are two “parallel lines” to a given “line” through a given point. The sum of 
angles of a “triangle” is less than two right angles. Now they conclude they live in a 
non-Euclidean Universe. 

Finally, the inhabitants have two ideas about their slice of the Universe, ideas 
which can be extended to the entire interior of the sphere: 

(i) the Universe is infinite 
(ii) the Universe is governed by the laws of non-Euclidean geometry and is curved. 
In each slice, the Gaussian curvature is a negative constant, .K (x, y) = −1. 

But this is not true, their Universe is a finite interior of a .R-sphere and the under-
lying geometry is Euclidean, not hyperbolic! 

Poincaré established that the inhabitants of his physical model are perfectly right 
to use hyperbolic geometry as the foundation of their Physics because it is convenient, 
but there is a non-sense to speak about the philosophical abstract truth or about an 
approximation of any truth, because intelligent inhabitants point of view is in collision 
with the way and laws their Universe was established.
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Poincaré opinion is that the reality is not described by the most “realistic” Geom-
etry “la géométrie la plus vrai”, but by the most comfortable for the description of 
physical laws (la géométrie la plus commode). Therefore, Poincaré believed that the 
Geometry of physical space is a conventional one. 

7.4 Another Way to Obtain the Poincaré Disc Model Metric 

The next theorem allows us to provide the Poincaré disc metric starting from the 
distance naturally related, in Chapter . 3, to the Poincaré disc model. The theorem 
allows to obtain the metric of all non-Euclidean geometry models which come from 
the metrization procedure described in its statement. He was formulated by Dan 
Barbilian who is known for the generalizations of Poincaré work in the so-called 
Barbilian spaces (see [ 35, 38].) 

Theorem 7.4.1 (Barbilian’s Theorem) Let .K and . J be two subsets of the Euclidean 
plane .R

2, and .K = ∂ J. Consider the function . f (M, A) = |MA|, where, by .|MA|, 
we denote the Euclidean distance. Consider 

. gAB(M) = f (M, A)

f (M, B)
= |MA|

|MB| ,

and consider the semi-distance induced on . J by the metrization procedure, 

. d(A, B) := ln
maxP∈K gAB(P)

minP∈K gAB(P)
.

Suppose furthermore that, for .M ∈ K, the extrema .max gAB(M) and . min gAB(M)

for any . A and .B in . J are reached each for a single point in .K . Then: 
(i) For any.A ∈ J and any line. d passing through. A, there exist exactly two circles 

tangent to .K and also to . d at . A.

(ii) The metric induced by the previous distance has the form 

. ds2 = 1

4

(
1

R1
+ 1

r1

)2

(dx21 + dx22 ),

where .R and . r are the radii of the circles described in (i). 

Proof Consider .A (x1, x2) and .B (y1, y2) in . J and .M
(
x1, x2

)
in . J ∪ K .

The circle determined by the relation .
|MA|
|MB| = √

λ has the equation 

. 
(
x1 − x1

)2 + (
x2 − x2

)2 − λ(
(
x1 − y1

)2 + (
x2 − y2

)2
) = 0.

Its radius .R is



7.4 Another Way to Obtain the Poincaré Disc Model Metric 169

. R2 = λ|AB|2
(1 − λ)2

.

The maximum .M1 and the minimum .m1 values for the expression .
|MA|2
|MB|2 lead to 

the equalities 

. R2
1 = M1

(1 − M1)
2 |AB|2, r21 = m1

(1 − m1)
2 |AB|2.

The first equality becomes 

. 

(
1 + M1

1 − M1

)2

= |AB|2 + 4R2
1

|AB|2 ,

and taking into account that .M1 ≥ 1, it results 

. M1 = 1 + 2|AB|
−|AB| +

/
|AB|2 + 4R2

1

.

In the same way, using .m1 ≤ 1, we have  

. m1 = 1 − 2|AB|
|AB| +

/
|AB|2 + 4r21

.

If. A and. B are close enough, i.e..B = A + d A, the Euclidean distance.|AB|2 becomes 
the arc element 

. dσ2 = dx21 + dx22 .

The distance between the points .A and .A + d A leads to the new arc element 
.d (A, A + d A) denoted by . ds.

So, 

. ds = d (A, A + d A) = 1

2

M1 − m1

m1
.

We have the approximations 

. 
2dσ

−dσ +
/
dσ2 + 4R2

1

= dσ

R1
,

and 

.
2dσ

dσ +
/
dσ2 + 4r21

= dσ

r1
.
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The final computation leads to 

. ds = 1

2

(
1

R1
+ 1

r1

)
dσ,

i.e. the metric corresponding to the previous distance is 

.ds2 = 1

4

(
1

R1
+ 1

r1

)2 (
dx21 + dx22

)
.

[

Theorem 7.4.2 Consider the circle. T centred at the origin and of radius.R.Consider 
in the interior of the circle the Poincaré distance. Then, the associated metric, given 
by Barbilian’s Theorem 

. ds2 = 1

4

(
1

R1
+ 1

r1

)2 (
dx21 + dx22

)

has the form 

. ds2 = 4R2

[R2 − (x2 + y2)]2 · (dx2 + dy2).

Furthermore, the metric obtained by this procedure has the Gaussian curvature . −1.

Proof In the case when . T is a circle and . J is its interior, we deal with a distance, 

. d(A, B) = ln
maxP∈T gAB(P)

minP∈T gAB(P)
= ln

maxP∈T
|PA|
|PB|

minP∈T
|PA|
|PB|

,

called Poincaré distance of the disc. We would like to compute the metric of the disc 
induced by this distance and the previous theorem. Let . A of coordinates .(x0, y0), in  
the interior of .T. Denote by.O1(x1, y1) and.O2(x2, y2) the centres of the two circles, 
each one tangent to the circle. T and also tangent between them at. A. Denote by. m the 
slope of the tangent line./ at. A to both previous circles. Line.O1O2 has the equation 

. y − y0 = − 1

m
(x − x0).

Therefore, the points .O1 and .O2 have the coordinates .

(
xi , y0 − 1

m
(xi − x0)

)
, for 

.i = 1, 2. Furthermore, 

.R2
i = |Oi A|2 = m2 + 1

m2
(xi − x0)

2, i = 1, 2.
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Without losing generality, we assume that .x1 − x0 ≤ 0 and .x2 − x0 ≥ 0, with the 
equality case reached for ./|Ox . It is worth remarking that .x1 − x0 < 0, if . m > 0.
Thus 

. |O1A| =
√
m2 + 1

m
(x0 − x1),

and 

. |O2A| =
√
m2 + 1

m
(x2 − x0).

Therefore, the circles have the centres in .(x1, y0 − 1
m (x1 − x0)) and in . (x2, y0 −

1
m (x2 − x0)), and the radii .R1 =

√
m2 + 1

m
(x0 − x1) and. R2 =

√
m2 + 1

m
(x2 − x0).

To obtain the coordinates of the point .T '
1, we recall that it lies at the intersection 

between the circle .x2 + y2 = R2 and the line 

. y = 1

x1

|
y0 − 1

m
(x1 − x0)

|
x,

which passes through the collinear points .O, O1 and.T '
1. Solving the system, we get 

the coordinates of .T '
1 as follows: 

. 

⎛

⎝ Rx1/
x21 + (

y0 − 1
m (x1 − x0)

)2
,

R(y0 − 1
m (x1 − x0))

/
x21 + (

y0 − 1
m (x1 − x0)

)2

⎞

⎠ .

By direct computation, we get 

. |O1T
'
1| = R −

/

x21 +
(
y0 − 1

m
(x1 − x0)

)2

.

Since the segments.O1T '
1 and.O1A are radii of the circle of centre.O1 and radius.R1, 

we set up the equalities 

. 

√
m2 + 1

m
(x0 − x1) = R1 = R −

/

x21 + (y0 − 1

m
(x1 − x0))2.

It follows that 

. x0 − x1 = R1m√
m2 + 1

,

therefore 

.(R − R1)
2 = x21 +

(
y0 + R1√

m2 + 1

)2

.
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Since 

. x1 = x0 − R1m√
m2 + 1

,

we have 

. (m2 + 1)(R − R1)
2 − (y0

/
m2 + 1 + R1)

2 = (x0
/
m2 + 1 − R1m)2

i.e. 

. R1 =
√
m2 + 1

2
· R2 − x20 − y20
R
√
m2 + 1 − x0m + y0

.

In a similar way, we obtain 

. R2 =
√
m2 + 1

2
· R2 − x20 − y20
R
√
m2 + 1 + x0m − y0

.

It results in the relation 

. 
1

4

(
1

R1
+ 1

R2

)2

= 4R2

(R2 − x20 − y20 )
2
,

i.e. the Poincaré metric of the disc is 

. ds2 = 4R2

[R2 − (x2 + y2)]2 · (dx2 + dy2).

By a straightforward computation, we can easily see that the Gaussian curvature of 
this metric is .K (x, y) = −1. [

The reader understands now all the possible connections which can be made when 
we intend to see the two big pictures of non-Euclidean geometries.



Chapter 8 
Gravity in Newtonian Mechanics 

Per Aspera ad Astra. 

Newtonian mechanics is a branch of Physics which studies the way in which the 
bodies are changing in time their position in space. The space in which the objects 
are at rest (or they change their position) is the Euclidean three-dimensional space 
.E3. All objects, regardless of size, can be identified as points with a given mass 
in the previous space. So, the Euclidean frame of coordinates .Oxyz becomes the 
absolute place where all is happening. Newtonian Mechanics accepts an universal 
time in which all changes in position take place. Forces are seen as vectors. For a 

given point .M in space, the vector .
→
X= −→

OM is called a position vector. If the point 
evolves in time, we write this as 

. 
→
X (t) = (x(t), y(t), z(t)).

The velocity vector is 

. 
→̇
X = (ẋ(t), ẏ(t), ż(t))

and the acceleration vector is 

. 
→̈
X = (ẍ(t), ÿ(t), z̈(t)).

Of course, we make the assumption that the coordinate functions are indefinitely 
differentiable on their domain of definition which differs from a model to another. 
The foundations of Newtonian Mechanics are based on three fundamental princi-
ples, the so-called Newton’s laws of motion. They were introduced by Isaac New-
ton in “Philosophiae Naturalis Principia Mathematica”, book published in 1687. 
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The Principle of Inertia, or the first law, asserts: “A physical body preserves its state 
of rest or will continue moving at its current velocity conserving its direction, until 
a force causes a change in its state of moving or rest. The physical body will change 
the velocity and the direction according to this force”. A particular case is related to 
the rectilinear uniform motion, when the body is moving on a straight line at constant 
speed. The frames where this principle is available are called inertial frames. These 
frames are at rest or they move rectilinear at constant speed. This fundamental prin-
ciple was first enunciated by Galilei. We can say that this principle tells us where, 
according to Newton, the two other fundamental principles make sense: in inertial 
frames. In the same time, it tells us that it is impossible to make a distinction between 
the state “at rest” and the state “rectilinear motion at constant speed”. Imagine you 
are in the bowl of a ship and you have no possibility to observe outside. You slept and 
you waked up. You cannot distinguish between the two states without an observation, 
a possible comparison. You will play table tennis alike in both states, the object falls 
down in the same way in both states, etc. The two states are equivalent for you in 
the given conditions. Newton introduces a concept, the quantity of motion of a body 
as the product between the mass .m and its velocity . 

→
v . This quantity of motion is 

known today as momentum and it is denoted by. 
→
p , therefore.

→
p := m

→
v . The second 

law asserts: “The force who acts on a body is the variation in time of the quantity of 

motion”. Its differential form is .
→
F= d

→
p

dt
. If .m does not depend on time, then 

. 
→
F= d

→
p

dt
= m

d
→
v

dt
= m

→
a ,

that is the force which acts on a body is proportional to the body acceleration through 

its mass. Newton’s third law: “When a body acts on a second body by the force . 
→
F , 

the second body simultaneously reacts on the first body by the force .− →
F .” 

This chapter is devoted to gravity. We try to outline the basic facts about gravity, 
we prove the vacuum field equation and the general gravitational field equation. The 
artefact we use to express these laws is the gravitational potential. Later, in the chapter 
devoted to general relativity, the same gravitational potential is involved, in general, in 
metric components, and, specifically, in the coefficients of the Schwarzschild metric. 
The step towards general relativity is made when the tidal acceleration equations 
are written in a geometric form corresponding to a space endowed with a metric. 
However, our journey to relativity has to wait because we need some other tools until 
the moment we derive Einstein’s field equations via the Einstein–Hilbert action. 
We study Lagrangians and metrics induced by Lagrangians, where Euler–Lagrange 
equations become the geodesic equations of these metrics. Finally, we will connect 
these results to non-Euclidean geometry models. Kepler’s laws are derived. Later, in 
the same general relativity chapter, we understand how the conic curve, found as the 
trajectory of a planet, is still the geodesic trajectory approximation of the same planet 
in a given metric. An excellent discussion on Newtonian mechanics, in gravitational 
perspective, can be found in the book [ 66].
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8.1 Gravity. The Vacuum Field Equation 

Let us start to study about the gravity. Later on, in the book, gravity will be stud-
ied following Einstein’s ideas. Now, we concentrate on gravity as a force trying to 
understand it from the classical mechanics point of view. 

In the Euclidean .3-dimensional space .E3, let us consider two bodies of masses 
.M and. m, M > m, located at the points.X1(x1, y1, z1) and.X (x, y, z). The position 

vectors .
→

OX1 and .
→
OX , where .O(0, 0, 0) is the origin, are simply denoted by . 

→
X1=

(x1, y1, z1) and .
→
X= (x, y, z). Let us define 

. 
→
r :=→

X − →
X1= (x − x1, y − y1, z − z1) .

The length of .
→
r is 

. r :=
/

(x − x1)2 + (y − y1)2 + (z − z1)2

and the unit vector pointing the point .X1 from the point .X is 

. 
→
u= −

→
X − →

X1

r
= −

→
r

r
= −

(
x − x1

r
,
y − y1

r
,
z − z1
r

)
.

Newton stated that the gravitational force induced by the body of mass . M

which acts on the body of mass .m has the intensity .F = G
mM

r2
, where . G =

6.67 · 10−11 (m)3

(kg) · (s)2
is the gravitational constant. It can be described by the grav-

itational force vector 

. 
→
F= GmM

r2
→
u= −GmM

r2

→
r

r
= −GmM

r2

(
x − x1

r
,
y − y1

r
,
z − z1
r

)
.

Before continuing, let us write the previous formula in the form 

. 
→
F= m

GM

r2
→
u ,

where. 
→
u is a unitary vector. The mass. m of the body gravitationally attracted seems to 

be like a “gravitational charge”, if we compare.F = G
mM

r2
with the similar formula 

which describes the intensity of an electric force, .F = k
q1q2
r2

. Therefore we can 

think at .m to be a gravitational mass denoted by .mg .
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In the special case, when we consider a body gravitational attracted by the Earth, 
.M is the mass of the Earth, . r is the radius of the Earth and .G the gravitational 
constant, it results 

. F = mg · A,

where .A = GM

r2
is a constant acceleration denoted by . g, where . g = 9.81

(m)

(s)2
.

In Newton’s second law of motion, the mass. m seems to be a constant which makes 
possible to compare the intensity of the force and the magnitude of acceleration, 
.F = ma. This is an  inertial mass, denoted by .mi , because the first Newton’s law 
establishes the frames where the all three laws are true: the inertial frames. Therefore 
.F = mia. In the case when .F is the gravitational force exerted by the Earth on the 
body of mass .mi , .F = mig. It results  

. 
mg

mi
= gr2

GM
= k.

The constant . k is not equal to . 1 by definition, but, if we measure the weight, the 

space and the time with some other scaled units, the ratio .
mg

mi
results . 1. 

So we can accept that the gravitational mass is the same as the inertial mass, and we 
can denote by.m the value.mg = mi . This is the equivalence principle as formulated 
by Galileo 1. We will see that it assumes a fundamental role in the formulation of 
general relativity. 

Let us return to the formula 

. 
→
F= m

GM

r2
→
u

seen as .
→
F= m

→
A . We can define the gravitational acceleration as the vector 

. 
→
A= GM

r2
→
u .

This gravitational acceleration is also called a gravitational field induced by the body 
of mass . M . This definition suggests how the gravity acts. In coordinates we have 

. 
→
A= −GM

r2

(
x − x1

r
,
y − y1

r
,
z − z1
r

)
.

We define the gravitational potential of the field .
→
A to be the function

1 It is worth noticing that this is a peculiarity of gravitational force. For example, for the Coulomb 
force involving electric charges. q, it is.mi /= q. This means that equivalence principle is proper of 
gravity. 
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. Φ(x, y, z) = −GM

r
.

This definition makes sense at all points of the Euclidean three-dimensional space 
except.(x1, y1, z1) where the gravitational source is located. It is easy to observe that 

. 
∂Φ

∂x
= GM

r2
∂r

∂x
= GM

r2

(
x − x1

r

)
.

If we define the gradient of the gravitational potential. Φ by.VΦ :=
(

∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

)
, 

using the previous computation, we can prove 

. ∇Φ = GM

r2

(
x − x1

r
,
y − y1

r
,
z − z1
r

)
= − →

A .

The Laplace operator, or simply, the Laplacian, denoted by .V2, is defined as 

. V2 := ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

The Laplacian of the gravitational potential is 

. V2Φ = ∂2Φ

∂x2
+ ∂2Φ

∂y2
+ ∂2Φ

∂z2

and can be computed. As we know 

. 
∂Φ

∂x
= GM

r2
x − x0

r
,

therefore 

. 
∂2Φ

∂x2
= GM ·

r3 − 3r2
∂r

∂x
r6

= GM

(
1

r3
− 3

(x − x1)2

r5

)
,

i.e. 

. V2Φ = GM

(
3

r3
− 3

r2

r5

)
= 0.

Therefore we showed that for all the points .(x, y, z) /= (x1, y1, z1) the gravitational 
potential 

.Φ(x, y, z) = −GM

r
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satisfies .V2Φ = 0. Having in mind that the gravitational source is located at 
.(x1, y1, z1), we have proved that in the remaining “empty space”, i.e. in vacuum, 
the Newtonian equation of the gravitational field, expressed with respect to its grav-
itational potential, is 

. V2Φ = 0.

The previous formula is known as Newton’s vacuum field equation. 
What is happening at a source point? We remember our previous construction 

with the gravitational potential 

. Φ(x, y, z) = −1

r

where 
. r :=

/
x2 + y2 + z2

and 
. V2Φ(x, y, z) = 0

for all . (x, y, z) /= (0, 0, 0).
Let us introduce the gravitational potential 

. Φb(x, y, z) = − 1

r̄b

where 
. r̄b :=

/
(x − b)2 + y2 + z2,

that is the source is now.(b, 0, 0). The corresponding gravitational field is 

. 
→
Ab (x, y, z) = −VΦb(x, y, z) = − 1

r̄2b

(
x − b

r̄b
,
y

r̄b
,
z

r̄b

)
.

After easy computations 

. 
∂

→
Ab

∂x
(0, 0, 0) =

(
2

b3
, 0, 0

)

. 
∂

→
Ab

∂y
(0, 0, 0) =

(
0,− 1

b3
, 0

)

.
∂

→
Ab

∂z
(0, 0, 0) =

(
0, 0,− 1

b3

)
.
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Now, we observe that the Hessian of the gravitational potential .d2Φb is the matrix 

with components .
∂

→
Ab

∂x j
, where .xi ∈ {x, y, z}, satisfying the relation 

. d2Φb(0, 0, 0) =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∂
→
Ab

∂x
(0, 0, 0)

∂
→
Ab

∂y
(0, 0, 0)

∂
→
Ab

∂z
(0, 0, 0)

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

2

b3
0 0

0 − 1

b3
0

0 0 − 1

b3

⎞

⎟⎟⎟⎟
⎠

.

On the other hand, it can be seen as the matrix with the components.
∂2Φb

∂xi∂x j
, that is, 

. d2Φb(0, 0, 0) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∂2Φb

∂x2
∂2Φb

∂x∂y

∂2Φb

∂x∂z
∂2Φb

∂y∂x

∂2Φb

∂y2
∂2Φb

∂y∂z
∂2Φb

∂z∂x

∂2Φb

∂z∂y

∂2Φb

∂z2

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

In fact the first line of the previous matrix is .
∂

→
Ab

∂x
=
(

∂2Φb

∂x2
,

∂2Φb

∂x∂y
,
∂2Φb

∂x∂z

)
, 

etc. Combining the previous results, the trace of Hessian matrix is the Laplacian of 
the gravitational potential, i.e. 

. Tr
(
d2Φb

)
(0, 0, 0) = V2Φb(0, 0, 0) = 2

b3
− 1

b3
− 1

b3
= 0

for all points .(x, y, z) /= (b, 0, 0). When .b → 0, the gravitational potential . VΦb

approaches the gravitational potential .VΦ, therefore . VΦ2
b

(0, 0, 0) = 0 → VΦ2(0, 0, 0). It means .VΦ2(0, 0, 0) = 0. We may conclude that 
the vacuum equation becomes 

. VΦ2 = 0

everywhere, not only for all points without the source. 
Let us now suppose that there are many gravitational sources, and we label the 

gravitational potentials. For each point .(x j , y j , z j ), one can define 

. r j :=
/

(x − x j )2 + (y − y j )2 + (z − z j )2

and the gravitational potentials 

.Φ j (x, y, z) = −GMj

r j
.
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The total gravitational potential determined by the .N sources is 

. Φ(x, y, z) =
NE

1

Φ j (x, y, z) = −
NE

1

GMj

r j
.

Theorem 8.1.1 For .(x, y, z) /= (x j , y j , z j ), j ∈ {1, 2, ..., N }, the total gravita-
tional potential satisfies the gravitational field equation in vacuum 

. V2Φ = 0.

Proof The linearity of. Φ allows to work as previously, for all. j ∈ {1, 2, ..., N }having 

. 
∂Φ j

∂x
= GMj

r2j

x − x j

r j
.

Therefore 

. 
∂2Φ j

∂x2
= GMj ·

r3j − 3r2j
∂r j
∂x

r6j
= GMj

(
1

r3j
− 3

(x − x j )
2

r5j

)

,

i.e. 

. V2Φ = G
NE

1

Mj

(
3

r3j
− 3

r2j
r5j

)

= 0.

The equation .V2Φ = 0 is also known as the Laplace equation for gravity. [

In a similar way it can be proved. 

Corollary 8.1.2 For multiple sources, the equation .VΦ2 = 0 holds everywhere. 

8.2 Divergence of a Vector Field in a Euclidean 3D-Space 

Let us consider an incompressible fluid flow described by the vector .
→
F := ρ

→
V , 

where .ρ := ρ(x, y, z) is the density of the incompressible fluid at .(x, y, z) and 

.
→
V=→

V (x, y, z) is the speed vector at each point of a given region.D of the Euclidean 
space. 

If we are looking at the fact that .F is measured in .
(kg)

(m)2 · (s)
, we see in fact how 

much matter flows through a unit surface area in a unit time.
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Consider a small parallelepiped centred at.(x, y, z) ∈ D and with sides of lengths 

./x,/y,/z parallel to the axis of coordinates. The vector flow .
→
F has three com-

ponents, .
→
F= (Fx , Fy, Fz). We can suppose the parallelepiped small enough to have 

the flow .
→
F constant over each face, that is at each point of a face, .

→
F has the same 

three given components. We are interested in expressing the net outflow through this 
parallelepiped, i.e. the algebraic sum of all outward flow vectors through the six 
faces. 

The flow through the face of area ./y/z at the point .

(
x − /x

2
, y, z

)
is 

. Fx

(
x − /x

2
, y, z

)
/y/z.

Suppose this is an inflow. In the same way, the flow through the face of area . /y/z

at the point .

(
x + /x

2
, y, z

)
is 

. Fx

(
x + /x

2
, y, z

)
/y/z

and this one is an outflow. Therefore the total outflow through these two parallel 
faces is 

. Fx

(
x + /x

2
, y, z

)
/y/z − Fx

(
x − /x

2
, y, z

)
/y/z ≈ ∂Fx

∂x
(x, y, z)/x/y/z,

where the last approximation was made taking into consideration the small dimen-
sions of the parallelepiped. 

Considering the contribution of the other two pairs of parallel faces, the total 
outflow through the parallelepiped faces becomes 

. 

(
∂Fx

∂x
(x, y, z) + ∂Fy

∂y
(x, y, z) + ∂Fz

∂z
(x, y, z)

)
/x/y/z.

The divergence of .
→
F is defined by 

. div
→
F := ∂Fx

∂x
(x, y, z) + ∂Fy

∂y
(x, y, z) + ∂Fz

∂z
(x, y, z)

and a physical interpretation of it as total outflow over the parallelepiped is that 
presented above.
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We can conclude: On the entire region . D, the total outflow over .D is 

. F(D) :=
{

D
div

→
F d3x = div

→
F (

→
uη) · volD,

where.d3x is the volume element.dxdydz and the last equality is a consequence of a 
mean value theorem for the given triple integral. A consequence of the last formula 
is 

. lim
D→→

u

F(D)

volD
= div

→
F (

→
u ).

8.3 Covariant Divergence 

We have discussed about a flow of an incompressible fluid in an Euclidean space. 
How this discussion changes if we are talking about an incompressible fluid in a 
region where the parallelism is not the Euclidean one? The problem appears when 
we consider the difference 

. Fx

(
x + /x

2
, y, z

)
/y/z − Fx

(
x − /x

2
, y, z

)
/y/z

because it means that we have moved by parallel transport the vector 

.

(
−Fx

(
x − /x

2

)
, 0, 0

)
to the other face at the point .

(
x + /x

2
, y, z

)
. 

Therefore we parallel transport the contravariant vector. 

(
−Fx

(
x − /x

2

)
, 0, 0

)

along the infinitesimal vector .A1 = (/x, 0, 0). 
Since, in general, .Tk

i j /= 0, the parallel transport along .A1 = (/x, 0, 0) for a 
contravariant vector .V = (V 1, 0, 0) leads to a vector whose first component is 

. V 1

(
x − /x

2
, y, z

)
+ /V 1,

where 
. /V 1 = −T1

i j V
j/xi = −T1

1 j V
j/x = −T1

11V
1/x .

The difference 

. 

|
V 1

(
x + /x

2
, y, z

)
− V 1

(
x − /x

2
, y, z

)
+ T1

11V
1/x

|
/y/z

is 

.

(
∂V 1

∂x
+ T1

11V
1

)
/x/y/z,
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i.e. the covariant derivative with respect to the first variable denoted by 

. V 1
;1/x/y/z.

We have three pairs of opposite faces corresponding to the three directions, therefore 
the net outflow is 

. (V 1
;1 + V 2

;2 + V 3
;3)/x/y/z

for a parallelepiped in a region where the Euclidean parallel transport is replaced by 
the general parallel transport. 

The quantity.V s
s := V 1

;1 + V 2
;2 + V 3

;3 is the covariant divergence of a contravariant 
vector .(V 1, V 2, V 3). 

In our case, we obtain 

. 

(
Fx

(
x + /x

2
, y, z

)
− Fx

(
x − /x

2
, y, z

)
+ FxT

1
11/x

)
/y/z ≈

. ≈
(

∂Fx

∂x
+ FxT

1
11

)
/x/y/z = Fx ;1/x/y/z.

For the entire parallelepiped we have the total net outflow 

. (Fx ;1 + Fy ;2 + Fz ;3)/x/y/z

expressed with respect to the covariant derivative. 

Definition 8.3.1 The quantity .(Fx ;1 + Fy ;2 + Fz ;3) expressed with respect to the 
covariant derivatives of components is called a covariant divergence of the field . F . 

8.4 The General Newtonian Gravitational Field Equations 

If a gravitational source of mass.M is placed at.(x1, y1, z1) and no other gravitational 
source exists, we have deduced the vacuum fields equation 

. V2Φ(x, y, z) = 0.

If there are many gravity sources .(x j , y j , z j ), j ∈ {1, 2, ..., N }, we have defined 

.r j :=
/

(x − x j )2 + (y − y j )2 + (z − z j )2
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and the corresponding gravitational potentials 

. Φ j (x, y, z) = −GMj

r j
.

The total gravitational potential, determined by the .N sources, was 

. Φ(x, y, z) =
NE

1

Φ j (x, y, z) = −
NE

1

GMj

r j
.

We have proved that the vacuum field equation, in this case, is 

. V2Φ(x, y, z) = 0 ,

and it makes sense for all .(x, y, z) of the space. 
Now suppose that in a bounded region .D of the Euclidean space .E3 there is a 

continuous distribution of matter and point sources. This continuous distribution of 

matter is defined by a density function.ρ = ρ(x, y, z) measured in .
(kg)

(m)3
. Outside. D

we have .ρ ≡ 0. 
How it looks like the gravitational field equation in this case? Let us prove the 

following. 

Theorem 8.4.1 (General Gravitational Field Equation) If .D is a region of the space 
where it exists a continuous distribution of matter defined by the density function . ρ, 
then 

. V2Φ(x, y, z) = 4πGρ(x, y, z)

everywhere in . D. 

Proof Outside . D, where .ρ = 0, the theorem reduces to the vacuum field equation. 
It remains to prove the statement for all the points of . D. We cover .D with paral-
lelepipeds. To do this, we consider points on .Ox-axis and parallel planes to . yOz
through these points. In the same way, we take into account parallel planes to . xOz
through points on .Oy and parallel planes to .xOy through points on .Oz. We obtain 
parallelepipeds with the faces parallel to the planes determined by the axes of coordi-
nates. Some of parallelepipeds are completely inside. D, some are completely outside 
.D and some of them contain parts inside and outside. 

Now we can index the points and we can denote the centres of parallelepipeds 
which cover .D as being .(xi , y j , zk) and the corresponding dimensions of sides as 
./xi ,/y j ,/zk . 

We can suppose the mass of such parallelepiped is .ρ(xi , y j , zk)/xi/y j/zk . 
The corresponding gravitational potential at a point .(x, y, z) ∈ E3 is 

.Φ(x, y, z) ≈
E

Φ j (x, y, z),
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that is, 

. Φ(x, y, z) = −
NE

i=1

ME

j=1

PE

k=1

Gρ(xi , y j , zk)/
(x − xi )2 + (y − y j )2 + (z − zk)2

/xi/y j/zk .

We can improve the approximation of the gravitational potential formula considering 
more points on the axes and, at limit, we obtain 

. Φ(x, y, z) = −G
{

D
ρ(u, v, w)

1
/

(x − u)2 + (y − v)2 + (z − w)2
d3u,

where .d3u is the volume element .dudvdw. If .(x, y, z) /∈ D, the integral has sense. 
We are able to show that the integral has sense even for points.(x, y, z) ∈ D. Consider 
a change of coordinates in .E3 defined by 

. u = x + r sin x2 cos x1

. v = y + r sin x2 sin x1

. w = z + r cos x2.

We observe 
. r(x, y, z) =

/
(x − u)2 + (y − v)2 + (z − w)2.

Then, according to our knowledge in calculus, the volume element for spherical 
coordinates is changing after the formula 

. dudvdw = r2 sin x2drdx2dx1

and the integral becomes 

. Φ(r, x1, x2) = −G
{

D∗
ρ
1

r
r2 sin x2drdx2dx1 = −G

{

D∗
ρr sin x2drdx2dx1,

where.D∗ is the transformed of.D with respect to the previous change of coordinates. 
The last integral is not singular, therefore the definition of the gravitational potential 
makes sense in . D, too. 

If we apply the Laplace operator 

. 
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

to 

.Φ(x, y, z) = −G
{

D
ρ(u, v, w)

1

r(x, y, z)
d3u,
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we obtain 

. V2Φ(x, y, z) =
{

D
V2

(
−Gρ(u, v, w)

r(x, y, z)

)
d3u.

The gradient operator .V :=
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
leads to the Laplace operator via a for-

mal dot product: 

. V2 := V · V =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
·
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

It implies 

. V2Φ = V · VΦ = −V· →
A= −

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
= −div

→
A,

that is, 

. V2Φ(x, y, z) = −div
→
A (x, y, z).

Now, if.(x, y, z) /∈ D,we have proved.V2

(
−Gρ

r

)
= 0, therefore.V2Φ(x, y, z) = 0. 

In the same time we have proved that .div
→
A (x, y, z) = 0 when .(x, y, z) /∈ D. 

If .(x, y, z) ∈ D, let us make some considerations. 

We define the gravitational field .
→
A= (Ax , Ay, Az) attached to the potential . Φ,

.
→
A:= −VΦ. It remains to evaluate .−div

→
A (x, y, z) when.(x, y, z) ∈ D. To do this,  

we consider a sphere .S(r) centred at .(x, y, z) with a small radius . r such that the 
mass-density. ρ can be considered constant in all its interior, interior here denoted by 
.B(r). Therefore we suppose .ρ(u, v, w) = ρ(x, y, z) for all .(u, v, w) ∈ B(r). Let us 
decompose .D in .B(r) ∪ (D − B(r)). We have  

. 
→
A=→

AB(r) + →
AD−B(r)

and, since .(x, y, z) /∈ D − B(r), using the previous case result, it follows 

. div
→
AD−B(r) (x, y, z) = 0,

i.e. 

. div
→
A (x, y, z) = div

→
A B(r) (x, y, z) + div

→
AD−B(r) (x, y, z) = div

→
A B(r) (x, y, z).

Now, the problem reduces to the evaluation of . div
→
AB(r) (x, y, z).

Let us observe that the gravitational field .
→
AB(r) at every .(x̄, ȳ, z̄) ∈ B(r) is



8.5 Tidal Acceleration Equations 187

. 
→
AB(r) (x̄, ȳ, z̄) = −G · MB(r)

r̄2
→
n= −G · ρ · volB(r)

r̄2
→
n ,

where . r̄ is the length of the vector who points from.(x, y, z) to .(x̄, ȳ, z̄) and.
→
n is its 

unit vector. On the entire surface of.S(r), the gravitational field becomes the constant 
magnitude vector field 

. 
→
AB(r) (x, y, z) = −G · ρ · volB(r)

r2
→
n .

The total outflow over .B(r) is 

. F(B(r)) = −G · ρ · volB(r)

r2
· 4πr2 = −4πG · ρ · volB(r).

Therefore 

. lim
r→0

F(B(r))

volB(r)
= div

→
AB(r) (x, y, z) = −4πG · ρ,

that is 
. V2Φ = 4πG · ρ.

Since the . ρ chosen is .ρ = ρ(x, y, z) and all computations are done at the point 
.(x, y, z), the proof is complete. The previous equation is also known as the Poisson 
equation for gravity. [

8.5 Tidal Acceleration Equations 

We met before the gravitational potential 

. Φb(x, y, z) = − 1

r̄b

determined by a source at .(b, 0, 0), b > 0. The denominator is 

. r̄b :=
/

(x − b)2 + y2 + z2

and the corresponding gravitational field is 

. 
→
Ab (x, y, z) = −VΦb(x, y, z) = − 1

r̄2b

(
x − b

r̄b
,
y

r̄b
,
z

r̄b

)
.

We have observed .
→
Ab (0, 0, 0) =

(
1

b2
, 0, 0

)
.
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Definition 8.5.1 The tidal acceleration .
→
T (x, y, z), generated by the gravitational 

field .
→
Ab (x, y, z) at .(0, 0, 0), is defined by the formula 

. 
→
T (x, y, z) :=→

Ab (x, y, z)− →
Ab (0, 0, 0).

We may use a Taylor approximation to compute the tidal acceleration at some 
points of the axes as follows: 

. 
→
T (a, 0, 0) :=→

Ab (a, 0, 0)− →
Ab (0, 0, 0) ≈ a

∂
→
Ab

∂x
(0, 0, 0) =

(
2a

b3
, 0, 0

)
.

In the same way 

. 
→
T (0, a, 0) :=→

Ab (0, a, 0)− →
Ab (0, 0, 0) ≈ a

∂
→
Ab

∂y
(0, 0, 0) =

(
0,− a

b3
, 0
)

and 

. 
→
T (0, 0, a) :=→

Ab (0, 0, a)− →
Ab (0, 0, 0) ≈ a

∂
→
Ab

∂z
(0, 0, 0) =

(
0, 0,− a

b3

)
.

The effect of translation due to a tidal acceleration is called a tidal effect. 
We can better see the tidal effect, if we consider slices in .Oxy- and .Oxz-planes. 
We focus on .Oxy-plane and let us consider the unit vector .(cos u, sin u). 

If we compute.
→
T (a cos u, a sin u), we describe the tidal effect at all points of the 

circle centred at .O having . a as radius. Therefore 

. 
→
T (a cos u, a sin u) :=→

Ab (a cos u, a sin u)− →
Ab (0, 0) ≈

. ≈ a cos u
∂

→
Ab

∂x
(0, 0) + a sin u

∂
→
Ab

∂y
(0, 0),

the approximation being given by the directional derivative of .
→
Ab in the direction 

.(cos u, sin u). It results  

. 
→
T (a cos u, a sin u) :=

(
2a cos u

b3
,−a sin u

b3

)
.

This is the image of the tidal effect around.(0, 0, 0) in.Oxy-plane. There is a similar 
image in .Oxz-plane. In fact, if you rotate the .Oxy-plane around.Ox-axis, you have 
the big picture of the tidal effect at all the points of a sphere surface.
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Now, you can imagine the Moon at .(b, 0, 0) and the Earth as a sphere centred 
at .(0, 0, 0) having radius . a and the oceans tides appear when you rotate the sphere. 
This is the animated picture of the tidal effect. 

The tidal effect appears and it can be studied as previously. 
If we wish to highlight the equations of the tidal effect, we need to consider free-

falling particles in the gravitational field created by the source which start from the 
points of a given curve .c(q) = (x(q), y(q), z(q)) as we presented in the previous 
chapter. We do not repeat the results obtained there. As we will not repeat the equiv-
alent formula of the tidal effect written with respect to the geometry of a metric as 
seen in the same previous chapter. 

8.6 The Kepler Laws 

We intend to obtain the three Kepler laws regarding the motion of planets around the 
Sun. It is necessary to understand how Newtonian mechanics together with Euclidean 
geometry describe these laws and, for this reason, let us prepare the geometric frame-
work we need. 

An ellipse of foci .F1( f, 0) and .F2(− f, 0), f > 0 is the locus of points .P in 
the Euclidean plane such that .|PF1| + |PF2| = 2a, where . a is a positive constant, 
.a > f . The equation of the ellipse can be found after we transform the condition 
.|PF1| + |PF2| = 2a into the equation 

. 

/
(x − f )2 + y2 +

/
(x + f )2 + y2 = 2a.

The result is 

. 
x2

a2
+ y2

b2
= 1

where .b2 = a2 − f 2. 
The line .F1F2 is called the major axis and the points where the ellipse cuts the 

major axis have the coordinates .(a, 0) and .(−a, 0). 
The middle of the interval.F1F2 is called the centre of the ellipse. In this case, the 

centre of ellipse is the origin .O(0, 0). 
The minor axis is perpendicular to the major axis at .O(0, 0). The minor axis 

intersects the ellipse at the points .(0, b) and .(0,−b). 

The eccentricity of the ellipse is, by definition,. e := f

a
=

√
a2 − b2

a
=
/

1 − b2

a2
.

The area enclosed by the previous ellipse can be computed using the function 

.y(x) = b

/

1 − x2

a2
which describes the arc of the ellipse . {(x, y), x ∈ (−a, a), y >

0}. If we use the change of variable .x = a sin t the enclosed area is
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. A = 2
{ a

−a
y(x)dx = 2

b

a

{ a

−a

/
a2 − x2dx = πab.

If the ellipse has its centre at .(x0, y0) and the axes parallel to the axes of the system, 
i.e. the foci are .(x0 + f, y0) and .(x0 − f, y0), the equation is 

. 
(x − x0)2

a2
+ (y − y0)2

b2
= 1.

In fact, the previous ellipse is parallel shifted with respect to the axis such that the 
old centre .O(0, 0) becomes .O1(x0, y0). 

Consider an ellipse of eccentricity .0 < e < 1 with a focus at .O(0, 0). Its major 

axis intersects the ellipse at the points .V

(
k

1 + e
, 0

)
, k > 0, and .V '

(
− k

1 − e
, 0

)
. 

The length of the major semi-axis is .a = k

1 − e2
, the centre of the ellipse is 

.

(
− ke

1 − e2
, 0

)
, and the length of the minor semi-axis is.b = k√

1 − e2
. The equation 

of this ellipse is 

. 

(
x + ke

1 − e2

)2

k2

(1 − e2)2

+ y2

k2

1 − e2

= 1.

Problem 8.6.1 Find the locus of points .M(x, y) such that 

. r = r(θ) = k

1 + e cos θ
,

where .r = |OM | = /
x2 + y2 and . θ is the counterclockwise angle . ∠V OM, V ∈

Ox .
Hint. The geometric meaning of .r + er cos θ = k, k > 0, leads to the equation 
.

/
x2 + y2 + ex = k, i.e. .

/
x2 + y2 = k − ex . If .e = 1, we obtain a parabola. If 

.e /= 1, after squaring, the previous equation can be written in the form 

. 

(
x + ke

1 − e2

)2

k2

(1 − e2)2

+ y2

k2

1 − e2

= 1.

Let us observe that, for .0 < e < 1, we have an ellipse equation. For .e > 1, the  
equation is
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. 
(x − x0)2

a2
− (y − y0)2

b2
= 1,

i.e. we deal with a hyperbola. [
We are ready to study the motion of planets under the action of gravitational force. 
Consider the position of the Sun as .O(0, 0, 0). The motion of the Earth around 

the Sun depends on time, i.e. the position of the Earth is given by the vector . 
→

X (t)=
(x(t), y(t), z(t)). Denote the length of this vector by 

. r(t) =
/
x2(t) + y2(t) + z2(t).

The Earth is attracted by the Sun via the gravitational force 

. 
→
F (t) = −GmM

r3(t)

→
X (t),

where.M is the mass of the Sun,. m is the mass of the Earth, and.G is the gravitational 
constant. The equation of motion of the Earth around the Sun, established by the 
Newton’s second law, is 

. m
→̈
X(t) = −GmM

r3(t)

→
X (t),

which can be written as 

. 
→̈
X(t) = − GM

r3(t)

→
X (t) ,

due to the validity of Galileo’s equivalence principle. Let us denote .μ = GM and 

.
→
V= →̇

X . 

Theorem 8.6.2 The motion of the Earth is planar, that is, the entire trajectory is 
included in a plane which contains the Sun. 

Proof If we consider the derivative of the cross product between .
→
X(t) and .

→
V (t), 

successively we have 

. 
d

dt

(→
X × →

V
)

= →̇
X × →

V + →
X × →̇

V = →
V × →

V + →
X × →̈

X = →
0 ,

that is, .
→
X(t) × →

V (t) = →
J , where. 

→
J does not depend on. t . Therefore, the vector. 

→
J of 

length . J is a constant vector, more precisely, it is the normal vector to the plane in 
which the motion of the Earth around the Sun happens. [

Let us consider.z = 0 the equation of the plane of motion, that is, the position of the 

Earth is given by the vector.
→

X (t)= (x(t), y(t), 0). In the plane of motion, we consider 
polar coordinates .x = r cos θ, y = r sin θ, with . r = r(t) = /

x2(t) + y2(t); θ =
θ(t). We can prove:
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Theorem 8.6.3 If .
→

X (t)= (r(t) cos θ(t), r(t) sin θ(t), 0) and .
→
V (t) = →̇

X(t) it results 

(i) . 
→
J= (0, 0, r2θ̇)

(ii) .r2θ̇ = J . 

Proof We cancel . t to write easier the next computations. Then 

. 
→
V= →̇

X = (ṙ cos θ − r θ̇ sin θ, ṙ sin θ + r θ̇ cos θ, 0)

and 
. 

→
J=→

X × →
V= (

0, 0, r2θ̇
)
.

Since .
→
J is a constant vector, the last component does not depend on time, therefore 

it is a positive constant equal to its length . J . So, both assertions are proved. [

Theorem 8.6.4 The equation of motion for .
→

X (t) is transformed into the equation 

. r(t)r̈(t) = J 2

r2(t)
− μ

r(t)
.

Proof We started from the equation of motion 

. 
→̈
X(t) = − μ

r3(t)

→
X (t)

and, using it, we obtained that the motion is planar. In the plane of motion, the 

polar coordinates allow us to describe the normal vector. 
→
J and to obtain the relation 

. r2θ̇ = J.
The derivative with respect to. t of the relation.r2 =

/→
X ,

→
X
\
leads to. rṙ =

/→
X ,

→
V
\
.

Then, we have 

. (ṙ)2 + rr̈ =
/→
V ,

→
V
\
+
/→
X ,

→̇
V

\
,

i.e. 
. (ṙ)2 + rr̈ =

/→
V ,

→
V
\
+
/→
X ,− μ

r3
→
X
\
,

that is, 

. (ṙ)2 + rr̈ = | →
V |2 − μ

r
.

To compute .| →
V |2, we start from the identity 

.

/→
X ,

→
V
\2

+ | →
X × →

V |2 = | →
X |2| →

V |2.
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If we replace, in the previous identity, .
/→
X ,

→
V
\
with .rṙ , .| →

X × →
V |2 with .J 2, i.e. 

.(r2θ̇)2, and .| →
X |2 with . r2, it results  

. (rṙ)2 + (r2θ̇)2 = r2| →
V |2,

thus 
. (ṙ)2 + r2(θ̇)2 = | →

V |2.

Using .θ̇ = J

r2
, we obtain 

. | →
V |2 = (ṙ)2 + J 2

r2
.

It results 

. �
�(ṙ)2 + rr̈ = �

�(ṙ)2 + J 2

r2
− μ

r
,

which complete the proof. [

Theorem 8.6.5 If .r = 1

u
and .u = u(θ), the equation 

. rr̈ = J 2

r2
− μ

r

becomes 

. 
d2u

dθ2
+ u = μ

J 2
.

Proof We first show that.ṙ = −J
du

dθ
.To obtain this, let us observe that, successively, 

we have 

. ṙ = − u̇

u2
= − 1

u2
du

dt
= − 1

u2
du

dθ

dθ

dt
= −r2

du

dθ
θ̇ = −J

du

dθ
.

Then, .r̈ = −J
d2u

dθ2
θ̇, i.e. 

. r̈ = −J 2 1

r2
d2u

dθ2
.

Taking into account .r = 1

u
and replacing into 

.rr̈ = J 2

r2
− μ

r
,
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we obtain the desired equation 

.
d2u

dθ2
+ u = μ

J 2
.

[

The general solution is .u(θ) = A cos(θ − θ0) + μ

J 2
, where. A is an arbitrary con-

stant and .θ0 is the initial value, called phase, which leads to the starting point of the 
trajectory. 

If we are interested only in the shape of the solution, we may consider 

. u(θ) = A cos θ + μ

J 2
.

The solution in . r is 

. r(θ) =
J 2

μ

1 + J 2A

μ
cos θ

.

If . A is in such a way that 

. 0 < e := J 2A

μ
< 1

the trajectory is an ellipse. Therefore we have proved. 

Theorem 8.6.6 (Kepler’s first law) In the case of the pair {Sun, Earth}, the gravity 
makes Earth to move around the Sun after an elliptical orbit having the Sun as one 
of the foci. 

This is the Kepler first law. It generally describes how a planet moves around a 
star. 

Let us see again the big picture of the motion of the Earth around Sun. We have the 
Sun at the origin of the coordinate system and the Earth position given by the vector 

.

→
X (t)= (x(t), y(t), z(t)).The gravitational force acting between the two bodies leads 
to the equation of motion 

. 
→̈
X(t) = − GM

r3(t)

→
X (t).

The motion is planar. Using polar coordinates, we can transform the equation into 
the new equation 

.rr̈ = J 2

r2
− μ

r
,
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and finally into the equation 

. 
d2u

dθ2
+ u = μ

J 2

which can be solved. The solution, in polar coordinates, is the ellipse 

. r(θ) =
J 2

μ

1 + J 2A

μ
cos θ

.

Defining .k := J 2

μ
and .e := J 2A

μ
, in Cartesian coordinates, the equation is 

. 

(
x + ke

1 − e2

)2

k2

(1 − e2)2

+ y2

k2

1 − e2

= 1,

where the semi-axes are .a := k

(1 − e2)
and .b := k

/
(1 − e2)

. The  perihelion of the 

trajectory, that is, the closest position to the Sun, is at the point .V

(
k

1 + e
, 0

)
. 

The aphelion, that is, the furthest position from the Sun, is located at the point 

.V '
(

− k

1 − e
, 0

)
. 

If we look at comets, the trajectories can be elliptic, hyperbolic, and parabolic. 
The case .e = 1 is a possible case, but it is difficult for an astronomer to say that 
a comet has a parabolic orbit. It is more probable to have a hyperbolic orbit with 
.e > 1 but very close to . 1. We prefer to remain at the case {planet, Sun} where the 
trajectories are always ellipses. Now we are able to prove the Kepler second law. 

Theorem 8.6.7 (Kepler’s second law) Areas swept out by.
→
OX in equal time intervals 

are equal. 

Proof Consider two close positions of.
→
OX , that is.

→
OX ' and.

→
OX ''. The angle between 

these two positions is .dθ. The infinitesimal area swept by .
→
OX is .d A = 1

2
r2dθ. It  

results .
d A

dt
= 1

2
r2θ̇, i.e. 

. 
d A

dt
= 1

2
J,

which ends the proof. [
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Let us continue with the Kepler third law. The time necessary to have a complete 
revolution around the Sun is called the orbital period of a planet. It is denoted by. T . 

Theorem 8.6.8 (Kepler’s third law) The ratio between the square of the orbital 

period and the cube of the major semi-axis is a constant, that is, .
T 2

a3
= 4π2

GM
. 

Proof Let us observe that .
→
OX sweeps the area of the ellipse during a revolution. 

Thus 

. πab = T
1

2
r2θ̇.

It results .
T

a
= 2π

b

J
, that is, .

T 2

a2
= 4π2 b

2

J 2
. 

According to previous formulas for semi-axes we have. b2 = k2

1 − e2
= k

k

1 − e2
=

ka, therefore 

. 
T 2

a2
= 4π2 ka

J 2
.

Taking into account that .k := J 2

μ
we finally obtain 

.
T 2

a3
= 4π2 1

μ
.

[

The third law is called the Harmony law because, if we consider two different 

planets moving around the Sun, the same constant is the ratio between .
T 2
1

a31
and .

T 2
2

a32
. 

8.7 Circular Motion, Centripetal Force, Deflection of Light 
Effect, and Dark Matter Problem 

Before continuing, let us discuss a little bit about circular motion and observe the 
differences with respect to the elliptical motion presented above. Circular motion 
means a movement of an object along the circumference of a circle. A boy rotating a 
tide up ball with a chord, a car moving at constant speed on a circular track, or even 
a satellite on its orbit around the Earth can be mathematically modelled as circular 
motions. So, the trajectory is a circle of radius . R, the object in circular motion can 
be imagined as a point (with a mass, say . m) moving at constant speed . v. The speed 
vector. 

→
v is tangent at each point of the circle. To maintain the point on this trajectory, 

the force vector (that is the acceleration vector, too) has to be imagined as an arrow 
oriented from the point to the centre. Of course, the magnitude of the force has to
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be the same for all the possible positions, because there are no differences between 
these vectors except the possible directions. This force is called a centripetal force. 
The corresponding acceleration is called centripetal acceleration. 

Let us consider two tangent vectors corresponding to two close points on the 
circumference separated by a.dθ angle. Denote by.dx the length of the arc determined 
by the two points and observe that between the two tangent vectors there is the same 

angle .dθ. We have .dx = Rdθ and .v = dx

dt
. If .dv is the vector which connects their 

ends, we may approximate .dθ = dv

v
. It results 

. dx = Rdθ = R
dv

v
= vdt,

that is, 

. a := dv

dt
= v2

R
.

This is the formula of the centripetal acceleration which allows to write the formula 
of the centripetal force: 

. Fc := m
v2

R
.

How it can be imagined the rotation of the Earth around the Sun using this force? 
The mathematical answer is 

. Fc = mv2

R
= GMm

R2
= F,

i.e. 

. v2 = GM

R
,

thanks to the equivalence principle by which. m can be simplified in both sides of the 
equation. This is important because if the radius. R is increasing the orbital speed has 
to decrease. 

Now, since the period of revolution around the circular trajectory is .T = 2πR

v
, 

we obtain 

. T 2 = 4π2R2 1

v2
= 4π2R3

GM
,

that is, .T 2 is proportional to .R3, or  

. 
T 2

R3
= 4π2

GM
.

It is a sort of approximation of the third Kepler law.
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Let us imagine our Sun or a spherical galaxy and a plane section through their 
centre. Therefore we can imagine both sections as discs. If . R is the radius of such a 
disc it remains only to imagine a ray of light passing through the vicinity of the disc. 
It makes sense to consider the time./t when the ray of light is affected by gravity to 
be 

. /t = 2R

c
,

where. c is the speed of light. The gravitational force. F which acts to bend the ray of 
light has the gravitational acceleration described by the formula 

. a = GM

R2
,

where .M is the mass of, let us say, the Sun. Now, denote by ./v the variation of the 
speed of light when it is affected by Sun’s gravity. We have 

. /v = a/t = GM

R2
· 2R

c
= 2GM

Rc
.

A right triangle of speeds can be imagined. The deflected ray is the hypotenuse, 
the other two sides are “. c” and “./v” and the acute angle of deflection is. α, such that 

. tanα = /v

c
= 2GM

Rc2
.

Taking into consideration that . α is small, .tanα ≈ α, therefore 

. α = 2GM

Rc2
.

This value is half the value we measure in practice. Therefore the real value of 
deflection is 

. α = 4GM

Rc2

and will be computed using a metric in the chapter dedicated to general relativity. 
The centripetal force is often used in approximations of trajectories in astronomy. 

An interesting application of the centripetal force is the possible existence of dark 
matter or, according to Fritz Zwicky, the missing matter [200]. The formula 

. v2 = GM

R
,

which asserts that if . R is increasing, the speed . v decreases (if .M remains constant), 
is crucial.
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In a galaxy, there are billions of stars. We may think that these stars are in an 
imaginary sphere having as a centre, the centre of the galaxy. Some stars are closer 
to the centre of the galaxy, some of them are far. Some other stars are out of the edge 
of the galaxy, or, more precisely, they are in the area where, if we increase the radius 
of the galaxy, we add few stars. For stars in the zone with a lot of stars, if we increase 
the radius we have more stars, i.e. more mass. Here, the fact that the observed speed 
of stars rotating around the centre is the same it is not a problem. The speed . v can 
be kept constant, if the mass .M increases when .R increases. But for distant stars, 
when we increase the radius, we do not add more mass inside. However the measured 
speed . v is the same and it is more or less constant also very far from the galactic 
centre (more than 10 kiloparsec). According to this situation, we have to suppose the 
existence of a sort of (sub-luminous) matter that cannot be detected by the standard 
electromagnetic emission. However, the amount of such a matter increases with the 
increase of the distance from the centre. The problem is known as the dark matter 
problem and can be solved in two alternative ways: Either one suppose the existence 
of exotic matter interacting only gravitationally, or one assumes deviation from the 
Kepler laws at large distances. More details can be found in [ 56, 141, 142]. 

Later in the book, we will study the trajectory of planets in a given metric. Specif-
ically, we will study the trajectory of planets both in the Schwarzschild metric 

. ds2 = c2
(
1 − 2GM

c2r

)
dt2 − 1

1 − 2GM
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

and in the Einstein metric 

. ds2 = c2
(
1 − 2GM

c2r

)
dt2 −

(
1 + 2GM

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

The planet equation of motion in both metric is 

. 
d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
u2,

where. c is the constant speed of light in vacuum and.μ = GM as previously defined. 
Why we study the equation of motion in a metric and how close is the solution of 

this new equation to the above classical solution? These topics will be discussed in 
the General Relativity chapter of this book. 

8.8 The Mechanical Lagrangian 

In a system of coordinates .(t, x), let .(t, x(t)) be the trajectory of a particle of mass 
.m moving under the influence of a force derived from a time-independent potential 
. V . Since .V depends only on the position, we denote this by .V := V (x).
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Newton’s equation of motion is 

. mẍ(t) = F(x),

where the force acting on the particle is . F(x) = −dV

dx
.

Given some initial conditions, the trajectory .(t, x(t)) is comprised between the 
initial point .(t1, x(t1)) and the final point .(t2, x(t2)). 

Let us underline that this trajectory is the expression of the force acting on the 
particle under some initial conditions. Therefore, there is an unique trajectory deter-
mined by the force and the initial conditions. 

Now let us consider all the paths connecting .(t1, x(t1)) and .(t2, x(t2)). They can 
be thought as .y(t) + η(t), with . y(t1) = x(t1), y(t2) = x(t2), η(t1) = η(t2) = 0.

Having all these paths, what new theory do we need to imagine in order to discover 
the original path described by Newton’s equation of motion? 

To answer this question, we need some technical details (see also [102]). 
Let us insist on this first part when we have described what we want to do. We 

have used. V such that.F = −dV

dx
. We defined. V as an independent potential and we 

suggested its connection with the force . F , .dV = −Fdx . 
Is this definition connected to the facts seen in our previous sections when we 

have studied the gravitational force and the gravitational potential? The answer is 
yes, but we need to point out a major difference between this.V and the gravitational 
potential . Φ. 

Consider a body of mass .M at the origin .O of a line whose current coordinate is 
denoted by. x . Suppose that at point.N (x), a body of mass. m exists. The gravitational 

force in this case has the intensity.F = GMm

x2
. The work done by the body of mass. M

to move the body of mass. m from. x to.x − dx is.−Fdx . There is an energy transferred 
to do this work. Its variation./E is.−Fdx . By definition, the gravitational potential 
energy.PE (r) is related to the work done to move the body of mass. m from the infinity 
to the point having coordinate . r , that is, 

. PE (r) =
{ r

∞
Fdx =

{ r

∞
GMm

x2
dx = −GMm

r
.

The potential energy can be denoted by .PE . If one looks at the formula obtained 

and takes into account the formula of the gravitational potential .−GM

r
, we can 

understand both the explanations above and the relation 

. PE = mΦ.

Therefore, another definition for the gravitational potential appears: the work (energy 
transferred) per unit mass necessary to move a body from infinity to the point having 
the coordinate . r . Indeed,
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. Φ(r) = 1

m

{ r

∞
Fdx = 1

m

{ r

∞
GMm

x2
dx = −GM

r
.

In the case when we consider the constant gravitational field determined by the 
constant acceleration . g between the origin .O and a point .H at the coordinate . h, the  
potential energy is expressed by the formula .PE = mgh. The explanation is related 
to the difference of formal integrals 

. PE := PE (h) − PE (0) =
{ h

∞
gmdx −

{ 0

∞
gmdx =

{ h

0
gmdx = gmh

which describes the amount of energy necessary to move the body at . h to . 0. 
In the same way, we can define the kinetic energy. Let us start from . F = ma =

m
dv

dt
written in its discrete form, .F = m

/v

/t
. If we multiply by ./r , we obtain 

. F/r = m
/v

/t
/r = m

/r

/t
/v = mv/v,

which can be written in the differential way as 

. Fdr = mvdv.

Now, the amount of energy necessary to bring a body initially at rest to the speed . v

is 

. T (v) =
{ v

0
Fdx =

{ v

o
mxdx = m

v2

2
.

Since. v can be seen as.ẋ(t), we may consider the kinetic energy of the mechanical 

system defined by the formula .T = T (ẋ) := 1

2
m(ẋ(t))2. Another possible notation 

is .KE . Here, with mechanical system we intend a system of elements that interact 
on mechanical principles. A material point and a force which acts on it is a possible 
example. Two material points which interact through the gravitational force offer 
another example. In this perspective, the next exercise has important consequences 
in Newtonian mechanics. 

Exercise 8.8.1 Consider a mechanical system whose kinetic energy is . T (ẋ) :=
1

2
m(ẋ(t))2 and its potential energy is .V (such that the force which acts is . F(x) =

−dV

dx
). Show that the total energy of the system, .T + V , is a constant.
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Hint. If we derive with respect to . t the total energy, we obtain 

. 
d

dt
(T + V ) =

(
mẋ(t)ẍ(t) + dV

dx

dx

dt

)
= (mẍ(t) − F) ẋ(t) = 0,

that is, .T + V is a constant. 
We define the mechanical Lagrangian of the system by 

. L = L(x, ẋ) := T − V = 1

2
m(ẋ(t))2 − V (x).

In this section, where there is no possibility of confusion, we simply use the definition 
“Lagrangian” instead of mechanical Lagrangian. Later in the book, we will see that 
there exist general Lagrangians which come from Geometry, therefore we have to 
well understand the nature of the Lagrangian we are considering. 

Let us observe that, even if. x and. ẋ depends on. t , this Lagrangian is only implicitly 
a function of time. 

In this formalism, it makes sense to consider a functional called action, 

. S[y] =
{ t2

t1

|
1

2
m(ẏ(t))2 − V (y)

|
dt

which exists for any path .y(t), not only for the “physical right on” which is .x(t). 
Now consider the action corresponding to .y(t) + η(t), 

. S[y + η] =
{ t2

t1

|
1

2
m(ẏ(t) + η̇(t))2 − V (y(t) + η(t))

|
dt .

We have, after expanding .V in Taylor series with respect to .y(t), 

. S[y + η] = S[y] +
{ t2

t1

|
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

|
dt + O(η2),

where .O(η2) are terms of order .η2 := η2(t) or higher. We can write 

. S[y + η] = S[y] + δS + O(η2),

where 

. δS =
{ t2

t1

|
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

|
dt

is called the first-order variation of the action . S. Since.η(t1) = η(t2) = 0, we obtain
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. δS =
{ t2

t1

|
mẏ(t)η̇(t) − dV

dy
(y(t)η(t))

|
dt =

. =
{ t2

t1

|
m
d(ẏ(t)η(t))

dt
− mÿ(t)η(t) − dV

dy
(y(t)η(t))

|
dt =

. = mẏ(t2)η(t2) − mẏ(t1)η(t1) −
{ t2

t1

|
mÿ(t) + dV

dy
(y(t))

|
η(t)dt =

. = −
{ t2

t1

|
mÿ(t) + dV

dy
(y(t))

|
η(t)dt.

Therefore, .δS ≡ 0 means 

. 

{ t2

t1

|
mÿ(t) + dV

dy
(y(t))

|
η(t)dt = 0

for every. η, and it happens if and only if.mÿ(t) + dV

dy
(y(t)) = 0, i.e. for.y(t) = x(t). 

We have proved: 

Theorem 8.8.2 The first-order variation of the action . S vanishes, i.e. 

. δS =
{ t2

t1

|
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

|
dt = 0,

if and only if .y(t) satisfies Newton’s equation of motion 

. mẍ(t) − F(x) = 0.

So, the answer is: The “physical right path” happens when the first-order variation 
.δS vanishes. Therefore the right path is described by the condition .δS ≡ 0. This is  
known as Hamilton’s stationary action principle. 

8.9 Geometry Induced by a Lagrangian 

Now, let us consider another problem. 
Can we find an equation, satisfied by a general function .L(x, ẋ), not only by 

the mechanical Lagrangian .L = T − V as before, such that the function.x = x(t), 
which connects the given points .(t1, x(t1)); (t2, x(t2)) where the functional
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. S[x] =
{ t2

t1

L(x(t), ẋ(t))dt .

is extremized? 
Let us explain first what is the mathematical meaning of the words “extremizes 

the functional . S”. Consider all the perturbation of .x(t), say  

. yλ(t) = x(t) + λη(t), λ ∈ R

which preserves the endpoints .(t1, x(t1)); (t2, x(t2)), that is, .η(t1) = η(t2) = 0 and 
construct the action 

. Sλ[yλ] =
{ t2

t1

Lλ(yλ(t), ẏλ(t))dt =
{ t2

t1

Lλ(x(t) + λη(t), ẋ(t) + λη̇(t))dt.

Extremizing the functional .S[x] means or .Sλ[yλ] ≥ S[x] for any.λ ∈ R or. Sλ[yλ] ≤
S[x] for any .λ ∈ R, where the equality works if and only if .λ = 0. 

Therefore, extremizing the functional .S[x] implies the condition .
dSλ

dλ

||||
λ=0

≡ 0. 

Since 

. 
dLλ

dλ
= ∂Lλ

∂yλ

∂yλ

∂λ
+ ∂Lλ

∂ ẏλ

∂ ẏλ

∂λ
= ∂Lλ

∂yλ
η(t) + ∂Lλ

∂ ẏλ
η̇(t) ,

it results 

. 
dLλ

dλ

||||
λ=0

= ∂L

∂x
η(t) + ∂L

∂ ẋ
η̇(t),

therefore the condition .
dSλ

dλ

||||
λ=0

≡ 0 is written as 

. 
dSλ

dλ

||||
λ=0

=
{ t2

t1

|
∂L

∂x
η(t) + ∂L

∂ ẋ
η̇(t)

|
dt ≡ 0.

Definition 8.9.1 The curve .x = x(t) which extremizes the functional 

. S[x] =
{ t2

t1

L(x(t), ẋ(t))dt

is called a stationary point of the functional .S[x]. 
Theorem 8.9.2 (Euler-Lagrange equation) The curve .x = x(t) which connects the 
given points .(t1, x(t1)), (t2, x(t2)) satisfies the Euler–Lagrange equation 

.
d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0
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if and only if it is a stationary point of the functional 

. S[x] =
{ t2

t1

L(x(t), ẋ(t))dt.

Proof Using the integration by parts 

. 

{ t2

t1

∂L

∂x
η(t)dt +

{ t2

t1

∂L

∂ ẋ
η̇(t)dt =

. =
{ t2

t1

∂L

∂x
η(t)dt + ∂L

∂ ẋ
η(t2) − ∂L

∂ ẋ
η(t1) −

{ t2

t1

d

dt

(
∂L

∂ ẋ

)
η(t)dt =

. =
{ t2

t1

|
∂L

∂x
− d

dt

(
∂L

∂ ẋ

)|
η(t)dt.

The condition .
dSλ

dλ

||||
λ=0

≡ 0 means 

. 

{ t2

t1

|
∂L

∂x
− d

dt

(
∂L

∂ ẋ

)|
η(t)dt = 0 ,

for every function . η. We obtain 

.
∂L

∂x
− d

dt

(
∂L

∂ ẋ

)
= 0.

[

Another proof can be considered for the Euler–Lagrange equation. As previously, 
let us consider the action 

. S[y] =
{ t2

t1

L(y(t), ẏ(t))dt .

Now consider the action corresponding to .y(t) + η(t), 

. S[y + η] =
{ t2

t1

L(y(t) + η(t), ẏ(t) + η̇(t))dt,

where .η(t1) = η(t2) = 0. After expanding .L in Taylor series with respect to the 
variables . y and . ẏ we obtain 

.L(y(t) + η(t), ẏ(t) + η̇(t)) = L(y(t), ẏ(t)) + ∂L

∂y
η + ∂L

∂ ẏ
η̇ + O(η2) + O(η̇2).
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The first-order variation of the action . S is 

. δS =
{ t2

t1

|
∂L

∂y
η(t) + ∂L

∂ ẏ
η̇(t)

|
dt.

Using the integration by parts and the conditions .η(t1) = η(t2) = 0, it results suc-
cessively 

. δS =
{ t2

t1

∂L

∂y
η(t)dt +

{ t2

t1

∂L

∂ ẏ
η̇(t)dt =

. =
{ t2

t1

∂L

∂y
η(t)dt + ∂L

∂ ẏ
η(t2) − ∂L

∂ ẏ
η(t1) −

{ t2

t1

d

dt

(
∂L

∂ ẏ

)
η(t)dt =

. =
{ t2

t1

|
∂L

∂y
− d

dt

(
∂L

∂ ẏ

)|
η(t)dt.

The first-order variation of action vanishes if the last integral vanishes, i.e.. δS ≡ 0
iff 

. 

{ t2

t1

|
∂L

∂y
− d

dt

(
∂L

∂ ẏ

)|
η(t)dt = 0

unction . η. This means 

.
∂L

∂y
− d

dt

(
∂L

∂ ẏ

)
= 0.

[
Both proofs reported before hold even if the Lagrangian is.L(t, y(t), ẏ(t)) instead 

of.L(y(t), ẏ(t)). In the particular case, when the Lagrangian does not depend explic-
itly on. t , the Euler–Lagrange equation reduces to the Beltrami identity. The following 
theorem holds. 

Theorem 8.9.3 (Beltrami’s identity) If the Lagrangian does not depend explicitly 
on . t , then a constant .C exists such that 

. L(y, ẏ) − ẏ
∂L(y, ẏ)

∂ ẏ
= C.

Proof The total derivative of .L(t, y(t), ẏ(t)) is 

. 
dL

dt
= ∂L

∂t
+ ∂L

∂y
ẏ + ∂L

∂ ẏ
ÿ,

i.e. 

.
∂L

∂y
ẏ = dL

dt
− ∂L

∂t
− ∂L

∂ ẏ
ÿ.
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If .
∂L

∂t
= 0, the previous equality becomes 

. 
∂L

∂y
ẏ = dL

dt
− ∂L

∂ ẏ
ÿ.

Multiplying the Euler–Lagrange equation by . ẏ, we obtain 

. ẏ
∂L

∂y
= ẏ

d

dt

(
∂L

∂ ẏ

)
,

therefore, after combining the last two equalities we have 

. 
dL

dt
− ẏ

d

dt

(
∂L

∂ ẏ

)
− ∂L

∂ ẏ
ÿ = 0,

that is 

. 
d

dt

(
L − ẏ

∂L

∂ ẏ

)
= 0,

which is equivalent to the statement. [

Let us consider now an important problem solved first using the equilibrium of 
the forces involved, afterwards using the Euler–Lagrange equation. We are talking 
about the problem of hanging rope. 

Problem 8.9.4 The catenary problem: Suppose that a rope is hanged with its ends at 
the same height above the floor and its mass on the unit length is. ρ. Find the function 
which describes the shape of the rope. 

Solution I: Consider a frame of coordinates such that the two given points are 
.A(−a, b),.B(a, b) and the shape is described by the points of the curve.(x, y(x)). The  
statement conditions allow us to consider a minimum point at .O(0, 0), a symmetry 
with respect to.Oy-axis and.Ox-axis as a tangent to the curve at. O . Consider a point 
.M(x, y(x)) on the arc.OB and the tangent at . M . Let us denote by. s the length of the 
arc .OM , that is, 

. s(x) =
{ x

0

/
1 + (ẏ(t))2dt.

From Leibniz integral rule, 

. s(x) =
{ x

0

/
1 + (ẏ(t))2dt = F(x) − F(0)

where .
dF

dt
= /

1 + (ẏ(t))2. Therefore
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. 
ds

dx
=
/
1 + (ẏ(x))2.

There are three forces at equilibrium which act on the given arc. The tension. (−T0, 0)
at. O , the weight of the arc.(0,−ρgs), where. g is the acceleration due to gravity, and 
the tension of magnitude. T at. M ,.(T cos θ, T sin θ), this one acting along the tangent 
to .(x, y(x)) at . M . Therefore 

. (−T0, 0) + (0,−ρgs) + (T cos θ, T sin θ) = (0, 0).

The equilibrium conditions are 

. 

{
T cos θ = T0
T sin θ = ρgs.

It results 

. ẏ(x) = dy

dx
= tan θ = ρg

T0
s,

i.e. 

. ÿ(x) = ρg

T0

ds

dx
= ρg

T0

/
1 + (ẏ(x))2.

If we denote .b := ρg

T0
and .u = ẏ(x), it remains to solve the equation 

. 
u̇(x)

/
1 + (u(x))2

= b

which leads to 

. 

{
du√
1 + u2

= b
{

dx .

Since .u(0) = ẏ(0) = 0, the equality 

. u +
/
1 + u2 = ebx+l

implies .l = 0 and 
. u(x) = sinh 2bx,

i.e. 

.y(x) = T0
2ρg

cosh

(
2ρg

T0
x

)
− T0

2ρg
.

[
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Solution II: The rope has a given length 

. la,b =
{ a

−a

/
1 + (ẏ(x))2dx ,

and we can think at a Lagrangian induced by the potential energy of the rope combined 
with the constraint of finite length for the rope, 

. L = ρgy(x)
/
1 + (ẏ(x))2 + α

(/
1 + (ẏ(x))2 − la,b

)
,

where . α is a constant. Without the length constraint, the potential energy is smaller 
and smaller while the rope is longer and longer. Finally, we can try to derive the 
curve starting from the Lagrangian 

. L = (ρgy + α)
/
1 + ẏ2 + β,

where. β is a constant. Since.
∂L
∂t

= 0, we can use Beltrami’s identity. Therefore there 

exists a constant . C such that 

. L − ẏ
∂L
∂ ẏ

= C

which means 

. (ρgy + α)
/
1 + ẏ2 − ẏ(ρgy + α)

ẏ
/
1 + ẏ2

= C,

i.e. 

. (ρgy + α)
1

/
1 + ẏ2

= C.

It remains to solve 

. ẏ2 = (ρgy + α)2

C2
− 1.

The substitution .Cu = ρgy + α leads to 

. 
C

ρg
u̇ =

/
u2 − 1,

i.e. 

. 
du√
u2 − 1

= ρg

C
dx

with the solution .u(x) = cosh
(ρg

C
x + γ

)
, where . γ is a constant. Therefore
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. y(x) = C

ρg
cosh

(ρg

C
x + γ

)
− α.

The constants are determined from the symmetry condition with respect to.Oy-axis, 

that is, .γ = 0, .y(0) = 0 that is .α = C

ρg
and . C from 

.la,b =
{ a

−a

/
1 + (ẏ(x))2dx .

[
Let us return at the first proof we offered for the Euler–Lagrange equation. That 

proof can be used to obtain the general Euler–Lagrange equations. 
For the Lagrangian .L = L(x0, x1, ..., xn, ẋ0, ẋ1, ..., ẋ n), we obtain 

. 
∂L

∂xk
− d

dt

(
∂L

∂ ẋ k

)
= 0, k = 0, 1, ..., n.

It is easy to see that we have to act as before on each pair of variables . xk, ẋ k, k =
0, 1, ..., n. We are looking for a system of equations satisfied by the previous 
Lagrangian, such that a curve .x = x(t) = (x0(t), x1(t), .., xn(t)), which connects 
the given points 
.(t1, x0(t1), x1(t1), ..., xn(t1)), .(t2, x0(t2), x1(t2), ..., xn(t2)), extremizes the 
functional 

. S[x] =
{ t2

t1

L(x0(t), ẋ0(t), x1(t), ẋ1(t), ..., xn(t), ẋ n(t))dt.

As previously, a perturbation of .x(t) which preserves the endpoints is 

. yλ(t) = (y0λ(t), y1λ(t), ..., ynλ(t)) = (x0(t) + λη0(t), x
1(t) + λη1(t), ..., x

n(t) + ληn(t)),

.λ ∈ R with .ηk(t1) = ηk(t2) = 0, k = 0, 1, ..., n. Consider 

. Sλ[yλ] =
{ t2

t1

Lλ(y
0
λ(t), ẏ

0
λ(t), ..., y

n
λ(t), ẏnλ(t))dt =

. =
{ t2

t1

Lλ(x
0(t) + λη0(t), ẋ

0(t) + λη̇0(t), ..., x
n(t) + ληn(t), ẋ

n(t) + λη̇n(t))dt.

Extremizing the functional . S implies the condition .
dSλ

dλ

||||
λ=0

≡ 0. Or,  

.
dLλ

dλ
=

nE

k=0

|
∂Lλ

∂ykλ

∂ykλ
∂λ

+ ∂Lλ

∂ ẏkλ

∂ ẏkλ
∂λ

|
=

nE

k=0

|
∂Lλ

∂ykλ
ηk(t) + ∂Lλ

∂ ẏkλ
η̇k(t)

|
,
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therefore 

. 
dLλ

dλ

||||
λ=0

=
nE

k=0

|
∂L

∂xk
ηk(t) + ∂L

∂ ẋ k
η̇k(t)

|
.

The condition .
dSλ

dλ

||||
λ=0

≡ 0 becomes 

. 
dSλ

dλ

||||
λ=0

=
nE

k=0

{ t2

t1

|
∂L

∂xk
ηk(t) + ∂L

∂ ẋ k
η̇k(t)

|
dt ≡ 0.

Definition 8.9.5 The curve .x = x(t) = (x0(t), x1(t), .., xn(t)) which extremizes 
the functional 

. S[x] =
{ t2

t1

L(x0(t), ẋ0(t), x1(t), ẋ1(t), ..., xn(t), ẋ n(t))dt

is called a stationary point of the functional. 

Theorem 8.9.6 (Euler–Lagrange equations) The curve . x = x(t) = (x0(t),
x1(t), .., xn(t)) which connects the given points . (t1, x0(t1), x1(t1), ..., xn(t1)),
.(t2, x0(t2), x1(t2), ..., xn(t2)) satisfies the Euler–Lagrange equations 

. 
d

dt

(
∂L

∂ ẋ k

)
− ∂L

∂xk
= 0, k = 0, 1, ..., n

if and only if.x = x(t) = (x0(t), x1(t), .., xn(t)) is a stationary point of the functional 

. S[x] =
{ t2

t1

L(x0(t), ẋ0(t), x1(t), ẋ1(t), ..., xn(t), ẋ n(t))dt.

Proof Using the integration by parts, it is 

. 

nE

k=0

{ t2

t1

∂L

∂xk
ηk(t)dt +

nE

k=0

|
∂L

∂ ẋk
ηk(t2) − ∂L

∂ ẋk
ηk(t1)

|
−

nE

k=0

{ t2

t1

d

dt

(
∂L

∂ ẋk

)
ηk(t)dt =

. =
nE

k=0

{ t2

t1

|
∂L

∂xk
− d

dt

(
∂L

∂ ẋk

)|
ηk(t)dt.

Therefore the condition .
dSλ

dλ

||||
λ=0

≡ 0 reduces to 

.

nE

k=0

{ t2

t1

|
∂L

∂xk
− d

dt

(
∂L

∂ ẋ k

)|
ηk(t)dt = 0
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for every function . ηk . We obtain 

.
∂L

∂xk
− d

dt

(
∂L

∂ ẋ k

)
= 0, k = 0, 1, ..., n.

[

These equations are called the Euler–Lagrange equations. 
They represent an equivalent way to express Newton’s equations of motion in 

several variables for the Lagrangian .L = T − V . However, they are more general 
than the Newton equations because accelerations are not required in an explicit form. 
See [ 14] for a general discussion. 

Example 8.9.7 Consider a curve in the Euclidean plane, . c(t) = (t, x(t)),
t ∈ [a, b] ⊂ R. We know, from standard calculus textbooks, that its length between 
the points .c(a) and .c(b) is given by the formula 

. lba =
{ b

a
||ċ(t)||dt =

{ b

a

/
1 + ẋ2(t)dt.

For the Lagrangian .L(x, ẋ) = √
1 + ẋ2, extremizing the functional 

. S[x] =
{ b

a

/
1 + ẋ2dt ,

means to find out a curve connecting the points .A(a, x(a)), B(b, x(b)) such that it 
has minimum length. Any other curve has a longer length. Such a curve is a line and 
its minimum length is the length of the segment .[AB]. 

Let us see what happens if we use the Euler–Lagrange equation. We have. 
∂L

∂x
= 0

and .
∂L

∂ ẋ
= ẋ√

1 + ẋ2
. Therefore the Euler–Lagrange equation is . 

d

dt

(
ẋ√

1 + ẋ2

)
=

0.

It results.
ẋ√

1 + ẋ2
= k = constant, i.e..ẋ = k√

1 − k2
:= m, and finally. x = mt +

n, that is, a line equation in the Euclidean plane. The reader has to try to understand 
why .

√
1 − k2 exists. 

Let us observe that the Euclidean metric is obtained from the previous Lagrangian, 
that is, 

. ds2 = L2dt2 =
(/

(ṫ)2 + ẋ2
)2

dt2 = dt2 + dx2.

We may conclude that this is another proof for the fact that Euclidean lines are the 
geodesics of the Euclidean metric. 

Example 8.9.8 Using the rule .ds2 = L2dt2, the Poincaré metric of the half-plane 
written as 

.ds2 = 1

(x2)2
|
(dx1)2 + (dx2)2

|
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allows us to highlight a Lagrangian. This is 

. L(x1, x2, ẋ1, ẋ2) :=
/

1

(x2)2
|
(ẋ1)2 + (ẋ2)2

|
.

Let us write some modified equations in which .L2 is involved, in the form 

. 
d

dt

(
∂L2

∂ ẋ i

)
− ∂L2

∂xi
= 0, i ∈ {1, 2}.

Denote .x := x1, .y := x2. The first one becomes 

. 
d

dt

(
∂L2

∂ ẋ

)
− ∂L2

∂x
= 0,

that is, 

. ẍ − 2

y
ẋ ẏ = 0.

The second one becomes 

. 
d

dt

(
∂L2

∂ ẏ

)
− ∂L2

∂y
= 0,

that is, 

. ÿ + 1

y
ẋ2 − 1

y
ẏ2 = 0.

Therefore, we observe that we have obtained the equations of the geodesics of the 
Poincaré half-plane. The solutions are 

. x = x(t) = c + R tanh t, y = y(t) = R

cosh t

and 
. x(t) = a, y(t) = et ,

therefore the curves .c1(t) =
(
c + R tanh t,

R

cosh t

)
and .c2(t) = (a, et ) are the 

stationary points of the functional 

. S[c] =
{ t2

t1

1

y2
|
ẋ2 + ẏ2

|
dt.

If we look back at the first example and we work with .L2 instead . L , we obtain the 
same segment line as a geodesic.
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These facts involving the extremization of a functional and the examples rise some 
fundamental questions. 

• Is there Geometry involved? 
• Are the Euler–Lagrange equations, the geodesic equations for a given metric in 
which the Lagrangian is involved? 

• Why .L2 appeared? 

The next theorem answers at all these questions. 

Theorem 8.9.9 Consider the Lagrangian .L = /
gi j ẋ i ẋ j where .gi j = g ji and . gi j

depends only on the variables .(x0, x1, ..., xn). Then the Euler–Lagrange equations 

. 
∂L

∂xk
− d

dt

(
∂L

∂ ẋ k

)
= 0, k = 0, 1, ..., n,

are the geodesic equations of the metric .ds2 = L2dt2. 
Proof First, we prove that Euler–Lagrange equations have an equivalent form written 
with respect to .L2, 

. 
∂L2

∂xk
− d

dt

(
∂L2

∂ ẋ k

)
= −2

dL

dt

∂L

∂ ẋ k
.

Let us start from the Euler–Lagrange equations and multiply by .2L . We have  

. 2L
∂L

∂xk
− 2L

d

dt

(
∂L

∂ ẋ k

)
= 0,

that is, 

. 
∂L2

∂xk
− 2L

d

dt

(
∂L

∂ ẋ k

)
= 0.

Next, we compute .
d

dt

(
∂L2

∂ ẋ k

)
. We obtain 

. 
d

dt

(
∂L2

∂ ẋ k

)
= d

dt

(
2L

∂L

∂ ẋ k

)
= 2

dL

dt
· ∂L

∂ ẋ k
+ 2L

d

dt

(
∂L

∂ ẋ k

)
,

therefore 

. 2L
d

dt

(
∂L

∂ ẋ k

)
= d

dt

(
∂L2

∂ ẋ k

)
− 2

dL

dt
· ∂L

∂ ẋ k
.

So, the transformed equations 

. 
∂L2

∂xk
− d

dt

(
∂L2

∂ ẋ k

)
= −2

dL

dt
· ∂L

∂ ẋ k

are obtained.
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Second, using .L2 = gi j ẋ i ẋ j , where .gi j = gi j (x0, x1, ..., xn), we have  

. 

(
∂L2

∂xk

)
= ∂gi j

∂xk
ẋ i ẋ j .

Third: we prove the relation 

. 
d

dt

(
∂L2

∂ ẋ k

)
= 2gks ẍ

s + 2
∂gks
∂xm

ẋm ẋs .

This is not difficult. Successively 

. 
d

dt

(
∂L2

∂ ẋ k

)
= d

dt

(
∂

∂ ẋ k
|
gi j ẋ

i ẋ j
|) = d

dt

(
gi j

∂ ẋ i

∂ ẋ k
ẋ j + gi j ẋ

i ∂ ẋ
j

∂ ẋ k

)
=

. = d

dt

(
gkj ẋ

j + gik ẋ
i
) = d

dt

(
2gks ẋ

s
)
,

then 

. 
d

dt

(
∂L2

∂ ẋ k

)
= 2gks ẍ

s + 2
∂gks
∂xm

dxm

dt
ẋ s = 2gks ẍ

s + 2
∂gks
∂xm

ẋm ẋs .

The forth relation to be proved is 

. 
dL

dt
· ∂L

∂ ẋ k
= S̈

Ṡ
gks ẋ

s,

where 

. S =
{ t

t0

Ldτ =
{ t

t0

/
gi j ẋ i ẋ j dτ , Ṡ = L , S̈ = dL

dt
.

Step by step, we have 

. 
dL

dt
· ∂L

∂ ẋ k
= dL

dt
· ∂

∂ ẋ k

|/
gi j ẋ i ẋ j

|
= dL

dt
·
|

1

2
/
gi j ẋ i ẋ j

∂

∂ ẋ k
|
gi j ẋ

i ẋ j
|
|

=

. = dL

dt
·
|

1

2L
(2gks ẋ

s)

|
= S̈

Ṡ
gks ẋ

s .

Now, replacing in the modified Euler–Lagrange equations 

. − ∂L2

∂xk
+ d

dt

(
∂L2

∂ ẋ k

)
= 2

dL

dt
· ∂L

∂ ẋ k
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we obtain 

. − ∂gi j
∂xk

ẋ i ẋ j + 2gks ẍ
s + 2

∂gks
∂xm

ẋm ẋs = 2
S̈

Ṡ
gks ẋ

s .

Manipulating the dummy indexes, the previous relation can be written in the form 

. 2gks ẍ
s +

(
∂gks
∂xm

+ ∂gkm
∂xs

)
ẋm ẋ s − ∂gms

∂xk
ẋm ẋ s = 2

S̈

Ṡ
gks ẋ

s .

The Christoffel symbols appear if we put together the last two terms of the left 
member, 

. gks ẍ
s + 1

2

(
∂gks
∂xm

+ ∂gkm
∂xs

− ∂gms

∂xk

)
ẋm ẋ s = S̈

Ṡ
gks ẋ

s,

therefore, after multiplying by .gik , we have  

. ẍ i + Ti
ms ẋ

m ẋ s = S̈

Ṡ
ẋ i , i ∈ {0, 1, ..., n}.

Still we have not the desired geodesic equations, but we are close. It remains to 
consider the parameter . t in such a way to have a curve which is canonically param-
eterized. 

So, we choose . t such that .L = dS

dt
= Ṡ = 1. It results .

dL

dt
= S̈ = 0, i.e. 

.ẍ i + Ti
ms ẋ

m ẋ s = 0, i ∈ {0, 1, ..., n}.

[

We can see a new feature of Lagrangians: they are important because they induce 
metrics whose geodesics are described by the Euler–Lagrange equations. 

Finally, we can see a possible switch between the traditional mechanical point 
of view for several models in Physics to the geometric point of view. Somehow the 
forces, the energies, some other functions involved in describing “the reality” can be 
replaced by geometric objects from differential geometry. The trajectories created 
by forces are now geodesics of spaces with metrics induced by Lagrangians. As we 
will see below, this point of view is fundamental in general relativity.



Chapter 9 
Special Relativity 

Numerus omnium aptantur. 

Pythagoras 

In seventeenth-century, Newton considered light as a collection of particles, now 
called photons according to Quantum Mechanics, traveling through space. Reflection 
and refraction of light were explained in a satisfactory way interpreting light rays 
as trajectory of photons. 

James Clark Maxwell results on Electrodynamics, in the middle of the nineteenth-
century, offered another view: the light is an electromagnetic wave. 
Maxwell’s equations of Electromagnetism are not simple at all, and, putting them in 
accordance with Newton’s theory, points out the necessity of considering a medium 
in which the electromagnetic waves travel through space. This hypothetical medium 
was called “ether”. 

Ernst Mach did not agree with the idea of ether and observed the necessity of the 
revision of all fundamental concepts of Physics. Michelson-Morley experiment, who 
initially was designed to reveal such an ether, had a result completely different with 
respect the expectations and hard to interpret in view of Classical Mechanics. Albert 
Einstein explained the result of the experiment in a theory, the Special Relativity, 
where he revised, in a fundamental way, the ideas of space and time. After this 
achievement, no place remained for ether. For a comprehensive exposition of Special 
Relativity, see [100]. 
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9.1 Principles of Special Relativity 

Let us first discuss about Michelson-Morley experiment. 
Suppose we have a platform of a railway train wagon, an open one, on an exist-

ing straight railway line. During the Michelson-Morley experiment, the platform is 
considered at rest or it moves at constant speed . v. 

On this platform, let us imagine two perpendicular lines which intersect at. I , one, 
say . d1, coincident to the sense of motion, the other one, say . d2, perpendicular to the 
sense of motion. On . d1, called the longitudinal direction, in this order, there exist: a 
source of light denoted by.SL , an interferometer placed in. I and a mirror denoted by 
.M1, such that the distance between . I and .M1 is . l. 

The interferometer is a device able to split a light-ray in the two perpendicular 
directions.d1 and. d2, but also to receive two light-rays from perpendicular directions 
and to send them separately to another given direction. 

On the line . d2, which corresponds to the transversal direction, there is another 
mirror denoted by .M2, such that the distance between . I and .M2 is the same . l and a 
receiver-device .RL such that the interferometer . I is between .M2 and .RL . 

The receiver-device is able to capture the light rays coming from the interferometer 
and to decide which one reached first the device (Figs. 9.1 and 9.2). 

The experiment is like this: when the platform is at rest or it is moving at constant 
speed . v in the .SL I longitudinal direction, a light-ray is sent by the source .SL to the 
interferometer . I . The interferometer splits the light-ray in two light-rays. The first 
one is sent to the mirror .M1, it is reflected by the mirror and it is returned to the 
interferometer which sends it to .RL . The second one is directed to.M2, it is reflected 
and sent to the interferometer which sends it to .RL . Which one reaches first .RL? 

This is something as: we are interested in identifying the influence of the speed 
. v on the splitted light-rays. There is, or there is not, a difference between what is
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Fig. 9.2 Inertial frames and Lorentz transformation
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happening when the platform is at rest comparing with the case when the platform 
is moving at constant speed . v? 

Let us observe something obvious: if the platform is at rest, both light-rays reach 
at same time .RL . 

Now, let us try to use Classical Mechanics to describe what is happening when the 
platform is moving at constant speed. v. First at all, let us observe that it is enough to 
establish only the time necessary to cover the routes.I M1 I and.I M2 I and to compare 
them. 

Denote by . c the speed of light. The time to cover the longitudinal route .I M1 I is 

. t1 = l

c − v
+ l

c + v
= 2lc

c2 − v2
,

because .c − v and .c + v are in Newtonian mechanics the speeds for the directions 
.I M1, M1 I respectively. To be sure that the reader understands why the speeds are 
like this, let us focus on the first direction case. Moving at constant speed . v in the 
sense .I M1, the photon is slowed down by the air, that is by the medium in which it 
is traveling, with the speed .−v. Therefore, according to mechanics rules, the speed 
of the photon traveling in .I M1 direction is .c − v. 

For the transversal direction, denote by . t ' the time necessary for the light-ray to 
reach the mirror .M2. During this time, the platform, therefore the mirror, travels 
in the longitudinal direction a .t 'v space. The Pythagoras theorem in the rectangle 
triangle formed is .(t 'c)2 = l2 + (t 'v)2, that is 

. t ' = l√
c2 − v2

.

It is obvious that the time necessary to the transversal ray to reach again the interfer-
ometer . I is .t2 := 2t ', so we have  

. t2 = 2l√
c2 − v2

.

Therefore 

. 
t2
t1

=
/
1 − v2

c2
,

which implies 
. t2 < t1,

i.e. the transversal light-ray reaches earlier.RL compared to the longitudinal light-ray. 
The mathematical model made with respect to the rules of Classical Mechanics 

has a prediction, let us repeat it: the first light-ray arriving in .RL is the transversal 
one.
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If we make the experiment the result is: the transversal and the longitudinal light-
rays reach .RL at the same time. If we repeat it, the same results holds. There is not 
a difference between what happens when the platform is at rest, comparing with the 
case when the platform is moving at constant speed . v. 

As we explained in the introduction, the error is in the model: it is related to the 
fact we thought that . v could affect the speed of light. It seems that .c − v and . c + v

are not correctly thought, therefore we have not to consider Classical Mechanics 
when we try to understand this experiment. Another rule has to be applied when we 
“add” velocities. 

This experiment can be also seen making a parallel between the platform moving 
in Earth atmosphere at constant speed . v and the Earth moving through the ether at 
constant speed. v. After we establish a new theory to explain the experimental result, 
the main consequence is the fact that there is no ether 1. 

The consequences of Einstein’s postulates give the chance to understand how the 
light propagates in the context of a new physical theory, the Special Relativity, which 
changes the rules of Classical Mechanics when we are dealing with bodies moving 
at very large speeds. 

Part of these results were also obtained by Henry Poincaré in his effort to explain 
the Michelson-Morley experiment. 

Essentially, Einstein formulated the Special Relativity starting from two main 
postulates: 

1. The laws of Physics are the same in all inertial reference frames. 
2. The speed of light in vacuum, denoted by .c ≈ 2, 99 · 108 m/s, is the same 

for all the observers and it is the maximal speed reached by a moving object. 
Einstein used the word observer with the meaning of reference frame from which 

a set of objects or events are measured. Since the measurement are generally made 
with respect to the center .O of the frame, this special point is often called the “. O
observer” or we may refer to a frame with “the observer placed at. O”. We know that 
the laws of mechanics are the same in all inertial frames. The first postulate asks 
for the same form of electromagnetic laws in any inertial reference frames, as the 
mechanics laws have. And in general, all laws of Physics must have the same form 
in all reference frames (this result will be fully achieved in General Relativity). 

The second postulates plays a key role in Special Relativity being involved in the 
way in which we derive the Lorentz transformations. 

The framework of Newton’s laws of mechanics is the three-dimensional Euclidean 
space. Each object is described by a point or by a collection of points of it. Time is 
given by a universal clock and allows us to see the evolution of objects. 

In Special Relativity, we have to work in a four-dimensional space, but not in an 
usual one. Three of the dimensions are the standard dimensions used in mechanics.

1 In modern physics, it has been realized that “ether” is the “physical vacuum” that is a maximally 
symmetric configuration of space-time where no physical field is present. This means that matter-
energy density is extremely low. In this “vacuum”, electromagnetic waves propagate at the speed 
of light. 
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We can denote them with the letters as .x1, x2, x3. The fourth dimension is related to 
time. 

Definition 9.1.1 A frame of coordinates .(t, x1, x2, x3) is called a space-time. 

The Geometry of a space-time is in fact what we are trying to develop, and this is 
made according to some given physical postulates we have to accept. 

Definition 9.1.2 Each point of such a space-time is called an event. 

Definition 9.1.3 A curve of the space-time is called a world line and represents a 
successions of events. 

Example 9.1.4 Suppose we work in a two dimensional slice of the previous frame, 
with the coordinates.(t, x3). Consider a world line starting from the the origin.O(0, 0). 
Suppose the next point is .A(1, x30). Then the object remain . t0 seconds at rest with 
respect our perspective. This means that the world line has to be continued with 
the segment .AB, where .B has the coordinates .B(1 + t0, x30). Next, suppose the 
object advances in the direction .−v1. The line followed has the equation . x3 − x30 =
−v1(t − (1 + t0)), etc.  

Example 9.1.5 From the origin.O(0, 0) an object is moving. t1 seconds in the direc-
tion .−v. It reaches the point .M(t1,−vt1). Negative speed means only the direction 
of evolution in time. 

Example 9.1.6 A photon is released from the origin . O . There are two possible 
directions, . c and .−c. If it is released in the direction . c, its trajectory will be the 
line .x3 = ct . Or, it can be released in the direction .−c. Its trajectory in this case is 
.x3 = −ct . In this case, after.t0 > 0 seconds, the photon reaches the point.L(t0,−ct0). 

In order to advance into the theory, we have to consider two local frames of coor-
dinates, one moving at constant speed . v, denoted by . S, and another one considered 
at rest, denoted by. R. The letters are chosen from the words “speed” and “rest”. Two 
observers are placed at the origins of each system denoted by. Ō , respectively. O . The  
first local frame . S is considered described by the coordinates .(τ = x̄0, x̄1, x̄2, x̄3), 
while the frame . R is described by the coordinates .(t = x0, x1, x2, x3). 

Now, the reference frames of the two observers have to adapt to the second pos-
tulate of the Special Relativity. To be easier in our reasonings, let us suppose the 
bidimensional case when the frame. S consists of the coordinates.(τ = x̄0, x̄3) and it 
is moving, at constant speed . v, in the same plane as the one determined by . R, here 
denoted as .(t = x0, x3). 

First at all, how can we express the fact that . S is moving at constant speed. v with 
respect to. R? The simple mathematical answer is: the axis.Ōτ in. R has the equation 
.x3 = vt . 

Even if the light can be seen as an electromagnetic wave and we check the conser-
vation of the form of Maxwell’s equations by the Lorentz transformations, in order to 
develop Special Relativity, we can consider the light-rays as trajectories of photons.
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What can we say about the world line of a photon in these inertial reference 
frames? With respect to the observers in each frame, two world lines are highlighted: 
a photon moving at constant speed . c with a trajectory .x3 = ct in .R and .x̄3 = cτ in 
. S, while, for a photon moving at speed .−c, we have the lines .x3 = −ct in .R and 
.x̄3 = −cτ in . S. 

The two world lines of photons at.O form the light cone of the frame. R. A similar 
definition holds in . S. 

Therefore, if we use a same diagram for both frames, the second postulate has the 
following mathematical expression: 

1. The lines .x3 = ct in . R and .x̄3 = cτ in . S have the same image; 
2. The lines .x3 = −ct in . R and .x̄3 = −cτ in . S have the same image. 
In other words, the two light cones are coincident. 
Since we deal with inertial frames, as a rule, objects moving at constant speed 

in . S move at constant speed in . R, and vice versa. So, a straight line representing a 
world line of an object moving at constant speed in . S, it is seen as a straight line 
representing the world line of the same object moving at (another) constant speed in 
.R and vice versa. Transforming lines into lines, the change of coordinates between 
the two frames is described by a linear map; we denote it by .Lv and we call it a 
Lorentz transformation corresponding to the speed . v. 

Theorem 9.1.7 In the context described before, the matrix of the Lorentz transfor-
mation corresponding to the speed . v has the form 

. Lv = 1/
1 − v2/c2

(
1 v/c2

v 1

)
.

Proof A linear map .Lv : S → R has the form 

. Lv =
(
a b
d e

)
.

Since .Ōτ axis in . R has the equation .x3 = vt we have 

. 

(
a b
d e

) (
1
0

)
=

(
t
vt

)
,

that is .d = va. In mathematical language, the second postulate is: 

The eigenvectors of .Lv are .

(
1
c

)
and .

(
1

−c

)
, that is 

. Lv ·
(
1
c

)
= λ1

(
1
c

)

and 

.Lv ·
(

1
−c

)
= λ2

(
1

−c

)
.
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To preserve the sense of movement of photons, it is necessary to impose two inequal-
ities for the eigenvalues .λ1 > 0, λ2 > 0. 
Replacing .Lv , it results the equations 

. 

⎧⎨
⎩

a c + b c2 = a v + e c

−a c + b c2 = a v − e c

that is 

. Lv = a

(
1 v/c2

v 1

)
.

To determine . a, we need to observe who is the inverse of the considered Lorentz 
transformation. 
.L−1

v has to act from. R to . S, such that .Lv L−1
v = L−1

v Lv = I2. It is standard to think 
at.L−1

v := L−v, that is to see. S at rest and. R moving at constant speed.−v. This leads 
to 

. I2 = a2
(
1 − v2/c2 0

0 1 − v2/c2

)
,

i.e. . a2 = 1

1 − v2/c2
.

To determine the right sign of . a, we use the Cayley Theorem. It is a simple matrix 
exercise: For a .2 × 2 real matrix . B, it is  

. B2 − 2 Tr B · B + det B · I2 = O2.

In our case, . Tr Lv = 2a = λ1 + λ2 > 0. 
The Lorentz transformation, in final form, is 

.Lv = 1/
1 − v2/c2

(
1 v/c2

v 1

)
.

[

We can write how the transformation looks like in four dimensions: 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t = τ + x̄3 v/c2/
1 − v2/c2

x1 = x̄1

x2 = x̄2

x3 = τ v + x̄3/
1 − v2/c2

.

Exercise 9.1.8 Express in four dimensions the corresponding inverse of the Lorentz 
transformation .Lv .
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Solution. According to the proof, the inverse transformation is .L−v : R → S. In  
four dimensions, we have 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ = t − x3 v/c2/
1 − v2/c2

x̄1 = x1

x̄2 = x2

x̄3 = −t v + x3/
1 − v2/c2

.

Let us observe that, for a small velocitiy . v with respect to . c, the ratios .v/c2 and 
.v2/c2 are small enough. We can consider the influence of these terms almost zero, 
that is the Lorentz transformations become the usual way, in Classical Mechanics to 
pass from the inertial reference frame . S to the inertial reference frame. R, that is 

. 

⎧⎪⎪⎨
⎪⎪⎩
t = τ

x1 = x̄1

x2 = x̄2

x3 = τ v + x̄3.

These formulas are called Galilean transformations for Classical Mechanics. 
Consider three inertial reference frames, . S', . S and . R, such that .S' is moving at 

constant speed. w with respect to . S and. S is moving at constant speed. v with respect 
to . R. 

The two corresponding Lorentz transformations are . Lw = 1/
1 − w2/c2(

1 w/c2

w 1

)
and . Lv = 1/

1 − v2/c2

(
1 v/c2

v 1

)
.

The natural question is: which is the speed of .S' with respect to . R? 
The answer is: We have to describe the linear map between .S' and .R via . S, that is 
.Lv · Lw. 

Theorem 9.1.9 .Lv · Lw = Lv⊕w, where . v ⊕ w = v + w

1 + vw/c2
.

Proof After multiplying, we have 

. Lv · Lw = 1/
1 − v2/c2

1/
1 − w2/c2

(
1 v/c2

v 1

)
·
(
1 w/c2

w 1

)
=

. = 1 + vw/c2/
(1 − v2/c2)(1 − w2/c2)

⎛
⎜⎝ 1

v + w

1 + vw/c2
· 1

c2
v + w

1 + vw/c2
1

⎞
⎟⎠ =
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. = 1/
1 −

(
v + w

1 + vw/c2

)2

· 1

c2

⎛
⎜⎝ 1

v + w

1 + vw/c2
· 1

c2
v + w

1 + vw/c2
1

⎞
⎟⎠ = Lv⊕w,

where 
.v ⊕ w = v + w

1 + vw/c2
.

[

Definition 9.1.10 The last formula is called the relativistic velocities addition. 

The relativistic velocities-addition formula, in the case of small velocities, reduces 
to the standard sum of velocities of Classical Mechanics. 

Exercise 9.1.11 Show that the set .K = (−c, c) endowed with the operation 

. v ⊕ w = v + w

1 + vw/c2

is an abelian group. 

Exercise 9.1.12 Show that the set of Lorentz transformations 

. L := {Lv ∈ M2×2(R)| v ∈ (−c, c)}

endowed with the usual product of matrices is an Abelian group. 

9.2 Lorentz Transformations in Geometric Coordinates 
and Consequences 

In Physics, systems of coordinates are thought with axes whose coordinates are 
related to the physical units as second, meter, etc. The systems of coordinates cor-
responding to the physical units can be called systems of physical coordinates. In  
the previous sections, we worked in physical coordinates. The units of measure in 
Physics were thought before understanding how deeply is the Geometry involved 
in the description of the physical phenomena. If we choose an appropriate “length” 
(e.g. the meter) and an appropriate “time duration” (e.g. the second), the speed of 
light can be .c = 1. We call these new units geometric units. All formulas become 
simpler and the geometric images are more intuitive. 

Definition 9.2.1 The coordinates corresponding to geometric units are called geo-
metric coordinates.
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If we adapt the second postulate conditions, seen on the same diagram, we have: 
1. The lines .x3 = t in . R and .x̄3 = τ in . S have the same image 
2. The lines .x3 = −t in . R and .x̄3 = −τ in . S have the same image, 
in geometric coordinates, it is easier to understand how it looks like the frame. S seen 
in. R: since.O = Ō , the axis.Ox̄3 and.Oτ are symmetric with respect the line.x3 = t . 

Before obtaining the Lorentz transformations in geometric coordinates, let us 
consider the concept of simultaneity. 

9.2.1 The Relativity of Simultaneity 

Two events, .E1 and .E2, are called simultaneous in . S, if they happen at the same 
moment of time .τ0 in . S, that is they are .E1(τ0, τ0) and .E2(τ0,−τ0). The  same, two  
events, .U1 and .U2, are called simultaneous in . R if they happen at the same moment 
of time . t0 in . R, i.e. they are .U1(t0, t0) and .U2(t0,−t0). 

On the same diagram, it is easy to see that .U1 and .U2 are simultaneous in . R, but  

.U1(t0, t0) and .V2

(
t0
1 − v

1 + v
,−t0

1 − v

1 + v

)
are simultaneous in . S. 

Let us explain the result from the mathematical point of view. 
It is not very difficult to show that, in geometric coordinates, if .Oτ has the equation 

.x3 = vt , then.Ox̄3 has the equation.x3 = 1

v
t . Therefore the line . y − t0 = 1

v
(t − t0)

intersects .x3 = −t , if .t = t0
1 − v

1 + v
. 

For the observer in. R, the events.U1(t0, t0) and.U2(t0,−t0) happen simultaneously. 

The observer in . S cannot agree: for him .U1(t0, t0) and . V2

(
t0
1 − v

1 + v
,−t0

1 − v

1 + v

)
happen simultaneously. Therefore it exists the Relativity of the simultaneity. 

9.2.2 The Lorentz Transformations in Geometric Coordinates 

In geometric coordinates, we choose the Lorentz transformation as the linear map 
. Lv : S → R,

. Lv =
(
a b
d e

)
.

Since .Ōτ axis in . R has the equation .x3 = vt , we have  

.

(
a b
d e

) (
1
0

)
=

(
t
vt

)
,
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that is .d = va. In mathematical language, the second postulate is: 

The eigenvectors of .Lv are .

(
1
1

)
and .

(
1

−1

)
, that is 

. Lv ·
(
1
1

)
= λ1

(
1
1

)

and 

. Lv ·
(

1
−1

)
= λ2

(
1

−1

)
.

To preserve the direction of movement of photons, it is necessary to impose . λ1 >

0, λ2 > 0. 
Replacing .Lv , the following equations result 

. 

⎧⎨
⎩

a + b = a v + e

−a + b = a v − e

that is 

. Lv = a

(
1 v

v 1

)
.

In the same way, as in the physical coordinates case, the inverse of the Lorentz 
transformation .Lv in geometric coordinates is .L−1

v := L−v . It results  

. I2 = a2
(
1 − v2 0

0 1 − v2

)
,

that is . a2 = 1

1 − v2
.

To determine the right sign of . a, we use the same Cayley theorem: For a .2 × 2 real 
matrix . B, it is  

. B2 − 2 Tr B · B + det B · I2 = O2.

In our case . Tr Lv = 2a = λ1 + λ2 > 0. 
For those who do not understand this result, we invite to look at the characteristic 
equation 

. det(B − λI2) = 0.

The final form of Lorentz transformation (corresponding to the velocity . v), in 
geometric coordinates, is 

.Lv = 1√
1 − v2

(
1 v

v 1

)
.
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We can write how the transformation looks like in geometric coordinates in four 
dimensions: 

. 

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t = τ + x̄3 v√
1 − v2

x1 = x̄1

x2 = x̄2

x3 = τ v + x̄3√
1 − v2

.

In the same case as in physical coordinates, let us consider three inertial reference 
frames, . S', . S and . R, such that .S' is moving at constant speed .w with respect to . S
and . S is moving at constant speed . v with respect to . R. Here  .v, w are in .(−1, 1). 

The two corresponding Lorentz transformations are .Lw = 1√
1 − w2

(
1 w

w 1

)
and 

. Lv = 1√
1 − v2

(
1 v

v 1

)
.

Exercise 9.2.2 What is the speed of .S' with respect to . R? 

Hint. We must find the linear map between .S' and . R, that is .Lv · Lw. 
A similar computation as the one made in physical coordinates leads to 

. Lv · Lw = 1√
1 − v2

1√
1 − w2

(
1 v

v 1

)
·
(
1 w

w 1

)
=

. = 1 + vw/
(1 − v2)(1 − w2)

⎛
⎜⎝ 1

v + w

1 + vw
v + w

1 + vw
1

⎞
⎟⎠ =

. = 1/
1 −

(
v + w

1 + vw

)2

⎛
⎜⎝ 1

v + w

1 + vw
v + w

1 + vw
1

⎞
⎟⎠ = Lv⊕w,

where 
. v ⊕ w = v + w

1 + vw
.

The last formula can be called the addition of relativistic velocities in geometric 
coordinates. 

Exercise 9.2.3 Show that the set .K = (−1, 1) endowed with the operation 

.v ⊕ w = v + w

1 + vw
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is an Abelian group. 

Exercise 9.2.4 Show that the set of Lorentz transformations . {Lv ∈ M2×2(R)|v ∈
(−1, 1)} endowed with the standard product of matrices is an Abelian group. 

9.2.3 The Minkowski Geometry of Inertial Frames 
in Geometric Coordinates and Consequences: Time 
Dilation and Length Contraction 

Let us observe that the addition of velocities was deduced using Einstein’s postulates 
and more, it is related to the Minkowski Geometry attached to. S and. R frames. Why? 
Because if we choose 

. v = tanh α ; w = tanh β,

we obtain the known geometric formula 

. tanh(α + β) = tanh α + tanh β

1 + tanh α tanh β

for the addition of velocities in geometric coordinates. 
The Lorentz transformation corresponding to the constant speed . v is now 

. L tanh α =
(
cosh α sinh α

sinh α cosh α

)
.

It is well known that the matrices .L tanh α are hyperbolic rotations in the two-
dimensional Minkowski space denoted by .M2, where the Minkowski product of 
the vectors .x = (t1, x31) and .y = (t2, x32) is defined by 

. <x, y>M := t1t2 − x31 x
3
2 .

It is also known that each matrix .L tanh α preserves the Minkowski product. 
The last property suggests another way to think at the Lorentz transformations in 

the case of geometric coordinates: they preserve the quantity .t2 − (x3)2. 

Exercise 9.2.5 Show that Lorentz transformation implies the equality 

. τ 2 − (x̄3)2 = t2 − (x3)2.

Hint. 

. t2 − (x3)2 =
(

τ + x̄3 v√
1 − v2

)2

−
(

τ v + x̄3√
1 − v2

)2

= τ 2 − (x̄3)2.

It results
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Corollary 9.2.6 The Lorentz transformations preserves the square of the Minkowski 
norm of vectors. 

Theorem 9.2.7 (Time dilation) A clock slows down when it is moving at constant 
speed. 

Proof Denote by./τ the unit interval of a clock moving at constant speed. v. It means 
to consider the unit of. τ axis in. S to be./τ . Denote by./t the corresponding element 
of ./τ after a Lorentz transformation .Lv in geometric coordinates. We have 

. Lv ·
(

/τ

0

)
= 1√

1 − v2

(
1 v

v 1

)
·
(

/τ

0

)
=

(
/t
∗

)
,

where . ∗ meaning is related to the fact we are not intereasted in. Therefore 

. /t = /τ√
1 − v2

,

that is 
./τ < /t.

[

Example 9.2.8 Let us consider two twins separated. The first one is sent in space 
with a cosmic vehicle having the constant speed.v = 4/5. The other one remains on 
Earth. When they separated they are.20 years old. After.15 years in space, according 
with his time, the brother from space returned. He is now, according to his time, . 35
years old. How old is the brother remained on Earth, according to his perspective? 

The factor .
√
1 − v2 is .3/5. From the formula ./t = /τ√

1 − v2
, after we replace, we 

obtain .3/t = 5/τ. Now, for the observer in . S fifteen years have passed, that is 
./τ = 15. It results ./t = 25. Therefore his brother is .45 years old. 

Theorem 9.2.9 (Length contraction) The lengths are contracting when the frame is 
moving at constant speed. 

Proof Denote by./l̄ the unit length of. S. Let./l be the corresponding element of. /l̄
after a Lorentz transformation.Lv . In order to compare the two lengths, we compute 

. Lv ·
(

0
/l̄

)
= 1√

1 − v2

(
1 v

v 1

)
·
(

0
/l̄

)
=

( ∗
/l

)
,

where . ∗ meaning is related to the fact we are not interested in. It results 

./l = /l̄√
1 − v2

,
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that is 
./l̄ < /l.

[

Example 9.2.10 A cosmic vehicle is .125 m long at rest. Suppose it is sent in space 
and it is moving at constant speed.v = 3/5. How long is this moving cosmic vehicle 

for an observer at rest? We apply./l = /l̄√
1 − v2

formula for.v = 3/5 and./l = 125. 

It results . /l̄ = 100 m.

9.2.4 Relativistic Mass, Rest Mass and Energy 

Newton’s second law involves the concept of inertial mass. As we have seen at that 
time, the mass was considered as a constant. We have discussed about the inertial 
mass and the gravitational mass and how the mass is part of the so called quantity 
of motion, also known as momentum. In Classical Mechanics momentum means 
inertial mass in motion and redefined in a relativistic way, will lead to important 
consequences. 

Let us think at an object at rest, having a rest mass denoted by .m0 /= 0. Is the  
mass of the object “moving at constant speed” the same as its rest mass? The answer 
is related to how the relativistic momentum is changing with respect to the Lorentz 
transformations. 

Let us denote by.P =
(

m
mv

)
the relativistic momentum of a classical body moving 

at constant speed . v. The second component of the relativistic momentum is the 
classical momentum. 

The relativistic momentum of a classical body at rest in. S has to be. P0 =
(
m0

0

)
.

According to the theory we are developing, the formula of the relativistic momentum 
at constant speed. v is obtained from the relativistic momentum at rest, changed with 
respect to the Lorentz transformation .Lv . This was the key point where Einstein 
applied, in a brilliant way, the idea that all physical formulas have to be invariant 
under Lorentz transformations. The consequences can be seen in the following two 
theorems. 

Theorem 9.2.11 If .m0 /= 0 is the rest mass of a body moving at constant speed . v, 
then 

. m = m(v) = m0√
1 − v2

.

Proof Using the Lorentz transformation .Lv we have .P = Lv · P0. It results 

.

(
m
mv

)
= 1√

1 − v2

(
1 v

v 1

)
·
(
m0

0

)
,
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which leads to the so called relativistic mass formula 

.m = m(v) = m0√
1 − v2

.

[

We may observe that the mass of an object is increasing when the object travel at 
constant speed. v. Another consequence is related to the fact that an object having its 
rest mass .m0 /= 0 can not reach the speed of light. 

Definition 9.2.12 .m(v) is called relativistic mass corresponding to the constant 
speed . v of an object having the rest mass .m0. 

The previous obtained formula has sense when.m0 /= 0. The physicists know that 
there is no rest mass for the photon. Therefore this formula does not work for photon 
or for any other physical particle with no rest mass. 

The following theorem explains why it is a good choice to consider the relativistic 
momentum if we intend to show how the mass is changing when it is moving at 
constant speed. Even if the proof is done using the geometric coordinates, the reader 
can change it to adapt the result to physical coordinates. 

Theorem 9.2.13 The relativistic mass formula is preserved by the Lorentz transfor-
mations. 

Proof If we consider the inertial frame . S, moving at constant speed . v with respect 
to . R, we have  

. Lv ·
(
m0

0

)
=

⎛
⎜⎝

m0√
1 − v2
m0v√
1 − v2

⎞
⎟⎠ .

In the same way, for the inertial frame . S, moving at constant speed .V with respect 
to .R1, we have  

. LV ·
(
m0

0

)
=

⎛
⎜⎝

m0√
1 − V 2

m0V√
1 − V 2

⎞
⎟⎠ .

If the frame. R is moving at constant speed. w with respect to.R1, we have to compute 

.Lw · Lv

(
m0

0

)
and we wish the result to be coincident with .LV ·

(
m0

0

)
. We have 

.Lw · Lv ·
(
m0

0

)
= Lw ·

⎛
⎜⎝

m0√
1 − v2
m0v√
1 − v2

⎞
⎟⎠ = 1√

1 − w2

m0√
1 − v2

(
1 w

w 1

) (
1
v

)
=
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. = 1√
1 − w2

m0√
1 − v2

(
1 + wv

w + v

)
= 1 + wv√

1 − w2

m0√
1 − v2

(
1

w + v

1 + wv

)
=

. = m0/
1 −

(
w + v

1 + wv

)2

(
1

w + v

1 + wv

)
= Lw⊕v

(
m0

0

)
= LV

(
m0

0

)
,

that is .V = w ⊕ v = w + v

1 + wv
. [

We are close to prove a very important consequence of the previous relativistic 
mass formula. 

Theorem 9.2.14 In geometric coordinates, mass means energy. 

Proof Denote by . f ', f '' the first and the second derivative of a real function . f . It  
is easy to prove that 

. f (x) = f (0) + x

1! f
'(0) + x2

2! f
''(0) + B[x3],

where .B[x3] contains only terms in . x with powers greater than . 3. 
If we neglect the . B terms, when we consider the real function 

. f (v) = 1√
1 − v2

and the formula of the relativistic mass, we can write 

. m(v) = m0√
1 − v2

= m0 + 1

2
m0v

2.

Looking at both members we can observe how, in geometric coordinates, the rela-
tivistic mass is related to the rest mass and the kinetic energy, that is the statement: 
“mass is energy” is confirmed. [

9.3 Consequences of Lorentz Physical Transformations: 
Time Dilation, Length Contraction, Relativistic Mass 
and Rest Energy 

In the previous section, we used Lorentz transformations in geometric coordinates 
which can be called Lorentz geometric transformations. When we obtained, for the
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first time, the Lorentz transformations, we worked in physical coordinates. therefore 
the Lorentz transformations found there can be called Lorentz physical transforma-
tions. How can we adapt the previous results in the case of physical coordinates? 

9.3.1 The Minkowski Geometry of Inertial Frames 
in Physical Coordinates and Consequences: Time 
Dilation and Length Contraction 

If we choose 
. v = c tanh α ; w = c tanh β,

we obtain the known geometric formula 

. c · tanh(α + β) = c · tanh α + tanh β

1 + tanh α tanh β

for the velocities addition, the Lorentz transformation corresponding to the constant 
speed . v being 

. Lc tanh α =
(

cosh α
1

c
sinh α

c sinh α cosh α

)
.

In the two-dimensional Minkowski space, denoted by .M2, where the Minkowski 
product of the vectors .x = (t1, x31) and .y = (t2, x32) is defined by 

. <x, y>M := c2t1t2 − x31 x
3
2 ,

each matrix .Lc tanh α preserves the Minkowski product. 
Indeed, for . j ∈ {1, 2} we have 

. Lc tanh α ·
(

τ j

x̄3j

)
=

(
cosh α

1

c
sinh α

c sinh α cosh α

)
·
(

τ j

x̄3j

)
=

⎛
⎝ τ j cosh α + 1

c
x̄3j sinh α

cτ j sinh α + x̄3j cosh α

⎞
⎠ ,

and 

. c2
(

τ1 cosh α + 1

c
x̄31 sinh α

) (
τ2 cosh α + 1

c
x̄32 sinh α

)
−

. 

− (
cτ1 sinh α + x̄3 1 cosh α

) (
cτ1 sinh α + x̄3 1 cosh α

) = c2 τ1τ2 − x̄3 1 x̄
3 
2 .
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The last property suggests another way to think at the Lorentz transformations in the 
case of physical coordinates: they preserve the quantity .c2t2 − (x3)2. 

Exercise 9.3.1 Show that 

. c2τ 2 − (x̄3)2 = c2t2 − (x3)2.

Hint. 

. c2t2 − (x3)2 = c2
(

τ + x̄3 v/c2/
1 − v2/c2

)2

−
(

τ v + x̄3/
1 − v2/c2

)2

= c2τ 2 − (x̄3)2.

Now it becomes clear how the physical coordinates can be transformed into “geo-
metric physical coordinates”: The .Ox0 axis has the units done with respect to .ct in 
. R. In . S, the corresponding axis becomes .cτ . 

In this way, the unit of measure for the first axis is a length, the same as the unit 
for the spatial axes. 

Theorem 9.3.2 Lorentz physical transformations preserves the square of the 
Minkowski norm of vectors. 

However, in the case in which we are not interested in highlighting the Minkowski 
Geometry, we prefer to work in our initial . R and . S systems of coordinates. 

Consider an infinitesimal time-like interval between the points .(t, x) and . (t +
dt, x + dx) and its arclength expressed in the form suggested by the previous invari-
ant, that is 

. ds2 = c2(dt)2 − (dx)2.

We denoted by. x the.x3 coordinate to make the notations easier. The same interval 
can be seen in a frame such that, at each time . τ , the moving point which describes 
the interval is at rest. Denote by.(τ, xτ ) the world line whose coordinates express the 
moving point at rest. Taking into account the conservation law seen before, we have 

. ds2 = c2(dt)2 − (dx)2 = c2(dτ)2 − (dxτ )
2 = c2(dτ)2.

Therefore 
. ds = cdτ,

that is we can define 

. /τ =
{
l
dτ =

{
l

ds

c
,

.where . l is the notation for the chosen time-like infinitesimal interval. We observe
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. /τ =
{
l

√
c2dt2 − dx2

c
=

{
l

/
1 − 1

c2
dx2

dt2
dt =

{
l

/
1 − v2(t)

c2
dt,

where .v(t) is the usual speed. 

Definition 9.3.3 ./τ is called a proper time interval. 

Therefore, we can say that proper time measured along the time-like world line 
above is the time measured by a clock following point by point the considered 
world line. Let us give now an important property of the proper time ./τ in Special 
Relativity. 

Theorem 9.3.4 (Time dilation in physical coordinates) A clock slows down when it 
is moving at constant speed. 

Proof Denote by ./τ the unit interval of a clock moving at constant speed . v. This  
clock measures the proper time defined above. It is like you consider the unit of. τ axis 
in. S to be./τ . We are interested in knowing the connection between the proper time 
and the time coordinate . t of the frame at rest, . R. Denote by ./t the corresponding 
element of ./τ after a Lorentz transformation.Lv in geometric coordinates. We have 

. Lv ·
(

/τ

0

)
= 1/

1 − v2/c2

(
1 v/c2

v 1

)
·
(

/τ

0

)
=

(
/t
∗

)
,

where . ∗ meaning is related to the fact we are not intereasted in. Therefore 

. /t = /τ/
1 − v2/c2

,

that is 
./τ < /t.

[

Theorem 9.3.5 (Length contraction in physical coordinates) The length are con-
tracting when the frame is moving at constant speed. 

Proof Denote by./l̄ the unit length of. S. Let./l be the corresponding element of. /l̄
after a Lorentz transformation.Lv . In order to compare the two lengths, we compute 

. Lv ·
(

0
/l̄

)
= 1/

1 − v2/c2

(
1 v/c2

v 1

)
·
(

0
/l̄

)
=

( ∗
/l

)
,

where . ∗ meaning is related to the fact we are not interested in. It results 

./l = /l̄/
1 − v2/c2

,
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that is 
./l̄ < /l.

[

9.3.2 Relativistic Mass, Rest Mass and Rest Energy 
in Physical Coordinates 

Let us see how it looks like the relativistic mass in the case of physical coordinates. We 
start from an object at rest, having a rest mass denoted by.m0 /= 0 with its relativistic 

momentum as in the case of geometrical coordinates in . S, . P0 =
(
m0

0

)
.

Let us denote by.P =
(

m
mv

)
the relativistic momentum of a classical body mov-

ing at constant speed . v. 

Theorem 9.3.6 If .m0 /= 0 is the rest mass of a body moving at constant speed . v, 
then 

. m = m(v) = m0/
1 − v2/c2

.

Proof Using the Lorentz transformation .Lv , we have . P = Lv · P0, i.e. 

. 

(
m
mv

)
= 1/

1 − v2/c2

(
1 v/c2

v 1

)
·
(
m0

0

)
,

which leads to the so called relativistic mass, now in physical coordinates, 

.m = m(v) = m0/
1 − v2/c2

.

[
As in the case of geometrical coordinates, the previous formula holds when. m0 /=

0. 
We are talking about the rest energy, of course, in the same case .m0 /= 0. The  

discussion is almost the same as when we proved that, in geometric coordinates, 
mass means energy. 

If we consider the real function 

. f (v) = 1/
1 − v2/c2

and the formula of the relativistic mass, we can neglect the .B terms because . 1/c4

modify a given quantity in an irrelevant mode. We may write
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. 
m0/

1 − v2/c2
= m0 + 1

2
m0v

2/c2.

Let us define the kinetic relativistic energy by 

. E(v) := m0c2/
1 − v2/c2

.

The previous formula becomes 

. E(v) = m0c
2 + 1

2
m0v

2.

We may call rest energy the formula .E := m0c2; it makes sense when .m0 /= 0. 
A comment. It is useful, at this point, after the discussion about the relativistic 

mass, saying some words about the light energy which is not . 0, even if the rest mass 
of photons is. 0. To understand why, we have to accept the alternative way to consider 
the light as explained by Maxwell equations, that is light is an electromagnetic wave. 
We have also to accept the dual behavior of light and to define the photon as the 
particle attached to the wave 2. The equation of photon energy is .E = h f = hc/λ, 
where. h is the Planck constant,. f is the photon frequency,. λ is the photon wavelength 
and, of course, . c is the speed of light in vacuum. Therefore, in the case of a photon, 
we have a relativistic equivalent of mass given by the formula .E/c2. 

9.4 The Maxwell Equations 

The Maxwell equations are the “core” of Special Relativity. Essentially, this theory 
has been developed in view of explaining their invariance under Lorentz transforma-
tions. In order to discuss Maxwell’s equations, which describes the electromagnetic 
field, we need some preliminary algebraic result. 

Theorem 9.4.1 If 

. A = (A1, A2, A3), B = (B1, B2, B3), C = (C1,C2,C3),

. B × C :=

|||||||
→
i

→
j

→
k

B1 B2 B3

C1 C2 C3

||||||| ,

.A · B := A1B1 + A2B2 + A3B3, A · C := A1C1 + A2C2 + A3C3,

2 The dual nature of light, and of any particle, is better framed in the context of Quantum Mechanics 
in relation to the concept of wave-particle. For a discussion, see [ 79]. 
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then 
. A × (B × C) = (A · C)B − (A · B)C.

Proof We have 
. (A · C)B − (A · B)C =

. 

= ( A1C1 + A2C2 + A3C3)(B1, B2, B3) − (A1 B1 + A2 B2 + A3 B3)(C1, C2, C3) = 

. =

|||||||
→
i

→
j

→
k

A1 A2 A3

B2C3 − B3C2 −B1C3 + B3C1 B1C2 − B2C1

||||||| = A × (B × C).

[
Now, consider both the gradient operator and the Laplace operator in spatial 

coordinates denoted by .(x1, x2, x3), that is 

. V :=
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
,

. V2 := ∂2

(∂x1)2
+ ∂2

(∂x3)2
+ ∂2

(∂x3)2
.

.The last formula can be also seen written in the formal way

V2 := V · V

We formally define 

. V · A := ∂A1

∂x1
+ ∂A2

∂x2
+ ∂A3

∂x3

and 

. V × A :=

||||||||

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
A1 A2 A3

||||||||
=

(
∂A3

∂x2
− ∂A2

∂x3
,
∂A1

∂x3
− ∂A3

∂x1
,
∂A2

∂x1
− ∂A1

∂x2

)
.

Using these operators, a consequence of the above theorem is 

Corollary 9.4.2 
. V × (V × A) = (V · A)V − (V · V)A.

Another comment is in order. We know the meaning of .∇2φ, where . φ is a scalar 
function. The meaning of .V2A is related to the fact that .V2 acts on each component
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of . A, i.e. 
. V2 A := (V2A1,V2A2,V2A3).

Therefore we can write 

. V × (V × A) = (V · A)V − V2 A.

If .V · A = 0, the previous formula becomes 

Corollary 9.4.3 
. V × (V × A) = −∇2 A.

We will use this result later. 
Denote by 

. E = E(t, x1, x2, x3) := (E1(t, x
1, x2, x3), E2(t, x

1, x2, x3), E3(t, x
1, x2, x3))

the electric force vector and by 

. H = H(t, x1, x2, x3) := (H1(t, x
1, x2, x3), H2(t, x

1, x2, x3), H3(t, x
1, x2, x3))

the magnetic force vector; 
In geometric units, the Maxwell equations, in the frame. R considered as an empty 

space, are 

. 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V · E = 0

V × E = −∂H

∂t
V · H = 0

V × H = ∂E

∂t

The first equation reveals the existence of an electric field in the absence of electric 
charge. If we are not in vacuum, the first equation is.V · E = ρ, where. ρ is the electric 
charge, therefore the first equation describes how an electric charge acts as source 
for the electric force, here seen as an electric field. 

The second equation .V × E = −∂H

∂t
shows how a time varying magnetic field 

gives rise to an electric field. 
The third equation .V · H = 0 shows that there are no magnetic charges. 

The forth equation .V × H = ∂E

∂t
shows how the time variation of electric field 

creates the magnetic field. 
Let us consider the derivative with respect . t of the second equation.
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. − ∂2 H

∂t2
= ∂

∂t
(V × E) = ∂

∂t

||||||||

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
E1 E2 E3

||||||||
=

|||||||||

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
∂E1

∂t

∂E2

∂t

∂E3

∂t

|||||||||
= V × ∂E

∂t
.

Using the last Maxwell equation and the above results, we find 

. − ∂2 H

∂t2
= V × ∂E

∂t
= V × (V × H) = −V2 H,

that is 

. 
∂2 H

∂t2
= V2 H.

If we denote by 

. [ := ∂2

∂t2
− V2

the d’Alembert operator, the previous equation is 

. [H = 0.

This is the wave equation corresponding to the magnetic field. Therefore, for each 
component .Hi , i ∈ {1, 2, 3} we have 

. 
∂2Hi

∂t2
= V2Hi = ∂2Hi

(∂x1)2
+ ∂2Hi

(∂x2)2
+ ∂2Hi

(∂x3)2
.

Now, let us consider the derivative with respect . t of the last equation. 

. 
∂2E

∂t2
= ∂

∂t
(V × H) = ∂

∂t

||||||||

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
H1 H2 H3

||||||||
=

|||||||||

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
∂H1

∂t

∂H2

∂t

∂H3

∂t

|||||||||
= V × ∂H

∂t
.

Using the second Maxwell’s equation and the consequence, we find that 

. 
∂2E

∂t2
= V × ∂H

∂t
= −V × (V × E) = V2E,

i.e. 
.[E = 0.
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This one is the wave equation corresponding to the electric field. We have now a 
picture of the electromagnetic field described by the Maxwell equations: The two 
waves equations of electric and magnetic field are interconnected by the four Maxwell 
equations. We understand that one field can not exist without the other. Each one 
generates the other. 

Are these wave equations invariant under Lorentz transformations? The answer 
is yes, but we need to perform more steps in order to achieve these results. 

In the same way as before, for each component .Ei , i ∈ {1, 2, 3}, we have  

. 
∂2Ei

∂t2
= V2Ei = ∂2Ei

(∂x1)2
+ ∂2Ei

(∂x2)2
+ ∂2Ei

(∂x3)2
.

To simplify, let us suppose that the electric field .E depends only on the variables 
. t and . x3, as in the case of a plane wave. The previous equations become 

. 
∂2Ei

∂t2
− ∂2Ei

(∂x3)2
= 0.

To continue, let us choose a component only, say .i = 1. Since for the other two 
components, the following computations are the same, we prefer instead to use .E1, 
to denote this chosen component by the letter . E. The previous equation becomes 

. 
∂2
E

∂t2
− ∂2

E

(∂x3)2
= 0.

How this simple equation looks like in . S, frame considered with coordinates .τ, x̄3, 
if . S is supposed to move at constant speed . v along the .x3 axis in . R? We have to use  
the Lorentz inverse transformation .L−v , that is 

. 

⎧⎪⎪⎨
⎪⎪⎩

τ = t − x3 v√
1 − v2

x̄3 = −t v + x3√
1 − v2

.

Denote by .Ē(τ, x̄3) = Ē

(
t − x3 v√
1 − v2

,
−t v + x3√

1 − v2

)
:= E(t, x3) the corresponding 

component of the electric field in . S, which, obviously have to be the same as in . R. 
We would like to prove that 

.
∂2
E

∂t2
− ∂2

E

(∂x3)2
= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
.
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We have 

. 
∂E

∂t
= ∂Ē

∂τ

∂τ

∂t
+ ∂Ē

∂ x̄3
∂ x̄3

∂t
= ∂Ē

∂τ

1√
1 − v2

+ ∂Ē

∂ x̄3
−v√
1 − v2

and 

. 
∂2E

∂t2
= 1/

1 − v2

(
∂2Ē

∂τ2
∂τ

∂t
+ ∂2Ē

∂τ∂ x̄3
∂ x̄3

∂t

)
− v/

1 − v2

(
∂2Ē

∂ x̄3∂τ

∂τ

∂t
+ ∂2Ē

(∂ x̄3)2
∂ x̄3

∂t

)
,

that is 

. 
∂2
E

∂t2
= 1

1 − v2

∂2
Ē

∂τ 2
− 2v

1 − v2

∂2
Ē

∂ x̄3∂τ
+ v2

1 − v2

∂2
Ē

(∂ x̄3)2
.

In the same way 

. 
∂2
E

(∂x3)2
= v2

1 − v2

∂2
Ē

∂τ 2
− 2v

1 − v2

∂2
Ē

∂ x̄3∂τ
+ 1

1 − v2

∂2
Ē

(∂ x̄3)2
,

therefore the desired relation is obtained by subtracting the two expressions. Now, 
from 

. 
∂2
E

∂t2
− ∂2

E

(∂x3)2
= 0,

in . R, we obtain 

. 
∂2
Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
= 0,

in . S, that is the corresponding equation is the same as it has to be. Therefore, in a 
moving inertial frame, the Maxwell equations are the same as in a frame at rest. We 
have proved 

Theorem 9.4.4 Lorentz transformations preserve Maxwell’s equations. 

If the reader try to prove if the equality 

. 
∂2
E

∂t2
− ∂2

E

(∂x3)2
= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2

holds for the inverse of Galilean transformations . Ē(τ, x̄3) = Ē
(
t,−vt + x3

) :=
E(t, x3), the answer is no, that is the Galilean transformations fail for the Maxwell 
equations. This can be easily shown. If the reader computes 

.
∂E

∂t
= ∂Ē

∂τ

∂τ

∂t
+ ∂Ē

∂ x̄3
∂ x̄3

∂t
= ∂Ē

∂τ
− v

∂Ē

∂ x̄3
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and 

. 
∂2
E

∂t2
=

(
∂2
Ē

∂τ 2

∂τ

∂t
+ ∂2

Ē

∂τ∂ x̄3
∂ x̄3

∂t

)
− v

(
∂2
Ē

∂ x̄3∂τ

∂τ

∂t
+ ∂2

Ē

(∂ x̄3)2
∂ x̄3

∂t

)
=

. = ∂2
Ē

∂τ 2
− 2v

∂2
Ē

∂ x̄3∂τ
+ v2 ∂2

Ē

(∂ x̄3)2
.

Then, 

. 
∂E

∂x3
= ∂Ē

∂ x̄3

and 

. 
∂2
E

(∂x3)2
= ∂2

Ē

(∂ x̄3)2
,

that is 

. 
∂2
E

∂t2
− ∂2

E

(∂x3)2
= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
− 2v

∂2
Ē

∂ x̄3∂τ
+ v2 ∂2

Ē

(∂ x̄3)2
/= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
.

Theorem 9.4.5 Galilei’s transformations do not preserve Maxwell’s equations. 

The final conclusion is: Classical Mechanics through Galilei’s transformations 
does not preserve Maxwell’s equations while the Special Relativity, through Lorentz 
transformations, does it. 

9.5 The Doppler Effect in Special Relativity 

We have proved that the speed of light does not depend on the speed of the source 
of light. Let us now focus on the frequency of light signals. We prove that the 
frequency of light signals depends on the speed of the source, that is, we show that 
light frequency is increasing when the source is approaching to the observer .O at 
rest in . R, then, when the source is moving away, the light frequency is decreasing. 
This is the so called Doppler’s effect or relativistic Doppler’s effect. 

Definition 9.5.1 Doppler’s effect is a change in frequency of light-wave when a 
source is moving at constant speed with respect to the frequency perceived by an 
observer at rest. 

Therefore we have two different formulas, one to estimate the frequency of the 
source which is approaching, and another one for the frequency in the case when the 
source is moving away. Let us translate this in a mathematical way. 

Consider, as usual, two local frames of geometric coordinates, one moving at 
constant speed . v, denoted by . S, and another one considered at rest, denoted by . R.
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The first local frame. S is described by the coordinates.(τ = x̄0, x̄3), while the frame 
. R is described by the coordinates .(t = x0, x3). 

Consider a source of light in. S which, for each./τ seconds, releases a light signal. 
If the frequency is denoted by. ν, the connection between the two physical quantities 
is 

. ν = 1

/τ
.

This formula is related to the behavior of a light wave. 
The quantity ./τ is the period of a light wave in the frame . S. The light wave, with 
frequency . ν, is imagined as emitted light signals of duration ./τ seconds. They 
produces light cones with the vertexes on the .τ -axis. 

So, the source is moving in . S along the .τ -axis and, in . R, this  . τ axis becomes 
the line .x3 = vt . The observer, at the origin .O of . R, perceives the source first as 
approaching, then as moving away. 

To simplify, let us consider the moment when the two origins are coincident 
and, on the.τ -axis, we draw./τ intervals to the left and to the right. The light cones, 
considered in. S, determine two kinds of equal intervals./t on the.t-axis in. R. Until the 
origin, we denote them./tapp, after we denote them by ./tma , each one determining 
its corresponding frequency in. R. The subscript .app and.ma are obviously from the 
words “approaching” and “moving away”. 

Therefore, two kinds of frequencies appear in . R, that is 

. fapp := 1

/tapp

and 

. fma := 1

/tma
.

Theorem 9.5.2 According to the above conditions, we have: 
(i). If the source is approaching, 

. fapp = ν

/
1 + v

1 − v
> ν.

(ii). If the source is moving away, 

. fma = ν

/
1 − v

1 + v
< ν.

Proof Denote by .(0, 0) and .(b, vb), the coordinates at the ends of the first interval 
./τ on the.τ -axis, as seen in. R. The light-ray emitted at the point.(b, vb) reaches the 
.t-axis at .(b + vb, 0). Of course, in this case, we used the photon corresponding to 
speed .−1. Therefore 

./tma = b(1 + v).
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Now, consider the points .(0, 0) and .(−b,−vb) as the coordinates of a ./τ interval 
when the source is approaching. The light-ray emitted at the point.(−b,−vb) reaches 
the .t-axis at .(−b + vb, 0) because we used the photon corresponding to speed . 1. In  
this case 

. /tapp = b(1 − v).

If we consider the Minkowski arc length corresponding to a ./τ interval, we have 

. /τ 2 = b2 − b2v2,

that is 

. b = /τ√
1 − v2

.

Now using this last formula and the two formulas for. fapp = 1

/tapp
and. fma = 1

/tma
, 

the statement is proved. [

Let us observe that we can write the two above formulas in the form 

. f = ν

/
1 − v

1 + v
,

if we perceive the approaching wave as moving away with speed .−v. 

9.6 Gravity in Special Relativity: The Case of the Constant 
Gravitational Field 

The fact that Special Relativity had to be improved towards General Relativity is 
essentially due to two main reasons: From one side, Einstein, according to the Mach 
criticisms [ 21], realized that the laws of Physics must be written in the same way for 
any (inertial or non-inertial) observer (Invariance Principle ). Secondly, considering 
the gravitational phenomena, he realized that one needs to introduce accelerating 
frames. According to these observations, Special Relativity is inadequate to enclose 
gravity. 

In order to discuss gravity in the framework of Special Relativity and show their 
basic incompatibility, let us begin considering a very simple result. 

In a Minkowski space, for every . t , let .v(t) be a vector of constant norm. 
It results .<v(t), v(t)>M = k. If we consider the derivative with respect to . t , we  

obtain 
. <v̇(t), v(t)>M = 0.

We have proved the following
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Proposition 9.6.1 (i)The derivative of a constant norm vector is a vector orthogonal 
on the given vector, that is .v̇(t) ⊥M v(t), 
(ii) The vectors.v̇(t) and.v(t) are Minkowski type different, that is, if.v(t) is space-like 
vector, the derivative .v̇(t) is time-like vector, and vice versa. 

A second very important observation is this one: 
In a local frame. S of coordinates.(τ = x̄0, x̄3), let us consider an event. E(τ, x̄3), x̄3 >

0. There are only two events on the.τ -axis, say.E1(τ1, 0) and.E2(τ2, 0) with.τ1 < τ2, 
such that the event .E is connected to the events .E1 and .E2 by light-rays. Indeed, 
considering that the slopes of the lines.E1E and.E2E have to be. 1 and.−1 respectively, 
the connections among the coordinates are 

. τ = τ1 + τ2

2
; x̄3 = τ2 − τ1

2
,

or equivalently 
. τ1 = τ − x̄3; τ2 = x̄3 + τ.

Therefore we have proved. 

Proposition 9.6.2 Suppose the event .E(τ, x̄3), x̄3 > 0 is connecting the events . E1

and .E2 by light-rays. If the coordinates are .E1(τ1, 0), .E2(τ2, 0), τ1 < τ2, then, 
between the above coordinates there are the relations 

. τ1 = τ − x̄3; τ2 = x̄3 + τ.

The physical image is the following: a light-ray from.E1 reaches. E and is reflected 
to .E2. The coordinates are like in the previous proposition. 

Let us now suppose that.τ -axis is seen in the frame. R as a curve. To move forward, 
let us suppose that .τ -axis is parameterized by 

. τ − axis :

⎧⎪⎨
⎪⎩
t (τ ) = 1

α
sinh ατ

x3(τ ) = 1

α
cosh ατ.

Consider the event . E , now in coordinates of . R, that is .E(t, x3). 
The events .E1 and .E2 belong now to the curve which represents the .τ -axis in . R, 

that is .E1(t1, x31) with . t1 = 1

α
sinh ατ1 ; x31 = 1

α
cosh ατ1

and 

.E2(t2, x32) with . t2 = 1

α
sinh ατ2 ; x32 = 1

α
cosh ατ2,

in such a way that a light-ray from.E1 reaches .E and is reflected to .E2. 
Since the slopes .E1E and .E2E have to be . 1 and .−1 respectively, we have
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. 
x3 − x31
t − t1

= 1; x3 − x32
t − t2

= −1.

It results the system of equations 

. 

{−t + x3 = −t1 + x31
t + x3 = t2 + x32

with the solution 

. 

⎧⎪⎨
⎪⎩
t = t1 + t2 + x32 − x31

2

x3 = −t1 + t2 + x32 + x31
2

.

The first formula becomes 

. t = sinh ατ1 + sinh ατ2 + cosh ατ2 − cosh ατ1

2α
= eατ2 − e−ατ1

2α
,

that is 

. t = eα(τ+x̄3) − e−α(τ−x̄3)

2α
= eαx̄3

α
sinh ατ.

In the same way 

. x3 = eα x̄3

α
cosh ατ,

that is we found out a coordinate transformation .G : S → R, 

. G :

⎧⎪⎪⎨
⎪⎪⎩
t (τ, x̄3) = eα x̄3

α
sinh ατ

x3(τ, x̄3) = eαx̄3

α
cosh ατ.

This is the proof of the following 

Theorem 9.6.3 Consider a system .R of coordinates .(t, x3) in which the .τ -axis is 
the curve parameterized by 

. 

⎧⎪⎨
⎪⎩
t (τ ) = 1

α
sinh ατ

x3(τ ) = 1

α
cosh ατ.

Suppose it exists three events .E1, E, E2 such that a light-ray from .E1 reaches . E
and is reflected to .E2. Then, between the coordinates of .E1(t1, x31), E2(t2, x32) with
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. t1 = 1

α
sinh ατ1 , x31 = 1

α
cosh ατ1 ; t2 = 1

α
sinh ατ2 , x32 = 1

α
cosh ατ2 ;

and the coordinates of the event .E(t, x3), there are the relations 

. 

⎧⎪⎪⎨
⎪⎪⎩
t (τ, x̄3) = eαx̄3

α
sinh ατ

x3(τ, x̄3) = eαx̄3

α
cosh ατ,

where 
. τ1 = τ − x̄3; τ2 = x̄3 + τ.

Now, we consider a local frame. S with coordinates .(τ = x̄0, x̄1, x̄2, x̄3) in which 
a constant gravitational field exists. This constant gravitational field can be imagined 

as a vector.− →
α acting along the.x̄3 axis in its negative direction, therefore as a vector 

with the spatial coordinates .(0, 0,−α). 
Let us consider another frame of coordinates . R, whose coordinates are . (t =

x0, x1, x2, x3). This frame is in free fall in the previous constant gravitational field. 
We may assume that, at.τ = t = 0, the two frames can be seen together with axes 

corresponding in notation of indexes. Let us suppose that the second frame. R is mov-
ing along the .x̄3 axis in its negative direction. So, we can think of a transformation 
which describes the constant gravitational field in . S, involving only the pairs of axis 
.(τ, x̄3) of . S and .(t, x3) of . R. 

To obtain it, we change the perspective: We consider .R at rest and the frame . S
accelerating along the .x3 axis with the constant acceleration . (0, α).

When we determine the Lorentz transformation, our first concern is describing 

the . τ axis in .R when . S is moving at constant speed . v. The question is: If . S is .
→
α -

accelerating with respect to . R, what becomes the . τ axis of . S in . R? 

Let us think of a line as a trajectory of a moving point. The speed is constant along 
the line, that is the vector speed of a given line has constant norm; in the same time, 
the acceleration vector is null. If we consider the current point .(τ, 0) on .τ -axis, the 

speed vector is .
→
V= (1, 0) and the acceleration vector is .

→
A= (0, 0). Therefore the 

.τ -axis at rest is characterized by 

. || →
V ||M = 1; || →

A ||M = 0.

Looking at the accelerated frame . S, the . R observer sees a modified .τ -axis, denoted 
now 

. c(τ ) := (t (τ ), x3(τ ))

and characterized by
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. || →
ċ (τ )||M = 1; || →

c̈ (τ )||M = α.

Now, we observe that, according to the first proposition, the speed vector .
→
ċ is a 

time-like one, while the acceleration vector. 
→
c̈ is a space-like one. The two conditions 

become the system of differential equations 

. 

{
(ṫ(τ ))2 − (ẋ3(τ ))2 = 1
−(ẗ(τ ))2 + (ẍ3(τ ))2 = α2

with the general solution 

. 

⎧⎪⎨
⎪⎩
t (τ ) = 1

α
sinh α(τ + τ0) + t0

x3(τ ) =−+ 1

α
cosh α(τ + τ0) + x30 .

From the Euclidean point of view, we deal with the hyperbola 

. (t − t0)
2 − (x3 − x30)

2 = 1

α2

having the center at .(t0, x30) and the parallel asymptotes along the light cone. This is 
a good exercise for the reader. 

Of course, in . R, where the Minkowski Geometry is acting, this curve is a 
Minkowski space-like circle. From symmetry reason, we may choose the center 
of this hyperbola at .(0, 0), .τ0 = 0 and the sign . +. That is, we have an image of the 
.τ -axis of . S in . R, 

. 

⎧⎪⎨
⎪⎩
t (τ ) = 1

α
sinh ατ

x3(τ ) = 1

α
cosh ατ.

We have proved the following 

Theorem 9.6.4 If a coordinates frame . S is .
→
α -accelerated with respect to a frame 

at rest . R, then the image of the .τ -axis of . S in .R is a curve . c(τ ) := (t (τ ), x3(τ ))

characterized by the equations 

. 

⎧⎪⎨
⎪⎩
t (τ ) = 1

α
sinh ατ

x3(τ ) = 1

α
cosh ατ.

Now, we have the complete image: It exists a local change of coordinates between 
. S and . R described by the transformation . G, .G : S → R
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. G :

⎧⎪⎪⎨
⎪⎪⎩
t (τ, x̄3) = eαx̄3

α
sinh ατ

x3(τ, x̄3) = eαx̄3

α
cosh ατ.

The transformation . G, which was defined by using the idea of accelerating frame, 

allows us to understand how the constant gravitational field .− →
α in the frame of 

coordinates . S can be seen via the system of coordinates . R. Consequently, in the 
future, we will be able to compute the metric of . S. 

Exercise 9.6.5 Show that the inverse transformation .G−1 : R → S is 

. G−1 :

⎧⎪⎨
⎪⎩

τ(t, x3) = 1

α
tanh−1

(
t

x3

)
x̄3(t, x3) = 1

2α
ln

|
α2

((
x3

)2 − t2
)|

.

9.6.1 The Doppler Effect in Constant Gravitational Field 
and Consequences 

We know, up to this point, that frames at rest and frames moving at constant speed 
are inertial frames. The laws of mechanics and the new laws of Special Relativity 
have the same form and hold in such frames. There are no evidences that frames 
in which acts a constant gravitational field are non-inertial frames. Are they really 
inertial frames? The answer is related to the Doppler effect in a constant gravitational 
field. 

We are interested in finding out how the frequency of light in . S is affected by the 

constant gravitational field .− →
α which acts in . S. 

To obtain a formula which connects the frequency of the light and.− →
α , we need 

to change the perspective as we have done before. We use two frames of coordinates 
. S and. R. Instead of looking at the frame of coordinates . R in free fall in the previous 
constant gravitational field, we look at . R at rest and at the frame. S accelerated along 

the .x3 axis with the constant acceleration . 
→
α . 

Our study is done again in the two corresponding slices of . S and . R, taking into 
account the coordinates .(τ = x̄0, x̄3), respectively .(t = x0, x3). 

Let us pose the problem. 

From the origin.O(0, 0) of. S is emitted a light signal with frequency. ν. Consider 
.C(0, h), a point on .x̄3 axis at height . h. The  level . h is reached by the light-ray at the 
point .H(h, h). In order to obtain the frequency at the level . h, we need to consider



9.6 Gravity in Special Relativity: The Case of the Constant Gravitational Field 253

the frame . R. Denote by . fh the frequency of the light-ray in . R corresponding to the 
level . h in . S. We have  

Theorem 9.6.6 
. fh = νe−αh .

Proof Let us remember the transformation . G, 

. G :

⎧⎪⎪⎨
⎪⎪⎩
t (τ, x̄3) = eαx̄3

α
sinh ατ

x3(τ, x̄3) = eαx̄3

α
cosh ατ.

The points.O and. C , from. S, are seen through.G in. R with the coordinates. (t0, x30) =(
0,

1

α

)
and .(tC , x3C ) =

(
0,

eαh

α

)
respectively. 

The equivalent of the point.H in. R has the coordinates.
(
eαh

α
sinh αh,

eαh

α
cosh αh

)
. 

Since, through .

(
0,

1

α

)
, the new .τ -axis passes in . R, that is the curve . c(τ ) =(

1

α
sinh ατ,

1

α
cosh ατ

)
, equivalent to the line .x̄3 = h, is the curve . 

.ch(τ ) =
(
eαh

α
sinh ατ,

eαh

α
cosh ατ

)
. 

The speed vector at . h has the components .
(
eαh cosh αh, eαh sinh αh

)
, that is 

. vh = tanh αh.

We replace this formula in the general formula found before for the relativistic 
Doppler’s effect and it results 

. fh = ν

/
1 − vh

1 + vh
,

that is 

. fh = ν

/
1 − tanh h

1 + tanh h
= νe−αh .

[

Let us observe that if we denote by 

./τ = 1

ν
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the corresponding period in . S, and by 

. /t = 1

fh

the cooresponding period in. R, we obtain a formula connecting the two periods, that 
is 

. /τ = e−αh/t.

If .h > 0, that is, if the point .C belongs to the upper half-plane of . S, comparing the 
periods in . S with the one in . R, we have  

. /τ < /t.

If .h < 0, that is if the point . C is in the complementary half-plane of . S, we have  

. /τ > /t.

If . h is very close to . 0, we may consider the approximation 

. e−αh = 1 − αh.

From a physical point of view, .−αh corresponds to a potential energy for an object 
whose mass is . 1. Therefore we can write the formula 

. /t = 1

1 − αh
/τ

written with respect to the potential energy. 
Now, let us take into account two clocks, one in.O and one in. C . Suppose the first 

one ticking at each ./τ seconds. The second clock at . C is ticking in ./t seconds. 
The results ./τ < /t if .h > 0 and ./τ > /t , if .h < 0 hold. 
This situation shows that . S cannot be an inertial reference frame. In an inertial 

reference frame, the position cannot affect the way in which time is running. In the 
entire frame . S, we should have a same result. 

Therefore we have. 

Corollary 9.6.7 The frames in which a constant gravitational field is acting are not 
inertial frames. 

A further remark is the following. Let us suppose we are on the surface of a 
planet. Consider.0 < h1 < h2. It results.−αh1 > −αh2, that is .1 − αh1 > 1 − αh2. 
Suppose that.h1, h2 are so small than the quantities.1 − αh1 and.1 − αh2 are positive. 
We obtain 

./t1 = 1

1 − αh1
/τ <

1

1 − αh2
/τ = /t2.
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Therefore, while. h is decreasing, the clock, from. C is approaching.O and it is ticking 
slower and slower, that is the gravity slows down the clocks. This effect is taken into 
consideration in the case of GPS systems where we need to have same times at ground 
level and at the GPS satellite level 3. 

9.6.2 Bending of Light-Rays in a Constant Gravitational 
Field 

Theorem 9.6.8 The light-rays are bending in a constant gravitational field .− →
α . 

Proof The main idea of the proof that the light is bending in a constant gravitational 
field is related to the fact that the projection of a line to a plane is a line or a point. For 

the proof, the trajectory of a photon included in a given plane, in our case .x3 = 1

α
, 

is transferred into the frame of coordinates .(τ = x̄0, x̄2, x̄3) and then it is projected 
to the plane .(x̄2, x̄3). The result is neither a line nor a point. Therefore the light-ray 
is bent by the constant gravitational field. 

Let us focus on.G−1, now defined for a three dimensional slice in. R. The result is 

. G−1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ(t, x2, x3) = 1

α
tanh−1

(
t

x3

)
x̄2(t, x2, x3) = x2

x̄3(t, x2, x3) = 1

2α
ln

|
α2

((
x3

)2 − t2
)|

and we look at the image of the plane.x3 = 1

α
. In the next formulas, we suppress the 

.(t, x2) coordinates, therefore 

. G−1

(
x3 = 1

α

)
:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ = 1

α
tanh−1 (αt)

x̄2 = x2

x̄3 = 1

2α
ln

(
1 − α2t2

)
.

We observe: .G−1

(
x3 = 1

α

)
is a cylinder containing the .x̄2 axis. 

If we consider the trajectory of a photon in the .x3 = 1

α
plane, this has to be the 

line

3 The acronym GPS stays for Global Positioning System. It is a satellite-based radio-navigation 
system that provides geolocation and time information to a receiver anywhere on or near the Earth 
where there is an unobstructed line of sight to the fleet of GPS satellites. Obstacles, such as moun-
tains, block or weaken the GPS signals. 
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.c(s) =
(
s, s,

1

α

)
. The system.G−1(c(s)) is described by the equations 

. G−1(c(s)) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ = 1

α
tanh−1 (αs)

x̄2 = s

x̄3 = 1

2α
ln

(
1 − α2 s2

)
.

If we project the previous trajectory of a photon, that is trajectory seen in . S to the 
plane .(x̄2, x̄3), the result, denoted by .c̄(s), is parameterized as 

. c̄(s) =
(
s,

1

2α
ln

(
1 − α2 s2

))
.

It is obvious that .c̄(s) is neither a point nor a line. [

9.6.3 The Basic Incompatibility Between Gravity and Special 
Relativity 

We can conclude this chapter pointing out the basic incompatibility between gravity 
and Special Relativity. 

Let us suppose we are in a local frame. S, where a constant gravitational field. − →
α

is acting and let us consider a photon emitted at the origin .O from a source moving 

along the .τ -axis. Taking into account the frequency . ν and the formula ./τ = 1

ν
, the  

next photon is emitted by the source at the point .A(/τ, 0). The frame . S is not an 
inertial one and we have proved that the trajectories of photons are bending, that is 
they are not straight lines but curves. This means that there is a specific curve starting 
at the emitting point of the photon, in our case . O , which reaches the line .x̄3 = h at 
a point denoted by . M . The second photon, emitted in .A has an identical trajectory 
to the one emitted at . O . This second trajectory reaches the line .x̄3 = h in a point 
denoted by . N . 

The quadrilateral .OANM has the property ./τ = OA = MN . The length . MN
is the period ./t corresponding to the frequency . fh in . R. 
We have 

. /τ = /t,

instead of 
. /τ = e−αh/t.

This contradiction shows that the gravity cannot be integrated into the frame-
work of Special Relativity. Another theory has to be developed in order to fix this 
shortcoming. This is General Relativity.



Chapter 10 
General Relativity and Relativistic 
Cosmology 

Quod erat demostrandum. 

An imaginary discussion between Newton and Einstein could be the following. 
..................................................................*................................................................. 
Isaac Newton: Dear Prof. Einstein, my Universe is very simple. I can describe it 
using vectors and calculus. Between any two objects, a gravitational force is acting 
and, according to the masses of objects and the distance between them, the gravita-

tional force law is .F = G
mM

r2
. The gravitational field, in this case, is .A = GM

r2
. 

However, there exists an artifact, the gravitational potential.Φ = GM

r
. After me, the 

brilliant experimental physicist, Henry Cavendish, measured the gravitational con-
stant .G = 6, 67 × 10−11Nm2/kg2, considered “universal”. The potential is related 

to the gravitational field through the formula .VΦ = − →
A, the vacuum field equation 

is .V2Φ = 0, as established by Pierre Simon Laplace, and the general gravitational 
field equation is .V2Φ = 4πGρ as pointed out by Siméon Denis Poisson, once the 
density of matter is known. The objects are moving in this gravitational field accord-

ing to .
→
F= m

→
A and the trajectories are conics because my gravitational universal 

law gives a mathematical proof for the Kepler laws. What do you think? 

Albert Einstein: Very simple indeed, Sir Isaac! Conversely, my Universe is geo-
metric and has four dimensions, it is called space-time! I need more mathematics to 
describe it. Differential Geometry is essential, but, my dear Sir, this was invented after 
you passed away! My Universe is expressed by a metric .ds2 = gi j dxidx j , where the 
coefficients .gi j play the role of your gravitational potential . Φ. The Christoffel sym-
bols .Ti

jk are related to your gravitational field . A. This means that “my gravitational 
field” has more variables and structures than yours. The vacuum field equations are 
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. Ri j = 0

and my general field equations are 

. Ri j − 1

2
R gi j = 8πG

c4
Ti j .

Starting from them, I can recover the Laplace and Poisson equations in the weak 
field limit so, my dear Sir Isaac,....I am coherent with your picture! The metric I 
mentioned before is the one that satisfies the field equations. Objects are always 
moving on geodesics of the metric, therefore their equations are 

. 
d2xr

dt2
+ Tr

pq

dx p

dt

dxq

dt
= 0

These geodesic equations are my way of saying.
→
F= m

→
A that I recover, indeed, in the 

weak field limit. To conclude, one of my collaborators, John Archibald Wheeler, said 
that the better description of my theory can be reduced to the sentence “Space-time 
tells matter how to move; matter tells space-time how to curve” [141]. 
..................................................................*................................................................. 
Let us insist on the last sentence. How the space is curved appears from the Einstein 
field equations 

. Ri j − 1

2
R gi j = 8πG

c4
Ti j .

In the left-hand side, we have the “Geometry”: Metric .gi j and its derivatives are 
involved; in the right-hand side, we have a tensor depending on matter, the so called 
energy-momentum tensor. Once we have a metric .gi j , according to the Equivalence 
Principle, we have also the geodesics of the metric as we will discuss below. Which 
is the meaning of the geodesics described by the equations 

. 
d2xr

dt2
+ Tr

pq

dx p

dt

dxq

dt
= 0 ?

The simplest answers is: They are trajectories of objects moving accordingly to the 
Geometry of space-time. 

We start this chapter with some general considerations on what a good theory of 
gravity should do and enunciating the basic principles on which General Relativity 
lies. After, we take into account the differences between the Classical Newtonian 
Mechanics and the Einstein picture of gravity based on Geometry. We discuss how it 
works looking at the differences between the constant gravitational field, as conceived 
in Classical Mechanics, and the General Relativity counterpart. Finally, we provide 
Einstein’s field equations from the Einstein-Hilbert variational principle and briefly 
discuss possible generalizations like the so called . f (R) gravity.
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The Schwarzschild solution of the Einstein vacuum field equations is presented. 
The orbits of planets and the bending of light rays are computed in the framework 
of Schwarzschild metric. Even if it does not verify the field equations, the Einstein 
metric is presented because Einstein used it to compute the orbits of planets and the 
bending of light rays. The full computation for the perihelion drift is presented. The 
same, in both metrics, is presented the bending of light rays passing near our Sun. 

Fermi’s viewpoint on Einstein’s vacuum field equations is presented with impli-
cations related to the study of the week gravitational field; the classical counterparts 
of the relativistic equations are obtained in this way. We analyze Einstein static uni-
verse and the basic considerations on the cosmological constant, as a part related 
to the standard approach to the General Relativity. A “cosmological metric” is 
discussed when we study the Friedmann-Lemaître-Robertson-Walker metrics of a 
Universe in expansion. The way we obtain it is related to the way we considered the 
energy-momentum tensor. An interesting introductory section devoted to black holes 
mathematics is also presented. To have a more complete view on Relativity, we offer 
a short introduction on cosmic strings, wormholes and gravitational waves. 

Particular hypothetical universes without global time coordinate, as Gödel’s one 
and without masses, as de Sitter one and not only these, are presented to enlarge the 
possibilities of solutions of Einstein’s field equations. 

This is the most important chapter of the book. The main references for the topics 
we are developing can be found in [ 40, 44, 46, 56, 58, 75, 77, 137, 141, 142, 154, 
157, 163, 169, 171, 176]. 

10.1 What is a Good Theory of Gravity? 

Before entering the details of General Relativity, some considerations are in order. 
We need them to discuss the change of perspective introduced by the Einstein theory. 

As it is well known, General Relativity is based on the fundamental assumption 
that space and time are entangled into a single space-time structure assigned on a 
pseudo-Riemann manifold. Being a dynamical structure, it has to reproduce, in the 
absence of gravitational field, the Minkowski space-time. 

General Relativity has to match some minimal requirements to be considered 
a self-consistent physical theory. First of all, it has to reproduce the Newtonian 
dynamics in the weak-energy limit, hence it must be able to explain the astronomical 
dynamics related to the orbits of planets and the self-gravitating structures. Moreover, 
it passed some observational tests in the Solar System that constitute its experimental 
foundation [196]. 

However, General Relativity should be able to explain the Galactic dynamics, 
taking into account the observed baryonic constituents (e.g. luminous components 
as stars, sub-luminous components as planets, dust and gas), radiation and Newto-
nian potential which is, by assumption, extrapolated to Galactic scales. Besides, it 
should address the problem of large-scale structure as the clustering of galaxies. On 
cosmological scales, it should address the dynamics of the Universe, which means
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to reproduce the cosmological parameters as the expansion rate, the density param-
eter, and so on, in a self-consistent way. Observations and experiments, essentially, 
probe the standard baryonic matter, the radiation, and an attractive overall interaction, 
acting at all scales and depending on distance: this interaction is gravity. 

In particular, Einstein’s General Relativity is based on four main assumptions. 
They are 

The “Relativity Principle” - there is no preferred inertial frames, i.e. all frames are good 
frames for Physics. 

The “Equivalence Principle” - inertial effects are locally indistinguishable from gravitational 
effects (which means the equivalence between the inertial and the gravitational masses). In 
other words, any gravitational field can be locally cancelled. 

The “General Covariance Principle” - field equations must be “covariant” in form, i.e. they 
must be invariant in form under the action of space-time diffeomorphisms. 

The “Causality Principle” - each point of space-time has to admit a universally valid notion 
of past, present and future. 

On these bases, Einstein postulated that, in a four-dimensional space-time manifold, 
the gravitational field is described in terms of the metric tensor field.ds2 = gi j dxidx j , 
with the same signature of Minkowski metric. The metric coefficients have the phys-
ical meaning of gravitational potentials. Moreover, he postulated that space-time is 
curved by the distribution of the energy–matter sources. 

The above principles require that the space-time structure has to be determined 
by either one or both of the two following fields: a Lorentzian metric . g and a linear 
connection . T, assumed by Einstein to be torsionless. The metric . g fixes the causal 
structure of space-time (the light cones) as well as its metric relations (clocks and 
rods); the connection. T fixes the free fall, i.e. the locally inertial observers. They have, 
of course, to satisfy a number of compatibility relations which amount to require that 
photons follow null geodesics of . T, so that .T and . g can be independent, a priori, 
but constrained, a posteriori, by some physical restrictions. These, however, do not 
impose that . T has necessarily to be the Levi-Civita connection of . g. 

It should be mentioned, however, that there are many shortcomings in General 
Relativity, both from a theoretical point of view (non-renormalizability, the presence 
of singularities, and so on), and from an observational point of view. The latter indeed 
clearly shows that General Relativity is no longer capable of addressing Galactic, 
extra-galactic, and cosmic dynamics, unless the source side of field equations con-
tains some exotic form of matter–energy. These new elusive ingredients, as mentioned 
above, are usually addressed as “dark matter” and dark energy and constitute up to 
the .95% of the total cosmological amount of matter–energy [52]. 

On the other hand, instead of changing the source side of the Einstein field equa-
tions, one can ask for a “geometrical view” to fit the missing matter–energy of the 
observed Universe. In such a case, the dark side could be addressed by extending 
General Relativity including more geometric invariants into the standard Einstein– 
Hilbert Action. Such effective Lagrangians can be easily justified at fundamental level
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by any quantization scheme on curved space-times. However, at present stage of the 
research, this is nothing else but a matter of taste, since no final probe discriminat-
ing between dark matter and extended gravity has been found up to now. Finally, the 
bulk of observations that should be considered is so high that an effective Lagrangian 
or a single particle will be difficult to account for the whole phenomenology at all 
astrophysical and cosmic scales. 

10.1.1 Metric or Connections? 

As we will see below, in the General Relativity formulation, Einstein assumed that 
the metric . g of the space-time is the fundamental object to describe gravity. The 
connection. T is constituted by coefficients with no dynamics. Only. g has dynamics. 
This means that the single object. g determines, at the same time, the causal structure 
(light cones), the measurements (rods and clocks) and the free fall of test parti-
cles (geodesics). Space-time is therefore a couple .{M, g} constituted by a pseudo-
Riemannian manifold and a metric. Even if it was clear to Einstein that gravity 
induces freely falling observers and that the Equivalence Principle selects an object 
that cannot be a tensor (the connection . T)—since it can be switched off and set to 
zero at least in a point—he was obliged to choose it (the Levi-Civita connection) as 
being determined by the metric structure itself. 

In the Palatini formalism, a (symmetric) connection. T and a metric. g are given and 
varied independently. Space-time is a triple .{M, g, T} where the metric determines 
rods and clocks (i.e. it sets the fundamental measurements of space-time) while . T
determines the free fall. In the Palatini formalism, . T are differential equations. The 
fact that. T is the Levi-Civita connection of. g is no longer an assumption but becomes 
an outcome of the field equations. 

The connection is the gravitational field and, as such, it is the fundamental field 
in the Lagrangian. The metric . g enters the Lagrangian with an “ancillary” role. It 
reflects the fundamental need to define lengths and distances, as well as areas and 
volumes. It defines rods and clocks that we use to make experiments. It defines also 
the causal structure of space-time. However, it has no dynamical role. There is no 
whatsoever reason to assume . g to be the potential for . T, nor that it has to be a true 
field just because it appears in the action. We will not develop any more the Palatini 
formalism in this book. For a detailed discussion see [ 56]. 

10.1.2 The Role of Equivalence Principle 

The Equivalence Principle is strictly related to the above considerations and could 
play a very relevant role in order to discriminate among theories. In particular, it could 
specify the role of . g and . T selecting between the metric and Palatini formulation of 
gravity. In particular, precise measurements of Equivalence Principle could say us if
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. T is only Levi-Civita or a more general connection disentangled, in principle, from 

. g. Before, we discussed the Equivalence Principle starting from the early Galileo 
consideration stating that.mi ≡ mg. Besides this result, in General Relativity, Equiv-
alence Principle states that accelerations can be set to zero in given reference frame. 
According to this result, the free fall along geodesics, given by the connection, is 
ruled by the metric, as we will discuss below. 

Before entering into details, let us discuss some topics related to the Equivalence 
Principle. Summarizing, the relevance of this principle comes from the following 
points: 

• Competing theories of gravity can be discriminated according to the validity of 
Equivalence Principle. 

• Equivalence Principle holds at classical level but it could be violated at quantum 
level. 

• Equivalence Principle allows to investigate independently geodesic and causal 
structure of space-time. 

From a theoretical point of view, Equivalence Principle lies at the physical foundation 
of metric theories of gravity. The first formulation of Equivalence Principle comes 
out from the theory of gravitation formulates by Galileo and Newton, i.e. the Weak 
Equivalence Principle (the above Galilean Equivalence Principle) which asserts the 
inertial mass.mi and the gravitational mass.mg of any physical object are equivalent. 
The Weak Equivalence Principle statement implies that it is impossible to distinguish, 
locally, between the effects of a gravitational field from those experienced in uni-
formly accelerated frames using the simple observation of the free-falling particles 
behaviour. 

A generalization of Weak Equivalence Principle claims that Special Relativity is 
locally valid. Einstein realized, after the formulation of Special Relativity, that the 
mass can be reduced to a manifestation of energy and momentum as discussed in 
previous chapter. As a consequence, it is impossible to distinguish between a uniform 
acceleration and an external gravitational field, not only for free-falling particles, but 
whatever is the experiment. According to this observation, Einstein Equivalence 
Principle states: 

• The Weak Equivalence Principle is valid. 
• The outcome of any local non-gravitational test experiment is independent of the 
velocity of free-falling apparatus. 

• The outcome of any local non-gravitational test experiment is independent of 
where and when it is performed in the Universe. 

One defines as “local non-gravitational experiment” an experiment performed in a 
small size of a free-falling laboratory. Immediately, it is possible to realize that the 
gravitational interaction depends on the curvature of space-time, i.e. the postulates 
of any metric theory of gravity have to be satisfied. Hence the following statements 
hold:



10.1 What is a Good Theory of Gravity? 263

• Space-time is endowed with a metric .gi j . 
• The world lines of test bodies are geodesics of the metric. 
• In local freely falling frames, called local Lorentz frames, the non-gravitational 
laws of physics are those of Special Relativity. 

One of the predictions of this principle is the gravitational redshift, experimentally 
verified by Pound and Rebka in 1960 [196]. Notice that gravitational interactions 
are excluded from the Weak Equivalence Principle and the Einstein Equivalence 
Principle. 

In order to classify alternative theories of gravity, the gravitational Weak Equiv-
alence Principle and the Strong Equivalence Principle have to be introduced. On 
the other hand, the Strong Equivalence Principle extends the Einstein Equivalence 
Principle by including all the laws of physics in its terms. That is: 

• Weak Equivalence Principle is valid for self-gravitating bodies as well as for test 
bodies (gravitational weak equivalence principle). 

• The outcome of any local test experiment is independent of the velocity of the 
free-falling apparatus. 

• The outcome of any local test experiment is independent of where and when in 
the Universe it is performed. 

Alternatively, the Einstein Equivalence Principle is recovered from the Strong Equiv-
alence Principle as soon as the gravitational forces are neglected. Many authors claim 
that the only theory coherent with Strong Equivalence Principle is General Relativity. 

A very important issue is the consistency of Equivalence Principle with respect to 
the Quantum Mechanics. General Relativity is not the only theory of gravitation and 
several alternative theories of gravity have been investigated from the 1960s of last 
century. Considering the space-time to be special relativistic at a background level, 
gravitation can be treated as a Lorentz-invariant field on the background. Assuming 
the possibility of General Relativity extensions, two different classes of experiments 
can be conceived: 

• Tests for the foundations of gravitational theories considering the various formu-
lations of Equivalence Principle. 

• Tests of metric theories where space-time is a priori endowed with a metric tensor 
and where the Einstein Equivalence Principle is assumed always valid. 

The subtle difference between the two classes of experiments lies on the fact that 
Equivalence Principle can be postulated a priori or, in a certain sense, “recovered” 
from the self-consistency of the theory. What is today clear is that, for several fun-
damental reasons, extra fields are necessary to describe gravity with respect to the 
other interactions. Such fields can be scalar fields or higher order corrections of cur-
vature invariants. For these reasons, two sets of field equations can be considered: 
The first set couples the gravitational field to the non-gravitational contents of the 
Universe, i.e. the matter distribution, the electromagnetic fields, etc. The second set 
of equations gives the evolution of non-gravitational fields. Within the framework
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of metric theories, these laws depend only on the metric and this is a consequence 
of the Einstein Equivalence Principle. In the case where Einstein field equations are 
modified and matter field are minimally coupled with gravity, we are dealing with the 
so-called Jordan frame. In the case where Einstein field equations are preserved and 
matter field are non-minimally coupled, we are dealing with the so-called Einstein 
frame. Both frames are conformally related but the very final issue is to understand 
if passing from one frame to the other (and vice versa) is physically significant. 
See [ 56] for details. Clearly, Equivalence Principle plays a fundamental role in this 
discussion. In particular, the question is if it is always valid or it can be violated at 
quantum level. See [ 12, 182, 184]. 

After these preliminary considerations, let us start with the geometric construction 
of General Relativity. However, we recommend the reader to consider again these 
introductory sections after he/she finishes to read the book because some current 
problems in General Relativity are reported. 

10.2 Gravity Seen Through Geometry in General Relativity 

Even if we repeat some ideas, let us go back to our previous discussion on the 
gravitational potential in Newtonian Mechanics. We start from the tidal acceleration 
equations 

. 
d2

dt2
∂ x̄

∂q
= −d2Φx̄

∂ x̄

∂q
,

where the Hessian matrix of the gravitational potential . Φ

. d2Φx̄ =
(

∂2Φ(x̄)

∂xi∂xk

)
i,k

is encapsulated in its trace by the Laplace equation .V2Φ = 0 in vacuum. In a space 
endowed with a metric .ds2 = gi j dxidx j , it is possible to find the equivalent 

. 
∇2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q
,

where 

. Kh
j = Rh

i jk

dxi

dτ

dxk

dτ

plays the role of the Hessian of the gravitational potential. 
It seems to be natural to think of the trace of the matrix.Kh

j to obtain an equivalent 
of classical vacuum field equations .V2Φ = 0. Since
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. Kh
h = Rh

i jh

dxi

dτ

dx j

dτ ,

the Ricci tensor has to be involved in General Relativity field equations. It is why 
Einstein, and then Hilbert, considered a way to express the field equations through 
the Ricci tensor. 

So, let us repeat their main idea. The gravitational field is not constant. There 
are small variations of the gravitational field induced by some other bodies or by 
changing the distance . r between bodies. If we are on the surface of the Earth, our 
legs will experience a higher intensity of the gravitational field of the Earth than our 

head. To understand this, it is enough to look at the formula.A = GM

r2
, .M being the 

mass of the Earth, .G being the gravitational constant and. r being the radius. R of the 
Earth at the legs level and .r = R + h at the level of our head, . h being our height. 
For the same reason, a person at the first floor of a building experiences a greater 
intensity of the gravitational field comparing with another person which is at the 33th 
floor of the same building. The Moon makes ocean tides and we see how these are 
related to the tidal effects. 

If we have tides, mathematically they can be treated under the Newtonian standard, 
the field equation .V2Φ = 0 being hidden in the trace of the Hessian matrix . d2Φ

involved in the tidal equations 

. 
d2

dt2
∂ x̄

∂q
= −d2Φx̄

∂ x̄

∂q
.

Tides can be dealt with a geometric approach considering the Ricci tensor of a 
given metric from the equations 

. 
∇2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q
,

where 

. Kh
j = Rh

i jk

dxi

dτ

dxk

dτ
.

Einstein had the power to break the standard Newtonian approach, describing 
gravity with the language of Differential Geometry. 

According to Einstein, the components .gi j of a metric .ds2 = gi j dxidx j play 
the role of gravitational potential . Φ, which is just one of the potentials in .gi j . The  

Christoffel symbols .Ti
jk play the role of the gravitational field . 

→
A. Let us consider 

again a table of analogies containing the two ways of conceiving at the gravity
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. Newton Einstein

. Φ ←→ gi j

. 
→
A ←→ Ti

j k

. V2Φ = 0 ←→ ?

. V2Φ = 4πGρ ←→ ?

The first question mark seems to be replaced by.Ri j = 0, but we still have to work to 
obtain it. At this moment we know that the second question mark has to be replaced 
by the Einstein field equations. Because the meaning of the two ways of conceiving 
the gravity will be clarified latter after we introduce Fermi coordinates. 

Einstein was the first who realized that the laws of Nature have to be expressed by 
equations which hold for any system of coordinates, that is, they must be covariant 
with respect to any change of coordinates. 

Taking into account also the discussion of previous sections, Einstein’s Principle 
of General Covariance states: 

The laws of Nature have to be expressed as equalities of different tensors. 
The changes of coordinates become part of the core of General Relativity. Why are 
they so important? They allow us to describe the laws of Nature from the point of 
view of different observers or/and they allow us to describe a new state of a given 
system. 

Let us consider a region of space where the gravitational field can be neglected. 
Consider a spacecraft there. Suppose that there are no other forces acting there. 
Therefore all objects are moving on straight lines with constant velocity. The space-
craft does the same. Locally, the space-time system of coordinates . (x0, x1, x2, x3)
can be thought to describe an inertial frame, that is, the local metric tensor is the 
Minkowski one 

. gi j (x
0, x1, x2, x3) =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Since .Ti
jk = 0, the geodesics equations are 

. ẍ j (t) = 0, j ∈ {0, 1, 2, 3},

i.e. all objects there experience a free fall. So, the law of motion is described by the 

previous equations which express in fact the equality .
→
F= m· →

A for .
→
F =. 

→
0 . 

Let us now suppose the engines of the spacecraft start and the space craft is 
accelerated. This is described by a map .M which switches from the coordinates
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.(x̄0, x̄1, x̄2, x̄3) to .(x0, x1, x2, x3), i.e. we have to describe the old coordinates with 
respect to the new ones. 

We know, from Differential Geometry, how the new metric looks like. 
The new components .ḡi j are found after the rule .dMt · (gi j ) · dM . In this new  

metric, we can compute the new.T̄i
jk and the geodesic equations are 

. ¨̄xi (t) + T̄i
jk

˙̄x j (t) ˙̄x j (t) = 0, j ∈ {0, 1, 2, 3}.

Since under a change of coordinates, geodesics are transformed into geodesics, and 
the meaning is kept, the old law of motion becomes the new law of motion, therefore 
the equations 

. ¨̄xi (t) = −T̄i
jk

˙̄x j (t) ˙̄x j (t), j ∈ {0, 1, 2, 3}

describes .
→
F= m· →

A for .
→
F /=→

0 . 
Let us try to understand the constant gravitational field under this more general 

approach. 

10.2.1 The Einstein Landscape for the Constant 
Gravitational Field 

We consider a local frame of coordinates . S, .(τ = x̄0, x̄1, x̄2, x̄3) in which acts a 
constant gravitational field and another frame of coordinates . R, whose coordinates 
are .(t = x0, x1, x2, x3), frame which is in free fall with respect to the previous 
constant gravitational field. The metric in the second frame is the Minkowski one, 

. gi j (x
0, x1, x2, x3) =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Let us assume that, for.τ = t = 0, the two frames can be seen as an unique frame with 
axes corresponding in index notation. We assume also that the second frame is moving 
along the.x̄3-axis in its negative direction. We saw already the transformation which 
involves the constant gravitational field.−α in. S. It is, in fact, a change of coordinates 
between . S and . R. If we consider only the pairs of axis .(τ , x̄3) and .(t, x3), this is  

.G :

⎧⎪⎪⎨
⎪⎪⎩
t (τ , x̄3) = eαx̄3

α
sinhατ

x3(τ , x̄3) = eαx̄3

α
coshατ .
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with 

. G−1 :

⎧⎪⎨
⎪⎩

τ (t, x3) = 1

α
tanh−1

(
t

x3

)

x̄3(t, x3) = 1

2α
ln
T
α2
((
x3
)2 − t2
)|

.

In the considered slice, in . R, the metric is 

. 

(
g00 g03
g30 g33

)
=
(
1 0
0 −1

)
.

The metric in . S is determined by .dGt · (gi j ) · dG, where 

. dG = dGt =
(
eαx̄3 coshατ eαx̄3 sinhατ

eαx̄3 sinhατ eαx̄3 coshατ

)
= eαx̄3

(
coshατ sinhατ
sinhατ coshατ

)
.

It results in 

. 

(
ḡ00 ḡ03
ḡ30 ḡ33

)
=
(
e2αx̄

3
0

0 −e2αx̄
3

)
.

The metric which describes the constant gravitational field in the corresponding slice 
of . S is 

. ds2 = e2αx̄
3 |
dx̄0 − dx̄3

|
.

In . S, locally, the metric tensor is 

. ḡi j (x̄
0, x̄1, x̄2, x̄3) =

⎛
⎜⎜⎝
e2αx̄

3
0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −e2αx̄

3

⎞
⎟⎟⎠ .

The Christoffel first kind symbols are 

. T30,0 = T03,0 = αe2αx̄
3
, T00,3 = T33,3 = −αe2αx̄

3
, T30,3 = T03,3 = T00,0 = T33,0 = 0.

The Christoffel second kind symbols are 

. T0
30 = T0

03 = T3
00 = T3

33 = α, T3
30 = T3

03 = T0
00 = T0

33 = 0.

The geodesic equations, in the considered slice, with respect to the geodesic param-
eter . λ are
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. 

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2 x̄0

dλ2
= −2α

dx̄0

dλ

dx̄3

dλ

d2 x̄3

dλ2
= −α

(
dx̄0

dλ

)2
− α

(
dx̄3

dλ

)2
.

In . S, we have  

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 x̄0

dλ2
= −2α

dx̄0

dλ

dx̄3

dλ

d2 x̄1

dλ2
= 0

d2 x̄2

dλ2
= 0

d2 x̄3

dλ2
= −α

(
dx̄0

dλ

)2
− α

(
dx̄3

dλ

)2

with the general solutions 

. 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̄0 = k3 + 1

2α
ln(k1 + λ) − 1

2α
ln(k2 − λ)

x̄1 = k4λ + k5
x̄2 = k6λ + k7

x̄3 = 1

α
lnα + 1

2α
ln(k1 + λ) + 1

2α
ln(k2 − λ).

A very good exercise for the reader is to prove that the above formulas verify the 
equations of the geodesics. 

Let us analyse the trajectories of photons. They come from the equations . x3 =
t + b or .x3 = −t + b. The constant . b is arbitrary and the speed of light is assumed 
1. We consider only the case .x3 = t + b, the other case can be analysed in a similar 
way. 

Let us introduce the previous formula in .G−1. It results in 

. G−1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ (t) = 1

α
tanh−1

(
t

t + b

)
= 1

2α
ln

1 + t

t + b

1 − t

t + b

= 1

2α
ln(2t + b) − 1

2α
ln b

x̄3(t) = 1

2α
ln
T
α2
(
(t + b)2 − t2

)|
= 1

2α
ln(2t + b) + 1

α
lnα,

that is, 
.x̄3(t) = τ (t) + β,
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where . β is a constant. The trajectories of photons are lines having the slope . +1
(or .−1). Of course these lines are geodesics because they come from the geodesics 
of . R. 

In the case .x3 = k, let us express .x̄3 as a function of . τ . From  

. τ (t) = 1

α
tanh−1

(
t

k

)

it results in 
. t = k tanh(ατ ),

that is, 

. x̄3(τ ) = 1

2α
ln
|
α2k2(1 − tanh2(ατ ))

|
.

Therefore 

. x̄3(τ ) = 1

α
ln(αk) − 1

α
ln(cosh(ατ )).

Since 

. x̄3(0) = 1

α
ln(αk); dx̄3

dτ
(0) = 0; d2 x̄3

dτ 2
(0) = −α;

the second-order approximation of .x̄3 is the parabola 

. x̄3(τ ) = 1

α
ln(αk) − α

2
τ 2,

which, in the case .k = 1

α
and .τ = τ1

v
, becomes 

. x̄3(τ1) = − α

2v2
τ 2
1 .

This is the parabola seen in the case of constant gravitational field in Classical 
Mechanics, that is, the trajectory function of time. 

Since the second kind Christoffel symbols are constant, it is easy to compute.R0
303. 

We find . R0
303 = T0

h0T
h
33 − T0

h3T
h
30 = α2 − α2 = 0.

In fact, all sectional curvatures are. 0, but, in general, the geodesics are not straight 
lines as we saw, they only come from lines of . R. 

In simple words, we can say that the constant gravitational field bends geodesics 
of space. 

How the constant gravitational field affects the proper time can be found out by 
looking at the metrics involved in this description. For the frame . R, free falling in 
the constant gravitational field .−α of . S, the metric is the Minkowski one, i.e. 

.ds2 = dt2 − dx2.
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The clock ticks in ./t seconds. The constant gravitational field induces in . S, as we  
saw, the metric 

. ds2 = e2αx̄ (dτ 2 − dx̄2).

Here, the clock ticks in ./τ seconds. Between the observers of .R and . S, if  . x̄ →
0, x̄ > 0, there is the connection 

. /t = eαx̄/τ ≥ (1 + αx̄)/τ ≥ /τ ,

that is, the clock of . R ticks slower and slower as .x̄ → 0, x̄ > 0. 
The clock of a person. A at the ground level of a building ticks less than the clock 

of a person. B at the 33th floor. Therefore the ground level person. A ages slower than 
the person . B. Or, everyone legs are younger than the brain. Of course even at the 
level of lifetime of a person, the effects are imperceptible. 

Therefore, according to Newton, the constant gravitational field landscape exists 

in .n = 3 dimensions. The gravitational field is .
→
A and the gravitational potential . Φ

is related to it by the formula 

. 
→
A= −VΦ = (0, 0,−α).

The constant gravitational field satisfies the vacuum field equation 

. V2Φ = 0.

The equations of motion are 

. 
d2x

dt2
= 0; d2y

dt2
= 0; d2z

dt2
= −α.

The solution, in appropriate initial conditions if we consider a plane .(t, z), is  

. z(t) = − α

2v2
t2.

Einstein’s constant gravitational field landscape exists in four dimensions. 
The gravitational potential appears in the coefficients of the metric tensor 

.ḡi j (x̄
0, x̄1, x̄2, x̄3) =

⎛
⎜⎜⎝
e2αx̄

3
0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −e2αx̄

3

⎞
⎟⎟⎠ .
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The gravitational field is described by the Christoffel second kind symbols: 

. T0
30 = T0

03 = T3
00 = T3

33 = α, T3
30 = T3

03 = T0
00 = T0

33 = 0

and satisfies 
. Ri j = 0.

The equations of motions are the geodesic equations: 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 x̄0

dλ2
= −2α

dx̄0

dλ

dx̄3

dλ

d2 x̄1

dλ2
= 0

d2 x̄2

dλ2
= 0

d2 x̄3

dλ2
= −α

(
dx̄0

dλ

)2
− α

(
dx̄3

dλ

)2

with the general solutions 

. 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̄0 = k3 + 1

2α
ln(k1 + λ) − 1

2α
ln(k2 − λ)

x̄1 = k4λ + k5
x̄2 = k6λ + k7

x̄3 = 1

α
lnα + 1

2α
ln(k1 + λ) + 1

2α
ln(k2 − λ).

Locally, the particular solution presented before, 

. x̄3(τ ) = 1

α
ln(αk) − α

2
τ 2,

can be approximated by the classical solution 

. x̄3(τ1) = α

2v2
τ 2
1 .

This intuitive description of Einstein’s pictures can be fully formalized considering 
the Hilbert approach by which the gravitational field equations come out from a 
variational principle.
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10.3 The Einstein–Hilbert Action and The Einstein Field 
Equations 

Under a change of coordinates .xr = xr (xh), r ∈ {0, 1, ..., n}, h ∈ {0, 1, ..., n}, the  
second kind Christoffel symbols change according to the rule 

. 
∂2xk

∂xi∂x j = −Tk
rs

∂xr

∂xi
∂xs

∂x j + T
r
i j

∂xk

∂xr
.

Suppose we vary the metric. It means that the coefficients .gi j are changed in 
some new coefficients .ḡi j := gi j + δgi j . This second metric produces first-type and 
second-type Christoffel symbols. Let us denote them by .γi j,k and .γi

jk . The  same  
change of coordinates gives for these new Christoffel symbols a similar formula 

. 
∂2xk

∂xi∂x j = −γk
rs

∂xr

∂xi
∂xs

∂x j + γr
i j

∂xk

∂xr
.

The difference of the previous formulas leads to 

Proposition 10.3.1 The variation difference .δTi
jk := Ti

jk − γi
jk satisfies 

. δTk
rs

∂xr

∂xi
∂xs

∂x j = δT
r
i j

∂xk

∂xr
,

i.e. .δTi
jk is a .(1, 2) mixed tensor. 

Let .gi j be the matrix of the metric .ds2 = gi j dxidx j and let . g be the determinant 
of .gi j . Suppose this determinant is negative as in the case of the Minkowski metric. 

Theorem 10.3.2 The formula which expresses the variation of .
√−g is 

. δ
√−g = −1

2

√−g gi jδg
i j .

Proof The inverse of the matrix .gi j is .gi j such that .gisgs j = δij . 
Consider a given element .gi j of the matrix and denote by .Mi j the determinant 

of the matrix obtained from the initial one after we cancel both the line . i and the 
column. j . 

The corresponding inverse element is .gi j = (−1)i+ j Mi j

g
and, in this respect, 

using the column. j , the determinant can be thought as .g =Ei (−1)i+ jgi j Mi j . 
Then, for the variation of .

√−g, we have:
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. δ
√−g = ∂

∂gi j

(√−g
)
δgi j =

. = − 1

2
√−g

∂g

∂gi j
δgi j = − 1

2
√−g

(−1)i+ j Mi jδgi j = − 1

2
√−g

· g · gi jδgi j .

It results in 

. δ
√−g = 1

2

√−ggi jδgi j .

From.gksgsl = δkl , it is .δg
ksgsl + gksδgsl = 0, that is, . gksδgsl = −δgksgsl .

Multiplying by .gmk , we obtain 

. gmkg
ksδgsl = −gmkgslδg

ks

and, after considering .s = m = i, l = j , it is  

. δgi j = −gikgi jδg
ik .

Replacing in the formula of the variation of .
√−g we obtain 

. δ
√−g = −1

2

√−ggi jgikg j iδg
ik,

that is, 

.δ
√−g = −1

2

√−ggikδg
ik .

[

Theorem 10.3.3 (Palatini’s Formula) . δRi j = δTs
i j;s − δTs

is; j .

Proof We start from 

. Ri j = Rs
is j = ∂Ts

i j

∂xs
− ∂Ts

is

∂x j
+ Ts

suT
u
i j − Ts

juT
u
is .

Then the variation of the Ricci tensor is 

. δRi j = ∂(δTs
i j )

∂xs
− ∂
(
δTs

is

)
∂x j

+ δTs
suT

u
i j + Ts

suδT
u
i j − δTs

juT
u
is − Ts

juδT
u
is .

The variation .δTs
i j is a .(1, 2) tensor type. Its covariant derivative is 

.δTs
i j;s = ∂(δTs

i j )

∂xs
+ Ts

suδT
u
i j − δTs

juT
u
is − δTs

iuT
u
js .
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In the same way the covariant derivative of .δTs
is is 

. δTs
is; j = ∂(δTs

is)

∂x j
+ δTu

isT
s
ju − δTs

suT
u
i j − δTs

iuT
u
js .

Subtracting the second relation from the first we obtain the Palatini formula. [

Theorem 10.3.4 If .V is a compact region of the Universe whose volume element is 
.dV , such that on its boundary .∂V , the variations .δTi

jk vanish, then 

. 

{
V

gi j δRi j dV = 0.

Proof (Palatini’s Formula Consequence) Since the volume element.dV is expressed 
with respect to the given metric by 

. dV = √−g dx0dx1dx2dx3,

our integral becomes 

. 

{
V

gi j δRi j
√−g d4x,

where we denoted .dx0dx1dx2dx3 by .d4x . 
It exists a corresponding 3D-surface element .dσ on .∂V , .dσ = √−g' d3x . 
At each point of .∂V , it exists a normal outward vector . n of components . ns , i.e. 

.n = ns . 
All these results help us to express the divergence formula which, in the classical 

form, looks like 

. 

{
V

÷B dV =
{

∂V
B · n dσ,

here, in its covariant form, being 

. 

{
V
Bs

;s
√−g d4x =

{
∂V

Bsns
/−g' d3x .

Now, Palatini’s formula leads to 

. 

{
V

gi j δRi j
√−g d4x =

{
V

gi j
(
δTs

i j;s − δTs
is; j
)√−g d4x .

Taking into account that .gi j;s = 0 and changing the dummy indexes, we can write
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. 

{
V

gi j δRi j
√−g d4x =

{
V

|(
gi j δTs

i j

)
;s −
(
gi j δTs

is

)
; j

|√−g d4x =

. =
{
V

|(
gi j δTs

i j

)
;s −
(
gisδT

j
i j

)
;s

|√−g d4x =
{
V

T
gi j δTs

i j − gisδT
j
i j

|
;s

√−g d4x .

Let us denote the contravariant vector .gi jδTs
i j − gisδT

j
i j by .Bs . Our initial integral 

. 

{
V

gi j δRi j
√−g d4x,

according to the covariant above form becomes 

. 

{
∂V

Bsns
/−g' d3x .

Since .Bs = gi jδTs
i j − gisδT

j
i j vanishes on .∂V , the last integral is . 0, that is 

.

{
V

gi j δRi j
√−g d4x = 0.

[

These considerations lead us to the following. 

Theorem 10.3.5 (Einstein’s Field Equations in vacuum) If .V is a compact region 
of the Universe without matter and energy inside it, such that, on its boundary .∂V , 
the variations .δTi

jk vanish, then 

. Ri j − 1

2
R gi j = 0.

Proof (Hilbert) We have proved both 

. δ
√−g = −1

2

√−g gi jδg
i j

and 

. 

{
V

gi j δRi j
√−g d4x = 0.

To derive Einstein’s field equations, we have to choose an appropriate Lagrangian. 
Hilbert’s idea was to consider the Lagrangian expressed through the Ricci curva-

ture scalar . R, that is, the Einstein–Hilbert action is 

.SEH =
{
V
R
√−g d4x .
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Let us compute the first variation of .SEH . It is  

. δSEH = δ

{
V
R
√−g d4x = δ

{
V

gi j Ri j
√−g d4x =

{
V

δ
(
gi j Ri j

√−g
)
d4x =

. =
{
V

(
δgi j
)
Ri j

√−g d4x +
{
V

gi j
(
δRi j
)√−g d4x +

{
V
R δ
(√−g
)
d4x =

. =
{
V

δgi j Ri j
√−g d4x +

{
V

gi jδRi j
√−g d4x − 1

2

{
V
R
√−g gi jδg

i j d4x

After rearranging the right side, we have 

. δSEH =
{
V

|
Ri j − 1

2
R gi j

|√−g δgi j d4x +
{
V

gi j δRi j
√−g d4x .

Since 

. 

{
V

gi j δRi j
√−g d4x = 0,

the condition .δSEH = 0 for .gi j arbitrary leads to the Einstein field equations in 
vacuum. Therefore in a region of space as the one described by the previous statement, 
without matter and energy, the Einstein field equations are 

.Ri j − 1

2
R gi j = 0.

[

Theorem 10.3.6 (Einstein’s field equations in presence of matter) If .V is a region 
of the Universe containing matter and energy, such that, on its boundary .∂V , the  
variations .δTi

jk vanish, then there exists a .(2, 0) covariant tensor .Ti j such that 

. Ri j − 1

2
R gi j = K Ti j ,

where .K is a coupling constant. 

Proof (Hilbert) In the previous theorem, we have used an action which describes the 
geometry of space without matter and energy. If we want to describe the geometry of 
a space with matter and energy inside it, the Einstein–Hilbert action has to contain a 
further term, denoted by .SM , depending on the matter–energy distribution in space-
time.
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So, the general Einstein–Hilbert action .SGEH has the form.kSEH + SM , where . k
is a constant. This can be written in the form 

. SGEH =
{
V
(kR + S)

√−g d4x,

that is, 

. δSGEH = k
{
V

|
Ri j − 1

2
R gi j

|√−g δgi j d4x +
{
V

|
δS

δgi j

|√−g δgi j d4x,

because we have already computed the variation 

. δSEH =
{
V

|
Ri j − 1

2
R gi j

|√−g δgi j d4x .

If the first variation of .SGEH vanishes, it results in 

. Ri j − 1

2
R gi j = K Ti j ,

where .Ti j := − δS

δgi j
and .K := 1

k
. 

The general Einstein field equations are obtained. [

10.4 An Introduction to . f (R) Gravity 

It is very interesting to observe that the previous theorems can be generalized if 
instead of .R we use any smooth function . f (R) in the Einstein–Hilbert action. In 
this way, we obtain the field equations of the so-called . f (R) gravity. They are  the  
straightforward generalization of Einstein field equations and have recently acquired 
a lot of interest in view of solving several problems in cosmology and astrophysics 
(for a comprehensive discussion, see, for example, [ 56]). For example, the model of 

. f (R) = R + R2

6M2
, where .M has the dimension of mass, gives rise to the so-called 

Starobinski inflation [175] which gives rise to the accelerated expansion of the early 
Universe capable of addressing several issues of Cosmological Standard Model based 
on General Relativity and Standard Model of Particles [127]. This kind of theories 
can be useful also to address issues related to the late Universe, like recent accelerated 
expansion, often dubbed dark energy epoch [ 53, 57, 149] or astrophysical issues like 
dark matter [ 62]. 

A detailed discussion of these problems is out of the scope of this book but it is 
worth pointing out that they are very active research areas. We refer the interested 
reader to the cited bibliography.
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In view of the present discussion, it is interesting to develop how the Einstein 
field equations can be generalized in the . f (R) gravity framework. In particular, it 
is interesting to point out that metric and Palatini’s formalisms give different field 
equations that, however, can be related to each other, see [ 64]. 

Taking into account the previous results related to the Einstein field equations, 
let us derive here the . f (R) gravity field equations. We shall use the following facts 
proven in the previous section, that is: 

. δ
√−g = −1

2

√−g gi jδg
i j ,

. 

{
V

gi j δRi j
√−g d4x = 0.

The second formula is a consequence of Palatini’s identity 

. δRi j = δTs
i j;s − δTs

is; j .

To begin, let us consider the basic objects introduced in the Differential Geometry 
chapter: .gi j , gi j , Ti j,k, Tk

i j , Ri
jkl , Ri j , Ri jkl, Ri

j , R. They are smooth functions, 
that is functions having derivatives of all order everywhere in the domain, here 
. V . Therefore, if we assume . f (R) as a smooth function of .R(V ), then . f (R) is a 
smooth function for .x ∈ V . If  .V is compact and connected region in the Euclidean 
.n-dimensional space, then.R(V ) is a compact interval in. R. In other words, the Ricci 
scalar.R(V ) is the image of. V through. R. In particular. f, f ', ... are at least continuous 
functions on a real compact interval, here .R(V ). The values of . f (R), f '(R), ... are 
in real compact intervals, too. The prime indicates derivative with respect to the Ricci 
scalar . R. 

Theorem 10.4.1 If .V is a compact and connected region of the universe without 
matter and energy inside it, such that on its boundary .∂V the variations .δTi

jk vanish 
and . f is a smooth real valued arbitrary function on .R(V ), then 

. f '(R)Ri j − 1

2
f (R)gi j = 0.

Proof The line of the proof is similar to Theorem 9.3.5. The appropriate Lagrangian 
is 

. S f =
{
V
f (R)

√−g d4x .

Let us compute the first variation of .S f .
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. δS f = δ

{
V
f (R)

√−g d4x =
{
V

δ[ f (R)
√−g] d4x =

. =
{
V
f '(R)δR

√−g d4x +
{
V
f (R)δ
(√−g
)
d4x =

. =
{
V

f '(R)
(
δgi j
)
Ri j

√−g d4x +
{
V

f '(R)gi j
(
δRi j
)√−g d4x +

{
V

f (R) δ
(√−g
)
d4x =

. =
{
V

f '(R)δgi j Ri j
√−g d4x +

{
V

f '(R)gi j δRi j
√−g d4x − 1

2

{
V

f (R)
√−g gi j δg

i j d4x

After rearranging the right-hand side, we have 

. δS f =
{
V

|
f '(R)Ri j − 1

2
f (R) gi j

|√−g δgi j d4x +
{
V

f '(R) gi j δRi j
√−g d4x .

Now, the mean value theorem implies the existence of a point .x ∈ V such that 

. 

{
V
f '(R)gi j δRi j

√−g d4x = f '(R(x))
{
V

gi j δRi j
√−g d4x .

The last integral is . 0, therefore the condition.δS f = 0 for.gi j arbitrary leads to. f (R)

field equations in vacuum. Therefore, in the condition of the above statement, in a 
region of space without matter and energy, the . f (R) field equations in vacuum are 

. f '(R)Ri j − 1

2
f (R) gi j = 0.

Let us observe that, for . f (R) = R, we obtain the Einstein field equations in 
vacuum. [

Theorem 10.4.2 If .V is a compact and connected region of universe containing 
matter and energy, such that on its boundary .∂V the variations .δTi

jk vanish and . f is 
a smooth real valued arbitrary function on .R(V ), then there exists a .(2, 0) covariant 
tensor .Ti j such that 

. f '(R)Ri j − 1

2
f (R)gi j = KTi j ,

where .K is a constant. 

Proof If we choose the action 

.SG f =
{
V
(k f (R) + S)

√−g d4x,
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that is, 

. δSG f = k
{
V

|
f '(R)Ri j − 1

2
f (R) gi j

|√−g δgi j d4x +
{
V

|
δS

δgi j

|√−g δgi j d4x,

in the same way as in Theorem 9.3.6, we obtain the. f (R) generalized field equations 

. f '(R)Ri j − 1

2
f (R) gi j = KTi j .

[

Exercise 10.4.3 If the reader is interested in the differences between the Palatini 
and metric formalisms in . f (R) gravity, we propose the following exercise whose 
notation can be found in [ 56]. Starting from the action of . f (R), show that 

. f '(R)Ri j − 1

2
f (R)gi j − f '(R);i j + gi j[ f '(R) = KTi j ,

with the trace 
. 3[ f '(R) + f '(R)R − 2 f (R) = KT ,

are the field equations obtained by varying with respect to.gi j without using the above 
Palatini identity. Demonstrate that they are equivalent to 

. f '(R)Ri j − 1

2
f (R) gi j = KTi j ,

unless a divergence free current. Here.[ is the d’Alembert operator defined as. [ :=
∇i∇ i with .∇i the covariant derivative. 

Hint. Use results in [ 64]. 
We will consider again . f (R) gravity in view of the discussion of the de Sitter 

space-time which is a solution of this theory. 

10.5 The Schwarzschild Solution of Vacuum Field 
Equations 

We intend to solve the Einstein field equations in vacuum, i.e..Ri j = 0 obtained previ-
ously assuming the spherical symmetry of space-time. The Schwarzschild solution is 
an exact solution for the vacuum field equations. Another way to find Schwarzschild 
solution is presented in [ 89, 142].

9.3.6
 11590 5871 a 11590 5871 a
 
http://dx.doi.org/10.1007/978-3-031-54823-9_9
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Theorem 10.5.1 Consider the vacuum field equations .Ri j = 0. Then 

. ds2 = c2
(
1 + B

r

)
dt2 − 1

1 + B

r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

is the Schwarzschild solution for an arbitrary constant . B. 

Proof Karl Schwarzschild had the intuition to look for a spherically symmetric solu-
tion which describes the relativistic field outside of a non-rotating, massive body. This 
was the first exact solution of the Einstein field equations. Instead of the ordinary 
Cartesian coordinates .(x0 = ct, x1, x2, x3), Schwarzschild used spherical coordi-
nates for the spatial part. The new coordinate system .(x0 = ct, r,ϕ, θ) is related to 
the old one by the formulas 

. x1 = r sinϕ cos θ, x2 = r sinϕ sin θ, x3 = r cosϕ,

so then, for the spatial part, it is 

. (dx1)2 + (dx2)2 + (dx3)2 = dr2 + r2dϕ2 + r2 sin2 ϕdθ2.

Far from the source, the solution has to approximate the Minkowski metric 

. ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

In fact, the solution has to approximate 

. ds2 = c2dt2 − dr2 − r2dϕ2 − r2 sin2 ϕdθ2,

which is the Minkowski metric in spherically spatial coordinates. 1

Therefore, it is natural to think the Schwarzschild metric in the form 

. ds2 = c2 · eT dt2 − (eQ − 1)dr2 − dr2 − r2dϕ2 − r2 sin2 ϕdθ2

where.T := T (r), .Q := Q(r) are two real functions that we need to determine from 
the vacuum field equations .Ri j = 0. As we previously discussed, both .eT → 1 and 
.eQ → 1 have to go as .r → ∞. For the metric 

.ds2 = c2 · eT dt2 − eQdr2 − r2dϕ2 − r2 sin2 ϕdθ2

1 This request is an important property that any physical solution has to possess. In fact, very far 
from the source, a gravitational field has to go to zero. This means that Minkowski space-time 
has to be recovered. This property is called “asymptotic flatness” and characterizes any physical 
gravitational field. It is worth noticing that this feature is fundamental for black hole solutions 
having physical meaning. 
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the coefficients are 

. g00 = eT , g11 = −eQ, g22 = −r2, g33 = −r2 sin2 ϕ.

The inverse matrix coefficients are 

. g00 = e−T , g11 = −e−Q, g22 = − 1

r2
, g33 = − 1

r2 sin2 ϕ
.

Let us observe that 

. 
∂gi j

∂x0
= 0, i, j = 0, .., 3; Ti

jk = 0, i /= j /= k.

The non-zero Christoffel symbols are 

. T0
01 = T0

10 = T '

2
, T1

00 = −T '

2
eT−Q, T1

11 = Q'

2
,

T1
22 = −re−Q, T1

33 = −re−Q sin2 ϕ,

. T2
21 = T2

12 = 1

r
, T2

33 = − sinϕ cosϕ, T3
31 = T3

13 = 1

r
, T3

23 = T3
32 = cot ϕ.

The only non-zero components of the Ricci tensor are 

. R00 = eT−Q
(
T ''

2
+ (T ')2

4
− T 'Q'

4
+ T '

r

)
, R11 = −

(
T ''

2
+ (T ')2

4
− T 'Q'

4
− Q'

r

)

. R22 = 1 − eQ + re−Q

(
Q'

2
− T '

2

)
, R33 = sin2 ϕ R22.

The conditions .R00 = 0 and .R11 = 0 determine both . T and . Q. 
Indeed, .eQ−T R00 + R11 = 0 implies .T ' + Q' = 0, that is .T + Q = constant = . k. 

Thus .eT = e−Qek , i.e. the metric is 

. ds2 = c2 · e−Qekdt2 − eQdr2 − r2dϕ2 − r2 sin2 ϕdθ2.

If we let .t = ek/2u, then .dt2 = ekdu2, and the metric becomes 

. ds2 = c2 · e−Qdu2 − eQdr2 − r2dϕ2 − r2 sin2 ϕdθ2.

So, we may choose.T + Q = 0, i.e..Q = −T . Replacing in the second equation, we 
have 

.rT '' + r(T ')2 + 2T ' = (reT )'' = 0.
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It results in .
(
reT
)' = A, that is, .reT = Ar + B, i.e. .eT = A + B

r
. We impose that 

.eT → 1 as .r → ∞; it results in .A = 1. Therefore .eT = 1 + B

r
and . eQ = e−T =

1

1 + B

r

. 

Let us observe that for . T and .Q so far determined, .R22 = R33 = 0. 
The Schwarzschild metric is exactly the solution in the theorem statement, that is, 

.ds2 = c2
(
1 + B

r

)
dt2 − 1

1 + B

r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2 .

[

It is important to note that the Schwarzschild solution is independent of time. 
According to this property, the solution is not only stationary but also static. This is 
the statement of the Birkhoff theorem. See [113] for a detailed proof. 

10.5.1 Orbit of a Planet in the Schwarzschild Metric 

The above result can be immediately applied to celestial mechanics. Let us recall the 
classical orbit from first Kepler’s law. The differential equation which describes the 
gravitational attraction between a planet and a star is 

. 

..→
X= −GM

r3
· →
X ,

where.
→
X is the position vector,.G = 6.67 · 10−11(m)3/(kg) · (s)2 is the gravitational 

constant, .M is the mass of the star, and .r = | →
X |. Let  . J be the magnitude of the 

angular moment of the planet. If we consider polar coordinates and.r = r(θ) = 1

u(θ)
, 

then the previous equation becomes 

. 
d2u

dθ2
+ u = μ

J 2
, μ = GM.

The classical solution is 

. u(θ) = μ

J 2
+ A cos(θ − θ0),

where. A is an arbitrary constant which can be obtained from the initial condition and 
.θ0 is a phase shift. Since the phase shift alters the position of the planet at time.t = 0
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and we are interested only in the orbit itself, we may consider .θ0 = 0. Denoting by 

. e the eccentricity .e := AJ 2

μ
, the orbit described by the solution 

. u(θ) = μ

J 2
(1 + e cos θ) is the conic r(θ) =

J 2

μ

1 + e cos θ
.

The next result provides the differential equation which predicts the orbit of a planet 
in its movement around the Sun in the new context of Schwarzschild metric. 

Theorem 10.5.2 The orbit of a planet in the Schwarzschild metric is described by 
the equation 

. 
d2u

dθ2
+ u = −c2B

2J 2
− 3B

2
u2.

Proof In the same way as before, we denote.x0 := ct . The worldcurve of the planet 
is the geodesic.ζ(τ ) := (t (τ ), r(τ ),ϕ(τ ), θ(τ )) of the Schwarzschild metric. We are 

looking for a solution in the .(x, y) plane, that is .ϕ = π

2
. The reduced metric is 

. ds2 =
(
1 + B

r

)
(dx0)2 − 1

1 + B

r

dr2 − r2dθ.

Since .T3
13 = T3

31 = 1

r
and .T3

i j = 0, the equation corresponding to the variable . θ is: 

. 
..

θ (τ ) + 2

r(τ )
· .
r (τ )· .

θ (τ ) = 1

r2

(
r2(τ )

.

θ (τ )
)' = 0.

We denote.r2
.

θ= J and this. J describes the magnitude of the angular momentum of 
the planet exactly as in the classical case. We cancel . τ in the next computations. 

Let us continue with the geodesic equation corresponding to the variable. x0. Since 

only .T0
01 = T0

10 = − 1(
1 + B

r

) · B

2r2
, the equation in .x0 is 

. 
..
x
0 − B

r2
· 1(

1 + B
r

) · .
x
0 · .

r= 0.

By replacing .x0 with . ct , it results in 

.
..
t − B

r2
· 1(

1 + B
r

) · .
t · .

r= 0 i.e.

((
1 + B

r

)
· .
t

)'
= 0,
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that is, 

. 
.
t= E

1 + B
r

,

where .E is a constant. 
In the case of the equation corresponding to the variable . r , we use directly the 

metric condition taking into account that.ds2 = c2dτ 2. After cancelling.dτ 2, it results  
in 

. c2 = c2
(
1 + B

r

)
.
t
2 − 1

1 + B
r

.
r
2 −r2

.

θ
2

.

Let us replace . 
.
t and . 

.

θ in the previous equation, we have 

. c2
(
1 − E2

)+ c2 · B · 1
r

= − .
r
2 − J 2

r2
− B · J 2

r3
.

Consider .r = r(θ). It results in 

. 
.
r= dr

dθ
· .

θ= dr

dθ
· J

r2
.

If .r := 1

u
, then .

dr

dθ
= − 1

u2
du

dθ
, i.e. 

. 
.
r= −J · du

dθ
.

Since .
.
r
2= J 2 ·

(
du

dθ

)2
, the previous equation becomes 

. c2(1 − E2) + c2Bu = −J 2

(
du

dθ

)2
− J 2u2 − BJ 2u3.

If we differentiate with respect to . θ, then we divide by .
du

dθ
, we obtain the equation 

.
d2u

dθ2
+ u = −c2B

2J 2
− 3B

2
u2.

[
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10.5.2 Relativistic Solution of the Mercury Perihelion Drift 
Problem 

Now we need to clarify who is. B in the Schwarzschild metric. We have requested that, 
as.r → ∞, the Schwarzschild metric approaches the ordinary Minkowski metric. Let 
us continue by taking into account the following two equations. 

1. The classical orbit is described by 

. 
d2u

dθ2
+ u = μ

J 2
, μ = GM

2. The relativistic orbit is described, in the Schwarzschild metric, by 

. 
d2u

dθ2
+ u = −c2B

2J 2
− 3B

2
u2 .

From.g00 = c2
(
1 + B

r

)
, we compute .T1

00 which is the only non-zero .Ti
00. 

So, the .r -component of the geodesic equation is 

. 
d2r

dτ 2
= T1

00
dτ

dτ

dτ

dτ
,

that is, after canceling the third order term, 

. 
d2r

dτ 2
= c2B

2r2
.

As. r approaches the infinity,.dτ becomes.dt and the previous equation is the original 

Newton equation .
d2r

dt2
= −GM

r2
if and only if .B = −2GM

c2
. 

It results in 

. 1 + B

r
= 1 − 2GM

c2
· 1
r
.

In this way, the gravitational Newtonian potential.φ(x, y, z) = −GM

r
is involved in 

the coefficients of the metric. The coefficient .
1

c2
highlights the weak gravitational 

field which we will discuss later. See also [ 46]. 

The quantity .rM := 2GM

c2
has the dimension of a length and it is called gravi-

tational radius, or  the Schwarzschild radius, corresponding to the mass . M . It is an  
intrinsic characteristic of any body with mass.
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In General Relativity, we can define a proper time interval./τ between two events 
along a time-like path . l following the definition given in Special Relativity. Using 
constant space coordinates, the proper time satisfies the same equality 

. ds2 = c2(dτ )2

as in Special Relativity. Therefore using the same constant coordinates .x1, x2, x3, 
it results in 

. /τ =
{
l
ds =
{
l

1

c

/
gi j dxidx j =

{
l

1

c

√
g00dx

0.

A discussion about how gravity influences the proper time is in [154]. 
Next result allows to make distinction between the proper time and the time 

coordinate in the case of Schwarzschild metric. 

Theorem 10.5.3 The gravitational field described by the Schwarzschild metric 

. ds2 = c2
(
1 − 2GM

c2r

)
dt2 − 1

1 − 2GM
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

causes the slowdown of clocks. 
Proof Let us consider the Schwarzschild metric in a frame at rest .R and apply the 
previous results in the following way. The source of the gravitational field is at the 
origin.O of. R. Consider two motionless observers, one close to the source. O , denoted 
by.O1, and the other one far from the source,.O2. Each observer has a clock. For both 
observers the variation of the space coordinates is . 0. We have  . dr = dϕ = dθ = 0
for the first observer, therefore, according to him 

. ds2 = c2
(
1 − 2GM

c2r

)2
dt2.

For the second motionless observer at rest, far from source, the influence of the 
gravitational field is almost not observable. There, for.r → ∞, we have.ds2 = c2dτ 2. 
Therefore the proper time is affected by the gravity according to the rule 

. c2dτ 2 = ds2 = c2
(
1 − 2GM

c2r

)
dt2.

Considering the clocks, it results in 

. ✓✓c2/τ 2 = ✓✓c2
(
1 − 2GM

c2r

)
/t2 ,

that is, the time interval ./τ of .O2’s clock appears to be less than ./t on.O1’s clock. 
If you are close to a source, your clock will slow down and will continue to slow 
down if you come closer and closer to the source. [
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Let . c be the speed of light in vacuum. If we write formally an expression .Q as a 

Taylor series in powers of . 
1

c

. Q = a0 + a1 · 1
c

+ a2 · 1

c2
+ a3 · 1

c3
+ · · · + ak · 1

ck
+ · · · ,

we say that the order of .Q is .O

(
1

cm

)
if .a0 = a1 = · · · = am−1 = 0 and .am /= 0. 

How is this formal definition working in a given physical context? Let us write 
each relativistic expression (components of the gravitational field, metric tensor, 

equations) as a Taylor series in powers of. 
1

c
. The computations with these series can 

be truncated at the term that is appropriate for the physical context we are considering. 

Theorem 10.5.4 In the relativistic field described by the Schwarzschild metric 

. ds2 = c2
(
1 − 2GM

c2r

)
dt2 − 1

1 − 2GM
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

the planet equation of motion 

. 
d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
u2

has the solution 

. u(θ) = μ

J 2
(1 + e cos(θ − Fθ)) + O

(
1

c2

)
,

where .F := 3μ2

c2 J 2
, being .μ = GM. 

Proof We start from the classical equation of an orbit of a planet, 

. 
d2a

dθ2
+ a = μ

J 2

with the classical solution .a(θ) = μ

J 2
(1 + e cos θ). 

The new equation of the orbit 

.
d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
· u2
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differs from the classical one by .
3μ

c2
u2. This “correction” of the classical orbit is 

due to the gravity related to the Schwarzschild metric. It is natural to search for the 
solution as 

. u(θ) := a(θ) + w(θ)

c2
.

If we replace it in the new orbit equation 

. 
d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
· u2,

we obtain 

. 
d2a

dθ2
+ a + 1

c2

(
d2w

dθ2
+ w

)
= μ

J 2
+ 3μ

c2

( μ

J 2
(1 + e cos θ) + w

c2

)2
,

or equivalently 

. 
1

c2

(
d2w

dθ2
+ w

)
= 3μ3

c2 J 4
(1 + e cos θ)2 + O

(
1

c4

)
.

The term.O

(
1

c4

)
has a small influence on . w. It remains to solve 

. 
d2w

dθ2
+ w = 3μ3

J 4

(
1 + e2

2
+ 2e cos θ + e2

2
cos 2θ

)
.

The solutions of the following three equations 

. 
d2w1

dθ2
+ w1 = 3μ3

J 4

(
1 + e2

2

)
; d2w2

dθ2
+ w2 = 6eμ3

J 4
cos θ;

d2w3

dθ2
+ w3 = 3μ3e2

2J 4
cos 2θ

are 

. w1 = 3μ3

J 4

(
1 + e2

2

)
, w2 = 3eμ3

J 4
θ cos θ, w3 = −3μ3e2

2J 4
cos 2θ.

Therefore, the solution of the new orbit equation is 

.u(θ) = μ

J 2
(1 + e cos θ) + 3μ3

J 4c2

(
1 + e2

2
+ eθ sin θ − e2

2
cos 2θ

)
.
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Einstein’s idea was to use only the non-periodic term in the classical solution. Then 

. u(θ) = μ

J 2

|
1 + e

(
cos θ + 3μ2

c2 J 2
θ sin θ

)|
+ O

(
1

c2

)
,

which can be written as 

. u(θ) = μ

J 2
[1 + e cos(θ − Fθ)] + O

(
1

c2

)
,

where .F := 3μ2

c2 J 2
. Neglecting the term .O

(
1

c2

)
which adds only a small contribu-

tion, the trajectory is still the old conic. [

The correction to the classical trajectory, described in the Schwarzschild metric, 

reaches the perihelion for .cos(θ − Fθ) = 1, therefore, it is .θ = θn = 2nπ

1 − F
for an 

integer. n. It results in.θ ≈ 2nπ
(
1 + F + O

(
F2
))
; that is.2πF is the perihelion drift 

for each revolution. 

If .N is the number of orbits for a given period of time. T , then the perihelion drift 
.Pd is 

. Pd = 6πG2M2

c2 J 2
· N .

For Mercury, if we replace the constants, we obtain 43 arcseconds per century 
which was observed by astronomers, without explanation, in the context of Classical 
Mechanics. This was considered one of the first confirmations of General Relativity. 
See Sect. 9.8 and [154] for a detailed discussion also in the historical context. 

10.5.3 Speed of Light in a Given Metric 

Consider a Minkowski space-time and suppose the worldcurve . X(t) =
(ct, x1(t), x2(t), x3(t)) of a spatial object parameterized by the time . t . 

Then, its relativistic speed is 

. 

||||
||||dXdt
||||
||||
2

= c2 −
(
dx1

dt

)2
−
(
dx2

dt

)2
−
(
dx3

dt

)2
= c2 − v2,

where 

. v =
/(

dx1

dt

)2
+
(
dx2

dt

)2
+
(
dx3

dt

)2

is the ordinary velocity of the object.

9.8
 2288 34779 a 2288 34779 a
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If the object is a photon, 

. 

||||
||||dXdt
||||
||||
2

= c2 − c2 = 0

as we expected. 
If we consider the same worldcurve.X(t) = (ct, x1(t), x2(t), x3(t)) in the metric 

. ds2 = g00(dx
0)2 + gαβdx

αdxβ,

where .α,β are spatial indexes; according to the above formalism, we have 

. ds2 = g00(dx
0)2 + g11(dx

1)2 + g22(dx
2)2 + g33(dx

3)2 +
3E

α /=β=1

gαβdx
αdxβ .

Then 

. ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 + (g00 − 1)(dx0)2 + (g11 + 1)(dx1)2 +

. + (g22 + 1)(dx2)2 + (g33 + 1)(dx3)2 +
3E

α /=β=1

gαβdx
αdxβ,

i.e. 

. ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 + (g00 − 1)(dx0)2 +
3E

α,β=1

ḡαβdx
αdxβ

where .ḡαβ = gαβ , if .α /= β and .ḡαβ = 1 + gαβ , if .α = β. 
This means that, for a photon, we obtain 

. 0 =
(
dX

dt

)2
= c2 − γ2 + (g00 − 1)

(
dx0

dt

)2
+

3E
α,β=1

ḡαβ
dxα

dt

dxβ

dt

where 

. γ =
/(

dx1

dt

)2
+
(
dx2

dt

)2
+
(
dx3

dt

)2
.

It results in 

.γ =
||||c2 + (g00 − 1)

(
dx0

dt

)2
+

3E
α,β=1

ḡαβ
dxα

dt

dxβ

dt
.
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. γ is called the speed of light in a gravitational field derived by the above metric. 
We say that . γ does not violate the speed of light limit if .γ ≤ c. 

10.5.4 Bending of Light in the Schwarzschild Metric 

Let us consider now the light travelling in the space-time described by the 
Schwarzschild metric . First of all, we need to compute the speed . γ of light in 
the gravitational field induced by the metric above. 

Theorem 10.5.5 Consider the Schwarzschild metric 

. ds2 = c2
(
1 − 2μ

c2r

)
dt2 − 1

1 − 2μ
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

(i) In Cartesian coordinates this metric has the form 

. ds2 =
3E

i=0

(
dxi
)2 − 2μ

c2r

⎛
⎝(dx0)2 + 1

1 − 2μ
c2r

3E
α,β=1

xαxβ

r2
dxαdxβ

⎞
⎠ .

(ii) A deflected photon in the .(x1, x2) plane, which comes from the undeflected 
photon 
.X (t) = (ct, h, ct, 0), has the speed 

. γ = c − μ

cr
− μ

cr
· (x2)2

r2
· 1

1 − 2μ
c2r

.

(iii) The deflected photon does not violate the speed of light limit . c and . γ can be 
written in the equivalent form 

. γ = c − μ

cr
− μ(x2)2

cr3
+ O

(
1

c3

)
.

Proof (i) Let .(x0, x1, x2, x3) = (ct, x, y, z) and .r2 = x2 + y2 + z2. 

It results in .rdr = xdx + ydy + zdz which gives 

.dr =
3E

α=1

xα

r
dxα, dr2 =

3E
α,β=1

xαxβ

r2
dxαdxβ .
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Taking into account that 

. dx2 + dy2 + dz2 = dr2 + r2dϕ2 + r2 sin2 ϕdθ2 =
3E

α=1

(dxα)
2 ,

it results in 

. ds2 = c2dt2 − 2μ

c2r
c2dt2 − 1 − 2μ

c2r + 2μ
c2r

1 − 2μ
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

. = c2dt2 − dr2 − r2dϕ2 − r2 sin2 ϕdθ2 − 2μ

c2r

(
c2dt2 + 1

1 − 2μ
c2r

dr2
)

. = (dx0)2 −
3E

α=0

(dxα)
2 − 2μ

c2r

⎛
⎝(dx0)2 + 1

1 − 2μ
c2r

3E
α,β=1

xαxβ

r2
dxαdxβ

⎞
⎠ .

(ii) According to the technique previously described, suppose that . X (t) =(
ct, x1(t), x2(t), x3(t)

)
is the worldcurve of an object parameterized by the 

time . t . In the Minkowski metric, it is 

. 

(
ds

dt

)2
= | .

X (t)|2 = c2 −
(
(

.
x
1

(t))2 + (
.
x
2

(t))2 + (
.
x
3

(t))2
)

= c2 − v2,

where . v is the usual spatial speed of the object. 

If the object is a photon, then .

(
ds

dt

)2
= c2 − c2 = 0 and so 

. 0 =
(
ds

dt

)2
= c2 − γ2 − 2μ

c2r

⎛
⎝c2 + 1

1 − 2μ
c2r

3E
α,β=1

xαxβ

r2
dxα

dt

dxβ

dt

⎞
⎠ ,

where 

. γ(t) =
/

(
.
x
1

(t))2 + (
.
x
2

(t))2 + (
.
x
3

(t))2

is the speed of the photon in the gravitational field described by the above 
metric. In fact, 

.γ =

|||||c2 − 2μ

c2r

⎛
⎝c2 + 1

1 − 2μ
c2r

3E
α,β=1

xαxβ

r2
dxα

dt

dxβ

dt

⎞
⎠.
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x3 = y 

x2 = x 
X(t) = (c · t, h, c · t, 0) 

h 

Fig. 10.1 Trajectory of an undeflected photon 

We determine. γ along the worldcurve. X of an undeflected photon in the. (x1, x2)
plane at the fixed distance . h from the .x2-axis (Fig. 10.1). 
The undeflected worldcurve of the photon is.X (t) := (ct, h, ct, 0). The deflec-
tion will add only lower order terms, therefore the deflected photon has, in 
the same plane, a worldcurve in which components have extra terms of order 

.O

(
1

c

)
. The deflected photon is parameterized by 

. Xd(t) :=
(
ct, h + O

(
1

c

)
, ct + O(1), 0

)
.

Since .

.

Xd (t) :=
(
c, O

(
1

c

)
, c + O(1), 0

)
, we have  

. 
dx1

dt
= O

(
1

c

)
,

dx2

dt
= c + O(1),

dx3

dt
= 0.

It results in the approximation 

. γ2 = c2 − 2μ

c2r

(
c2 + 1

1 − 2μ
c2r

(x2)2

r2
· c2
)

,

equivalent to 

. γ2 = c2
(
1 − 2μ

c2r
− 2μ(x2)2

c2r3
1

1 − 2μ
c2r

)
,

i.e. 

. γ = c ·
/
1 − 2μ

c2r
− 2μ(x2)2

c2r3
1

1 − 2μ
c2r

.

Taking into account that .
√
1 + 2A ≈ 1 + A, the result is 

.γ = c − μ

cr
− μ

cr
· (x2)2

r2
· 1

1 − 2μ
c2r

.
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(iii) Since .
1

1 − 2μ
c2r

≈ 1 + 2μ

c2r
+ O

(
1

c3

)
it results in both the formula 

. γ = c − μ

cr
− μ(x2)2

cr3
+ O

(
1

c3

)

and the fact that the deflected photon does not violate the light limit speed. [

Theorem 10.5.6 The total deflection of the trajectory .Xd(t) of a deflected photon 
in the gravitational field described by the Schwarzschild metric 

. ds2 = c2
(
1 − 2μ

c2r

)
dt2 − 1

1 − 2μ
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

is .TD = 4GM

c2h
. 

Proof Let us recall that the trajectory of the deflected photon is 

. Xd(t) =
(
ct, h + O

(
1

c

)
, ct + O(1), 0

)

and it comes from the undeflected photon trajectory .X (t) = (ct, h, ct, 0), in which 
the deflection added small contribution terms. 

The previous theorem proves that the speed of a deflected photon in .(x, y)-plane 
is 

. γ = c − μ

cr
− μ(x2)2

cr3
+ O

(
1

c3

)
.

Let us imagine a line . l and two points on it having coordinates . x and .x + dx , 
respectively. Two parallel lines constructed through the given points make the same 
./θ angle with the perpendicular to the .l-direction. These lines can be imagined as 
trajectories of photons, the first one travelling with the speed .γ(x), the second one 
travelling with the speed .γ(x + /x). 

After ./t seconds, the last two parallel lines change the trajectories into other 
two parallel lines, etc. The first photon travelled .γ(x)/t , the second one travelled 
.γ(x + /x)/t . 

Let us suppose now that .γ(x)/t > γ(x + /x)/t. It is easy to see that there is a 
rectangle triangle which leads to the relation 

. /θ ≈ sin/θ = γ(x)/t − γ(x + /x)/t

dx
,

that is, 

.
/θ

dt
≈ γ(x) − γ(x + /x)

dx
.
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As ./t → 0 and ./x → 0, the last relation becomes 

. 
/θ

dt
= −∂γ

∂x
.

If .s = ct , 

. 
/θ

ds
= −1

c

∂γ

∂x
.

At the same time, .
/θ

ds
is the geometric curvature determined for the photons’ tra-

jectories when the parameter is . s. If we denote . x by . x1, the perpendicular direction 
coordinate by . x2, the  total deflection is related to the integral of the geometric cur-

vature .
/θ

ds
, that is, 

. TD := −1

c

{ ∞

−∞
∂γ

∂x1
dx2.

To perform the computation, we start from cancelling the .O

(
1

c4

)
term. We have 

. 
∂γ

∂x1

||||
Xd

= GMx1

cr3

||||
Xd

+ 3GM(x2)2x1

cr5

||||
Xd

= GMh

c(h2 + (x2)2)
3
2

+ 3GMh(x2)2

c(h2 + (x2)2)
5
2

and elementary computations lead to 

. 
1

c

{ ∞

−∞
∂γ

∂x1
dx2 = GMh

c2

({ ∞

−∞
1

(h2 + (x2)2)
3
2

dx2 +
{ ∞

−∞
3(x2)2

(h2 + (x2)2)
5
2

dx2
)

=

. =
(

2

h2
+ 2

h2

)
GMh

c2
.

The total deflection is then .TD = 4GM

c2h
. [

At the surface of the Sun, we have 

.h = radius of the Sun .= 7 × 108(m); .G = 6, 67 × 10−11(m3)/(kg) · (s2), 
.M = mass of the Sun .= 2 × 1030(kg); .c = 3 × 108(m)/(s2). 

It results for .TDs ≈ 1, 75''. This was another sensational confirmation of General 
Relativity due to Dyson and Eddington in 1919. See [154] for details.
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10.6 The Einstein Metric: Einstein’s Computations Related 
to the Perihelion Drift and the Bending of Light Rays 

Even if Einstein was the one who discovered the vacuum field equations, he did 
not solve them. In order to make computations possible, he choose a spherically 
symmetric metric, independent of time, metric who approximates the Minkowski 

metric as.r → ∞. He took care to involve the gravitational potential .Φ = −GM

r
in 

the first two coefficients. Therefore, the chosen metric was 

. ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2,

being always .μ = GM . Obviously, this metric does not satisfy the field equations 
.Ri j = 0. 

Einstein’s computations on perihelion drift and bending of light were performed 
with this metric. 

Theorem 10.6.1 (Einstein’s First Theorem) In the relativistic field described by 
Einstein’s metric 

. ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2

the planet equation of motion 

. 
d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
u2

has the solution 

. u(θ) = μ

J 2
(1 + e cos(θ − Fθ)) + O

(
1

c2

)
,

where .F := 3μ2

c2 J 2
. 

Proof In the same way as before, we denote.x0 := ct . The worldcurve of the planet 
is the geodesic.ζ(τ ) := (t (τ ), r(θ),ϕ(τ ), θ(τ )) of Einstein’s metric. We are looking 

for a solution in the .(x, y)-plane, that is, .ϕ = π

2
. The reduced metric is 

.ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dθ2 .
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We cancel out . τ in the next computations. Since .T3
13 = T3

31 = 1

r
and .T3

i j = 0 in the 

other cases, the equation corresponding to the variable . θ is 

. 
..

θ +2

r
· .
r · .

θ= 1

r2

(
r2

.

θ
)' = 0.

It results in .r2θ̇ =constant. We denote .J := r2
.

θ. 
The constant . J describes the magnitude of the angular momentum of the planet 

exactly as in the classical case. 
Let us continue with the geodesic equation corresponding to the variable . x0. 

Since only .T0
01 = T0

10 = 1

1 − 2μ

c2r

· μ

c2r2
, the equation in .x0 is 

. 
..
x
0 + 2μ

c2r2
· 1

1 − 2μ
c2r

· .
x
0 · .

r= 0.

Replacing .x0 by . ct , it results in 

. 
..
t + 2μ

c2r2
· 1

1 − 2μ
c2r

· .
t · .

r= 0,

that is, 

. 
.
t= E

1 − 2μ
c2r

,

where .E is a constant. 
In the case of the equation corresponding to the variable . r , we use directly the 

metric condition. Taking into account that.ds2 = c2dτ 2, after we cancel.dτ 2, it results  
in 

. c2 = c2
(
1 − 2μ

c2r

)
.
t
2 −
(
1 + 2μ

c2r

)
.
r
2 −r2

.

θ
2

.

Let us replace .
.
t= E

1 − 2μ
c2r

, and .
.

θ= J

r2
in the previous equation. We have 

. c2
(
1 − E2

)− 2μ

r
=
(
4μ2

c4r2
− 1

)
.
r
2 −r2θ̇2

(
1 − 2μ

c2r

)
.

Consider .r = r(θ). It results in 

.
.
r= dr

dθ
· .

θ= dr

dθ
· J

r2
.
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If .r := 1

u
, then .

dr

dθ
= − 1

u2
du

dθ
, i.e. .

.
r= −J · du

dθ
. 

Since .
.
r
2= J 2 ·

(
du

dθ

)2
, the previous equation becomes 

. c2(1 − E2) − 2μ · u = −J 2

(
du

dθ

)2
− J 2u2

(
1 − 2μ

c2r
u

)
+ O

(
1

c4

)
.

We can neglect the .O

(
1

c4

)
terms which add only a small contribution to the tra-

jectory. If we differentiate with respect to . θ and then we divide by .
du

dθ
, we obtain 

exactly the equation derived in the Schwarzschild metric case, that is, 

. 
d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
u2.

Of course, Einstein found the same solution and the same perihelion drift as in 
the case of Schwarzschild metric. [

Now, let us compute the Einstein metric 

. ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2

in Cartesian coordinates. As in the case of Schwarzschild metric, let 
.(x0, x1, x2, x3) = (ct, x, y, z) and .r2 = x2 + y2 + z2. It results  . rdr = xdx +
ydy + zdz which gives 

. dr =
3E

α=1

xα

r
dxα, dr2 =

3E
α,β=1

xαxβ

r2
dxαdxβ .

Taking into account that 

. dx2 + dy2 + dz2 = dr2 + r2dϕ2 + r2 sin2 ϕdθ2 =
3E

α=1

(dxα)
2 ,

it results in 

.ds2 = c2dt2 − dr2 − r2dϕ2 − r2 sin2 ϕdθ2 − 2μ

c2r

(
c2dt2 + dr2

)
.
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Therefore, Einstein’s metric in Cartesian coordinates is 

. ds2 = (dx0)2 −
3E

α=0

(dxα)
2 − 2μ

c2r

⎛
⎝(dx0)2 +

3E
α,β=1

xαxβ

r2
dxαdxβ

⎞
⎠ .

We determine the speed of light in the gravitational field described by Einstein’s 
metric. We use the same technique as in the case of Schwarzschild metric. 

If .X (t) = (ct, x1(t), x2(t), x3(t)) is the worldcurve of an object parameterized 
by the time . t , then, in the Minkowski metric, it is 

. 

(
ds

dt

)2
= | .

X (t)|2 = c2 −
(
(

.
x
1

(t))2 + (
.
x
2

(t))2 + (
.
x
3

(t))2
)

= c2 − v2,

where . v is the usual spatial speed of the object. 

If the object is a photon, then .

(
ds

dt

)2
= c2 − c2 = 0 and so 

. 0 =
(
ds

dt

)2
= c2 − γ2 − 2μ

c2r

⎛
⎝c2 +

3E
α,β=1

xαxβ

r2
dxα

dt

dxβ

dt

⎞
⎠ ,

where .γ(t) =
/

(
.
x
1

(t))2 + (
.
x
2

(t))2 + (
.
x
3

(t))2 is the speed of the photon in the 
gravitational field described by the metric above. In fact 

. γ = c ·

|||||1 − 2μ

c2r

⎛
⎝1 + 1

c2

3E
α,β=1

xαxβ

r2
dxα

dt

dxβ

dt

⎞
⎠.

It remains, as an exercise, to determine the speed of a deflected photon using 
the same technique as in the case of Schwarzschild metric. We highlight the quick 
answer. 

We determine . γ along the worldcurve .X of an undeflected photon in the . (x1, x2)
plane at the fixed distance . h from.x2-axis. 

So, the undeflected worldcurve of the photon is.X (t) := (ct, h, ct, 0). The deflec-
tion will add only lower order terms, therefore the deflected photon has in the same 

plane extra terms of order .O

(
1

c

)
. Then, the deflected photon is parameterized by 

.Xd(t) :=
(
ct, h + O

(
1

c

)
, ct + O(1), 0

)
.
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Since .

.

Xd (t) := (c, O ( 1c ) , c + O(1), 0
)
we have 

. 
dx1

dt
= O

(
1

c

)
,

dx2

dt
= c + O(1),

dx3

dt
= 0.

It results in the approximation 

. γ2 = c2 − 2μ

c2r

(
c2 + (x2)2

r2
· c2
)

,

equivalent to 

. γ = c ·
/
1 − 2μ

c2r
− 2μ(x2)2

c2r3
.

Taking into account 
. 

√
1 + 2A ≈ 1 + A,

the final result is 

. γ = c − μ

cr
− μ

cr
· (x2)2

r2
.

The total deflection is computed as in the Schwarzschild case. Therefore, we suc-
ceeded to prove 

Theorem 10.6.2 (Einstein’s Second Theorem) Consider the Einstein metric 

. ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

(i) In Cartesian coordinates, the above metric has the form 

. ds2 =
3E

i=0

(
dxi
)2 − 2μ

c2r

⎛
⎝(dx0)2 +

3E
α,β=1

xαxβ

r2
dxαdxβ

⎞
⎠ .

(ii) A deflected photon in the .(x1, x2)-plane, which comes from the undeflected 
photon 
.X (t) = (ct, h, ct, 0), has the speed 

. γ = c − μ

cr
− μ

cr
· (x2)2

r2

and does not violate the speed of light limit.
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(iii) The total deflection of the trajectory .Xd(t) of a deflected photon in the gravi-

tational field, described by the Einstein metric, is .
4GM

c2h
. 

All the computations made in Einstein’s metric lead to the same results in 
Schwarzschild’s metric. According to these considerations, we can say that the 
Schwarzschild metric reduces to the Einstein metric in the weak field limit. 

10.7 Black Holes: A Mathematical Introduction 

Black hole physics is undoubtedly one of the most fascinating topic of General Rel-
ativity. Here we give only a short mathematical introduction and refer the interested 
reader to the book by Frolov and Novikov Black Hole Physics [103] for a detailed 
discussion. 

10.7.1 Escape Velocity and Black Holes 

Suppose we stay on the surface of the Earth imagined as a sphere and we vertically 
throw a ball. Depending on the speed of throwing, the ball can be higher and higher 
throwed, but after it reaches a maximum altitude it falls down attracted by the Earth. 
Which is the speed necessary such that the ball never return? 

So, the gravitational force acts between the two involved bodies, the Earth and 
the ball. If the ball is at distance . r from the centre of the Earth, we have 

. F = GMm

r2
; KE = mv2

2
; PE = −GMm

r
.

Consider, on the surface of the Earth, the escape velocity . ve. The ball goes higher 
and higher loosing in time its speed. At infinity, its kinetic energy is . 0, the  same  for  

the potential energy .−GMm

r
. This means that, at infinity, the total energy is . 0. At  

each point of this rectilinear trajectory, the total energy, which is a constant, has to 
be . 0, that is the escape velocity can be computed from the condition 

. 
mv2

2
− GMm

r
= 0.

It results in the escape velocity formula 

.v2
e = 2GM

RE
,
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where .RE is the radius of the Earth. If someone replaces the values, the escape 
velocity from the Earth gravitational field is almost 11 (km)/(s). 

By definition, a black hole is a “cosmic body” having the escape velocity .> c, 
where. c is the speed of light in vacuum. According to the fact that there are no speeds 
greater than the speed of light in vacuum, let us compute how small should be the 
Earth such that .ve = c. We obtain 

. r = 2GM

c2
≈ 2 · 6.67 · 10−116 · 1024

9 · 1016 ≈ 8.8 (mm).

Therefore, if all the mass of the Earth is concentrated in a sphere with 8.8 (mm) 
radius, the Earth should be a black hole and not even photons can leave its surface. 

Let us see the difference between the Earth, as we know, and the Earth as a black 
hole. We have to compute in both cases the gravitational force exerted to a . 1(kg)

body. 
For the “usual Earth”: 

. F = 6.67 · 10−11 · 6 · 1024 · 1
(24 · 106)2 ≈ 9.8(kg · m)/(s2) ≈ g

where . g is the constant gravitational acceleration as we expected. 
For the “black hole Earth”, we have 

. F = 6.67 · 10−11 · 6 · 1024 · 1
(8 · 10−3)2

≈ 1

2
· 1019(kg · m)/(s2),

that is, a tremendous huge force exerted by the black hole to all the bodies on its 
surface. 

Suppose now the Earth transformed instantaneously into a black hole. Is the Moon 
trajectory affected? This is only a mathematical discussion, of course. Let us look at 
the formula 

. F = GM✚m

r ❈2
= ✚mv2

❆r
.

It is the same in both cases, because . r is measured from the centre of the Earth. We 
deduce that the Moon continues to orbit the black hole Earth such it does now. 

Some other considerations about black holes can be seen when we study them 
using metrics. 

10.7.2 The Rindler Metric and Pseudo-Singularities 

Let us define the Rindler metric as 

.ds2 = (x̄1)2

b2
(x̄0)2 − (x̄1)2.
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What is happening with this metric when.x̄1 → 0? If we are looking only at the first 
term, the first coefficient approaches . 0. We can think that the metric fails to exist. A 
singularity seems to be highlighted. However, we will show that a suitable change of 
coordinates transforms the Rindler metric into the ordinary Minkowski metric. We 
may conclude that .x̄1 = 0 is not a physical singularity, but a pseudo-singularity (or 
a geometric singularity), that is one which can be removed by a convenient change 
of coordinates. 

Consider the change of coordinates 

. C :
⎧⎨
⎩ x̄

0(x0, x1) = b tanh−1 x0

x1
x̄1(x0, x1) = /(x1)2 − (x0)2,

where .tanh−1(y) = 1

2
ln

1 + y

1 − y
. If we compute 

. dC =
⎛
⎜⎝

∂ x̄0

∂x0
∂ x̄0

∂x1
∂ x̄1

∂x0
∂ x̄1

∂x1

⎞
⎟⎠

the four components are 

. 
∂ x̄0

∂x0
= bx1

(x1)2 − (x0)2
; ∂ x̄0

∂x1
= −bx0

(x1)2 − (x0)2
;

. 
∂ x̄1

∂x0
= −x0/

(x1)2 − (x0)2
; ∂ x̄1

∂x1
= x1/

(x1)2 − (x0)2
.

Exercise 10.7.1 Compute .dCt · R dC . 

Solution. We have to compute 

. 

⎛
⎜⎝

bx1

(x1)2−(x0)2
−x0√

(x1)2−(x0)2

−bx0

(x1)2−(x0)2
x1√

(x1)2−(x0)2

⎞
⎟⎠
⎛
⎝ (x̄1)2

b2
0

0 −1

⎞
⎠
( bx1

(x1)2−(x0)2
−bx0

(x1)2−(x0)2
−x0√

(x1)2−(x0)2
x1√

(x1)2−(x0)2

)
,

that is,
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. 

⎛
⎝

bx1

(x1)2−(x0)2
−x0√

(x1)2−(x0)2

−bx0

(x1)2−(x0)2
x1√

(x1)2−(x0)2

⎞
⎠
⎛
⎝ (x1)2 − (x0)2

b2
0

0 −1

⎞
⎠
( bx1

(x1)2−(x0)2
−bx0

(x1)2−(x0)2
−x0√

(x1)2−(x0)2
x1√

(x1)2−(x0)2

)

. =
⎛
⎝

bx1

(x1)2−(x0)2
−x0√

(x1)2−(x0)2

−bx0

(x1)2−(x0)2
x1√

(x1)2−(x0)2

⎞
⎠
⎛
⎜⎝

x1

b
− x0

b
x0√

(x1)2−(x0)2
−x1√

(x1)2−(x0)2

⎞
⎟⎠ =
(
1 0
0 −1

)
. [

The metric in coordinates .(x0, x1) becomes 

. ds2 = (dx0)2 − (dx1)2.

Therefore we have proved 

Theorem 10.7.2 The change of coordinates 

. C :
⎧⎨
⎩ x̄

0(x0, x1) = b tanh−1 x0

x1
x̄1(x0, x1) = /(x1)2 − (x0)2

transforms the Rindler metric 

. ds2 = (x̄1)2

b2
(x̄0)2 − (x̄1)2

into the Minkowski metric 

. ds2 = (dx0)2 − (dx1)2.

As we discussed, .x̄1 = 0 is not a physical singularity, but a pseudo-singularity. 
The lines.x1 = x0 and.x1 = −x0 are called the horizon of the geometric singularity 

.x̄1 = 0. Removing of geometric singularities is part of the mathematical theory of 
black holes we present. 

10.7.3 Black Holes in the Schwarzschild Metric 

When we studied the vacuum field equations .Ri j = 0, we started from the 
Schwarzschild intuition to look for a spherically symmetric solution which describes 
the relativistic field outside of a non-rotating, massive body. 

In the coordinate system .(x0 = ct, r,ϕ, θ) Schwarzschild chose the form of the 
solution as 

.ds2 = c2 · eT dt2 − eQdr2 − r2dϕ2 − r2 sin2 ϕdθ2,
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with .T := T (r), .Q := Q(r) two real functions we need to determine. (In [154], a 
more general approach is presented considering .T := T (r, t) and .Q := Q(r, t)). 

The non-zero Christoffel symbols are 

. T0
01 = T0

10 = T '

2
, T1

00 = −T '

2
eT−Q, T1

11 = Q'

2
, T1

22 = −re−Q, T1
33 = −re−Q sin2 ϕ,

. T2
21 = T2

12 = 1

r
, T2

33 = − sinϕ cosϕ, T3
31 = T3

13 = 1

r
, T3

23 = T3
32 = cot ϕ,

where we denote by . 
' the derivative with respect to . r . The computations lead to 

. T = −Q = ln

(
1 + B

r

)
.

The obtained Schwarzschild metric is 

. ds2 = c2 ·
(
1 + B

r

)
dt2 − 1(

1 + B

r

)dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

Then we find .B = −2GM

c2
, that is, the gravitational Newtonian potential 

.φ(x, y, z) = −GM

r
is involved in the coefficients of Schwarzschild metric. We have 

remembered here these results for two reasons. The first one is the following exercise 
we need to understand the behaviour of the Riemann curvature tensor at the surface 
of a black hole. 

Exercise 10.7.3 Compute . R0
101.

Solution. Replacing in .Ri
jkl formula (in the case .i = k = 0, j = l = 1) the above 

corresponding Christoffel symbols, we find 

. R0
101 = −1

2
T '' + 1

4
T 'Q' − 1

4
(Q')2,

that is, 

. R0
101 = −B

r3

⎛
⎜⎝ 1

1 + B

r

⎞
⎟⎠ . [

The second reason is related to the quantity.rs := 2GM

c2
, called the Schwarzschild 

radius, which gives Schwarzschild metric in the form
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. ds2 = c2 ·
(
1 − rs

r

)
dt2 − 1(

1 − rs
r

)dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

If we remember the nature of the Schwarzschild metric, the first term is positive, 
the other three are negative. If we look at the first term in the case of the Sun, if we 
replace the gravitational constant . G, .M = Msun , the speed of light in vacuum. c and 

.r = rsun we have .1 − rs
r

> 0. If . r approaches .rs = 2GM

c2
the first two terms of the 

metric have the properties .g00 → 0 and .g11 → −∞. So, the Schwarzschild metric 
becomes singular. If we compute. rs in the case of our Sun, we find.rs ≈ 3km. So, the 
anomaly appears when the entire mass of our Sun is concentrated in a sphere with a 
radius as . rs . 

Such a sphere is a black hole. The interior of the sphere is called an interior of the 
black hole and it is characterized by the condition.r < rs . The surface of the sphere is 
called the event horizon and it is characterized by the condition.r = rs . The  exterior 
of the black hole is characterized by the condition .r > rs . 

A clock at .r = rs has its proper time .dτ =
/
1 − rs

r
dt → 0. Which means that 

the clock is slowed down at maximum; a clock outside the black hole works faster. 
What is going on in the interior of the black hole? 

We observe.g00 = c2
(
1 − rs

r

)
< 0 and.g11 = − 1

1 − 1

rs

> 0. Therefore the signs 

are opposite with respect to the standard ones. It results that . t becomes a spatial 
coordinate and . r becomes a temporal coordinate inverting their roles! 

However we can prove that the singularity .r = rs is in fact a pseudo-singularity. 
First, let us see what is happening to Riemann curvature tensor at .r = rs . 
If we denote .t := x0; r := x1; ϕ := x2; θ := x3 the old coordinates, we may 

construct the new coordinates: 

. x̄0 = (x0 − t0)

/
1 − rs

r
; x̄1 = x1 − r0/

1 − rs
r

; x̄2 = r0
(
x2 − π

2

)
; x̄3 =

r0
(
x3 − θ0

)
.

It results 

. 
∂x0

∂ x̄0
= 1/

1 − rs
r

; ∂x1

∂ x̄1
=
/
1 − rs

r
; ∂x2

∂ x̄2
= 1

r0
; ∂x3

∂ x̄3
= 1

r0
;

all the other possible partial derivatives are null. 
The new Riemann curvature tensor .R̄0

101 is 

.R̄0
101 = ∂ x̄0

∂x0
∂x1

∂ x̄1
∂x0

∂ x̄0
∂x1

∂ x̄1
R0
101 =
(
1 − rs

r

) rs
r30

1

1 − rs
r

= rs
r30

.
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Therefore, at the surface of the black hole, that is when.r = rs , the Riemann curvature 
tensor is well defined. The surface of a black hole is not a physical singularity. 

At the surface of a black hole, that is when .r = rs , the Kruskal–Szekeres metric 
gives more information than Schwarzschild metric. 

We act only on the first two coordinates of the Schwarzschild metric, the other 
two remain unchanged. The Kruskal–Szekeres coordinates look different inside the 
black hole comparing to the case of the exterior of the black hole. 

In the interior of the black hole the Kruskal–Szekeres coordinates are 

. K S(r < rs) :

⎧⎪⎪⎨
⎪⎪⎩
V (t, r) =

/
1 − r

rs
er/2rs cosh

t

2rs

U (t, r) =
/
1 − r

rs
er/2rs sinh

t

2rs

.U 2 − V 2 =
(
r

rs
− 1

)
er/rs < 0; U

V
= tanh

t

2rs
, i.e. . t = 2rs tanh−1 V

U
.

When.r < rs , that is in the interior of the black hole, we have 

.
∂V

∂t
= A · sinh t

2rs
and .

∂U

∂t
= A · cosh t

2rs
where . A =

/
1 − r

rs
er/rs

t

2rs
.

.
∂V

∂r
= B · cosh t

2rs
and .

∂U

∂r
= B · sinh t

2rs
where . B =

−1
1

rs

2
/
1 − r

rs

er/2rs +

1

2rs

/
1 − r

rs
er/2rs .

. 

⎛
⎜⎝

A sinh
t

2rs
A cosh

t

2rs
B cosh

t

2rs
B sinh

t

2rs

⎞
⎟⎠
⎛
⎜⎝

4r3s
r

e−r/rs 0

0 −4r3s
r

e−r/rs

⎞
⎟⎠
⎛
⎜⎝

A sinh
t

2rs
B cosh

t

2rs
A cosh

t

2rs
B sinh

t

2rs

⎞
⎟⎠

. = 4r3s
r

e−r/rs ·
(−A2 0

0 B2

)
=

⎛
⎜⎜⎝
1 − rs

r
0

0 − 1

1 − rs
r

⎞
⎟⎟⎠ ,

the last matrix equality because 

. − 4r3s
r

e−r/rs · A2 = 1 − rs
r

and
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. B2 · 4r
3
s

r
e−r/rs = − 1

1 − rs
r

.

We have proved the following 

Theorem 10.7.4 When the metric is the Schwarzschild one, in the interior of a black 
hole described by the condition .r < rs , the Kruskal–Szekeres coordinates 

. K S(r < rs) :

⎧⎪⎪⎨
⎪⎪⎩
V (t, r) =

/
1 − r

rs
er/2rs cosh

t

2rs

U (t, r) =
/
1 − r

rs
er/2rs sinh

t

2rs

transform the Schwarzschild metric into the Kruskal–Szekeres metric 

. ds2 = 4r3s
r

e−r/rs
(
dV 2 − dU 2)− r2dϕ2 − r2 sin2 ϕdθ2.

In the case of the exterior of the black hole, the Kruskal–Szekeres coordinates are 

. K S(r > rs) :

⎧⎪⎪⎨
⎪⎪⎩
V (t, r) =

/
r

rs
− 1er/2rs cosh

t

2rs

U (t, r) =
/

r

rs
− 1er/2rs sinh

t

2rs

.U 2 − V 2 =
(
r

rs
− 1

)
er/rs > 0; U

V
= tanh

t

2rs
, i.e. .t = 2rs tanh−1 V

U
. Similar 

computations lead to 

Theorem 10.7.5 When the metric is the Schwarzschild one, in the exterior of a black 
hole described by the condition .r > rs , the Kruskal–Szekeres coordinates 

. K S(r > rs) :

⎧⎪⎪⎨
⎪⎪⎩
V (t, r) =

/
r

rs
− 1er/2rs cosh

t

2rs

U (t, r) =
/

r

rs
− 1er/2rs sinh

t

2rs

transform the Schwarzschild metric into the same Kruskal–Szekeres metric 

. ds2 = 4r3s
r

e−r/rs
(
dV 2 − dU 2)− r2dϕ2 − r2 sin2 ϕdθ2.

In both cases at .r = rs the singularity has been removed. The only physical sin-
gularity corresponds to .r = 0. 

Corollary 10.7.6 The event horizon of a black hole is a geometric singularity only.
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Let us discuss now the entropy of a black hole. From the Special Relativity chapter 
we know the following formulas and their meaning: 

. E = h f = h
c

λ
; E = mc2.

From this section, we know that the dimension of a black hole is related to its 
Schwarzschild radius . rs . If a photon is captured by a black hole of mass .M and 
energy . E , the black hole changes its mass and energy. This fact can be represented 
by the formula 

. /M = /E

c2
= h

λc
= h

rsc
,

because . λ becomes . rs . 

But .λ = rs = 2MG

c2
suggests a variation of the radius described by the formula 

. /r = 2/MG

c2
= 2G

c2
/M = 2G

c2
h

rsc
,

that is 

. rs/r = 2Gh

c3
.

It is worth noticing that the right member is a constant. Furthermore, it is easy to see 
that the area of a black hole is the area of a sphere of radius . rs , 

. A = 4πr2s .

The derivative with respect to . r leads to 

. 
d A

dr
= 8πrs,

i.e. 

. d A = 8πrsdr = 16πGh

c3
.

Therefore, if a photon is captured by a black hole, the black hole area is increasing 
by the quantity 

. d A = 16πGh

c3
.

If .dS is a unitary entropy, the variation of the area becomes 

.d A = 16πGh

c3
dS,
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therefore 

. S = c3

16πGh
A.

This formula is known as Bekenstein–Hawking formula for the black hole entropy. 
See [103] for a detailed discussion. 

With these considerations in mind, it is straightforward to define the black hole 
temperature. The formula which connects the variation of energy, the temperature, 
and the variation in entropy is 

. dE = TdS.

If we consider only “one unit” of variation for entropy, i.e. a single photon which 
changes the black hole energy, we have that 

. dE = T = hc

λ
= hc

rs
= hc3

2MG
.

That is, a single photon changes the temperature of the black hole such that .T is 

proportional to.
1

M
. We deduce that smaller black holes are warmer than the massive 

ones. 

10.7.4 The Light Cone in the Schwarzschild Metric 

In Minkowski metric, the trajectories of light rays are determined by the condition 
.ds2 = 0. Since the Minkowski metric in geometric coordinates is 

. ds2 = (dx0)2 − (dx1)2,

the previous condition becomes 

. x0 = x1, x0 = −x1,

therefore the light cone is highlighted. 
In .(t, r) coordinates, let us consider the .3-plane .ϕ = 0 and the corresponding 

Schwarzschild metric in geometric coordinates 

. ds2 =
(
1 − rs

r

)
dt2 − 1(

1 − rs
r

)dr2.

The condition .ds2 = 0 leads to 

.

(
1 − rs

r

)2
dt2 = dr2,
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i.e. 

. 
dr

dt
= ±
(
1 − rs

r

)
.

It is obvious that this is different with respect to the Minkowski condition 

. 
dr

dt
= ±1.

We can write the equivalent formula 

. ±
d

(
r

rs

)
(
1 − rs

r

) = d

(
t

rs

)
.

Let us denote .X :=
(
r

rs

)
and .Y :=

(
t

rs

)
. It remains to solve 

. ±
{

XdX

X + 1
=
{

dY.

The solutions are .Y = X + ln |x − 1| and . Y = −X − ln |x − 1|.
The graphs of the functions . f (X) = X + ln(1 − X) and . g(X) = −X + ln(1 −

X), both defined on .(0, 1), highlight the light cone in the interior of the black hole. 
Suppose .x0 ∈ (0, 1) and the tangent lines at .(x0, f (x0)) and .(x0, f (x0)). The  

parallel lines to the tangents in .(x0, 0) show how the light cone looks like in the 
interior of the black hole. 

The same, the graphs of the functions.h(X) = X + ln(X − 1) and. l(X) = −X +
ln(X − 1), both defined when.x ∈ (1,∞) highlight the light cone outside the black 
hole. 

In summary, we gave only some main features of black holes but the physics and 
the mathematics of these gravitational systems is extremely reach and deserve to be 
explored in details. Furthermore, after the direct detection of the black hole shadow 
by the Event Horizon Telescope collaboration, a new era started in this fascinating 
sector of Physics. These gravitational objects, considered only exotic theoretical 
objects until recently, have become an amazing arena for observational astrophysics 
and cosmology.
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10.8 Cosmological Solutions of the Einstein Field 
Equations: The Friedmann–Lemaître–Robertson– 
Walker Models of Universe 

If we intend to find a metric for the general Einstein field equations describing the 
Universe, we have to consider the fact that the observed Universe appears homoge-
neous and isotropic beyond a given scale according to the Cosmological Principle, 
therefore we have to consider, at the beginning, a spherical symmetry for the cosmic 
space-time. 2

The spatial part has to be as 

. dr2 + q2(r)
(
dθ2 + sin2 θdφ2) ,

where .q(r) will be determined, so, we can try with the metric 

. ds2 = dt2 − a2(t)
|
dr2 + q2(r)dθ2 + q2(r) sin2 θdφ2

|

which introduces a new function .a(t) necessary to preserve the spherical symmetry 
of the spatial part of the metric which can, eventually, expand under a homothetic 
transformation. In this way, .a(t) becomes an expansion factor of the Universe. We 
will discuss this fact a little bit later. Observe that we are working in geometric 
coordinates, that is .c = 1. 

Let us search for .a(t) and .q(r) such that the previous metric satisfies the Ein-
stein field equations. To address the answer, there are three possible forms for . q(r)
depending on a constant of integration, while.a(t) is determined from Einstein’s field 
equations. We prove 

Theorem 10.8.1 The following three metrics 

. ds2 = dt2 − a2(t)
T
dr2 + R2 sinh2

r

R
dθ2 + R2 sinh2

r

R
sin2 θdφ2

|
,

. ds2 = dt2 − a2(t)
T
dr2 + R2 sin2

r

R
dθ2 + R2 sin2

r

R
sin2 θdφ2

|
,

. ds2 = dt2 − a2(t)
|
dr2 + r2dθ2 + r2 sin2 θdφ2

|

satisfy the Einstein field equations 

.Ri j − 1

2
Rgi j = KTi j

2 From observational surveys, the Universe can be considered homogeneous and isotropic beyond 
scales of the order 100–120 Megaparsecs. See [159] for details. This means that, over these scales, 
no large-scale structure, like clusters or super-clusters of galaxies are detected. According to these 
data, matter density can be considered homogeneously distributed in all directions. 
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in the case when the contravariant energy–momentum tensor is describing a perfect 
fluid with components 

. T i j = (ρ0 + p0)u
iu j − p0g

i j ,

where .gi j are the inverse components of the metric tensor matrix which satisfies 
Einstein’s field equations, .ρ0 is the density of the fluid, .p0 is the pressure of the 
fluid, and .ui are the components .(ut , vxut , vyut , vzut ) of the fluid 4-velocity. For the 
moment, .ρ0 and .p0 are assumed constant. 

Proof We start by calculating the Ricci symbols. 

. g00 = 1, g11 = −a2(t), g22 = −a2(t)q2(r), g33 = −a2(t)q2(r) sin2 θ

. g00 = 1, g11 = − 1

a2(t)
, g22 = − 1

a2(t)q2(r)
, g33 = − 1

a2(t)q2(r) sin2 θ
.

We observe 

. Ti
jk = gisT jk,s = gi iT jk,i ; Ti

jk = 0, i /= j /= k.

Therefore 

.T0
11 = a · ȧ, T0

22 = a · ȧ · q2, T0
33 = a · ȧ · q2 · sin2 θ, otherwise .T0

i j = 0, 

.T1
01 = T1

10 = ȧ

a
, T1

22 = −q · q ', T1
33 = −q · q ' · sin2 θ, otherwise .T1

i j = 0, 

.T2
02 = T2

20 = ȧ

a
, T2

12 = T2
21 = q '

q
, T2

33 = − sin θ cos θ, otherwise .T2
i j = 0, 

.T3
03 = T3

30 = ȧ

a
, T3

13 = T3
31 = q '

q
, T3

32 = T3
23 = − cot θ, otherwise .T3

i j = 0. 

If we compute 

. R00 = Rs
0s0 = −∂T1

01

∂t
− ∂T2

02

∂t
− ∂T3

03

∂t
− T1

01T
1
10 − T2

02T
2
20 − T3

03T
3
30,

it results 

. Rtt = R00 = −3
ä

a
.

We obtain 

. Rrr = R11 = 2ȧ2 + ä · a − 2
q ''

q
,

. Rθθ = R22 = 2q2 · ȧ2 + q2 · a · ä − q · q '' + 1 − (q ')2,

.Rφφ = R33 = R22 sin
2 θ.
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Using .Ri
j = gis Rs j , we rise an index, therefore 

. Rt
t = −3

ä

a
,

. Rr
r = −2

ȧ2

a2
− ä

a
+ 2

q ''

a2 · q ,

. Rθ
θ = −2

ȧ2

a2
− ä

a
− 1

a2 · q2

(
1 − q · q '' − (q ')2

)
,

. Rφ
φ = −2

ȧ2

a2
− ä

a
− 1

a2 · q2

(
1 − q · q '' − (q ')2

) = Rθ
θ .

The key of finding the metric is related to the way the physicists describe the energy– 
momentum tensor. They look at the galaxies in the Universe such that they are 
imagined as the molecules of an ideal gas which move arbitrarily. In this case, the 
gas is described as in the statement of the theorem, by the contravariant energy– 
momentum tensor 

. T i j = (ρ0 + p0)u
iu j − p0g

i j ,

where 

• .gi j are the inverse components of the metric tensor matrix which satisfies Einstein’s 

field equations .Ri j − 1

2
Rgi j = KTi j , 

• .ρ0 is the density of the gas, 
• .p0 is the constant pressure of the gas, and 
• .ui are the components .(ut , vxut , vyut , vzut ) of the gas 4-velocity. 

It is convenient to use the .(1, 1) tensor .T i
j by lowering the second index, so 

. T i
j = (ρ0 + p0)u

ig jku
k − p0δ

i
j .

Our chosen metric has . gt t = 1.
This ideal fluid is, by definition, at rest in these comoving coordinates, therefore 

the conditions .ur = uθ = uφ = 0 for every . t and .uigi j u j = 1 lead to .1 = gt t (ut )2, 
that is, . ut = 1.

It follows that. T t
t = ρ0 and.T r

r = T θ
θ = T φ

φ = −p0, that is, . T = T i
i = ρ0 − 3p0.

If we arrange Einstein’s field equation in the form 

. Ri
j = K ·

(
T i
j − 1

2
δij T

)

we obtain .Rr
r = Rθ

θ = Rφ
φ = −K

2
(ρ0 − p0) .
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The condition .Rr
r = Rθ

θ highlights the equality 

. 2
q ''

a2 · q = − 1

a2 · q2

(
1 − q · q '' − (q ')2

)

and it remains to solve the differential equation 

. (q ')2 − q · q '' = 1.

I. Determining .q(r). 

From the beginning, we observe that .q(r) = r is a possible solution. 

We continue: for .p := q ' = dq

dr
we obtain .q '' = dp

dr
= dp

dq

dq

dr
= dp

dq
p. 

The differential equation transforms to .p2 − qp
dp

dq
= 1, that is, 

. 2
dq

q
= 2pdp

p2 − 1
.

The solution written as .2 ln |q| = ln q2 = ln |p2 − 1| − ln |k| leads first to . q2 =
p2 − 1

k
, then, after replacing in .(q ')2 − q · q '' = 1, to .q '' = kq. It results in 

. 

(
dq

dr

)2
= (q ')2 = 1 + q · q '' = 1 + kq2.

Since in the metric appears . q2, we are not interested in the solutions with minus. 
Without loosing the generality, we can suppose that .q(0) = 0 and.q '(0) = 1. There-
fore, having these initial conditions, we have to solve 

. 
dq/

1 + kq2
= dr.

Case .k > 0. We choose .k = 1

R2
. We have  

. r =
{

1/
1 +
( q
R

)2 dq = R sinh−1 q

R
,

that is, .q = R sinh
r

R
. In this case the metric is
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. ds2 = dt2 − a2(t)
T
dr2 + R2 sinh2

r

R
dθ2 + R2 sinh2

r

R
sin2 θdφ2

|
.

Case .k < 0. We choose .k = − 1

R2
. We have 

. r =
{

1/
1 −
( q
R

)2 dq = R arcsin
q

R
,

that is .q = R sin
r

R
. In this case the metric is 

. ds2 = dt2 − a2(t)
T
dr2 + R2 sin2

r

R
dθ2 + R2 sin2

r

R
sin2 θdφ2

|
.

For .q(r) = r the metric is  

.ds2 = dt2 − a2(t)
|
dr2 + r2dθ2 + r2 sin2 θdφ2

|
.

[

Let us now determine .a(t). To proceed, we consider again the above field equa-
tions: 

. Rt
t = −3

ä

a
= K ·
(
T t
t − 1

2
T

)
= K

2
· (ρ0 + 3p0)

. Rr
r = −2

ȧ2

a2
− ä

a
+ 2

q ''

a2 · q = K ·
(
T θ

θ − 1

2
T

)
= −K

2
(ρ0 − p0) .

Since .q '' = kq, in the case when .k = ± 1

R2
, the following two equations have to be 

considered: 

. 
ä

a
= −K

6
· (ρ0 + 3p0) ,

. 2
ȧ2

a2
+ ä

a
− 2

k

a2
= K

2
(ρ0 − p0) .

It results in the equation 

. 
ȧ2

a2
− k

a2
= K

3
ρ0,

that is, 

.ȧ2 − K

3
ρ0 · a2 = k,
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which can be solved. The equation can be written as 

. ȧ2 − B · a2 = k,

where .B = K

3
ρ0 > 0. Since in metric appears . a2, as in the case of .q(r), we are not 

interested in the solutions with minus. Furthermore, we are not interested in using 
constants which can be eliminated by a convenient change of coordinates. 

In the case .k = 1

R2
> 0, if we arrange the equation in the form 

. 
1

k
ȧ2 − B

k
· a2 = 1,

the solution is .a(t) = 1

R
√
B
sinh(t

√
B). Replacing . B, it results in 

. a(t) = 1

R ·
/

K

3
ρ0

sinh

(
t

/
K

3
ρ0

)
.

In the case .k = − 1

R2
< 0, if we arrange the equation in the form 

. − R2ȧ2 + R2B · a2 = 1,

the solution is .a(t) = 1

R
√
B
cosh(t

√
B). After replacing . B, 

. a(t) = 1

R ·
/

K

3
ρ0

cosh

(
t

/
K

3
ρ0

)
.

If .q(r) = r it results in .q ''(r) = 0. Let us consider the first two equations: 

. 
ä

a
= −K

6
· (ρ0 + 3p0) ,

. 2
ȧ2

a2
+ ä

a
= K

2
(ρ0 − p0) .

This kind of differential equations in.a(t) is called the.(FLRW ) equations. We obtain 

.
ȧ2

a2
= K

3
ρ0.
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Taking into account our notation.B = K

3
ρ0, two solutions are possible:. a1(t) = et

√
B

and .a2(t) = e−t
√
B . 

We may observe that as .t → +∞, a2(t) → 0 which does not correspond to the 
known expansion of the Universe, related to the observational evidences. The other 
solution can be accepted. As we will see in a following subsection, it is related to the 
Hubble constant. 

Let us stress again that these metrics have been obtained in the case when . Ti j
has the above special form. We may conceive other possible .Ti j having the property 
.T r
r = T θ

θ = T φ
φ and some other metrics can appear. . [

Denote .dY2 := dθ2 + sin2 θdφ2. In the process of finding the metric, we have 
used 

. 
dq2

1 + kq2
= dr2.

Replace this position in the metric 

. ds2 = dt2 − a2(t)
|
dr2 + q2dθ2 + q2 sin2 θdφ2

|
,

we can write all possible metrics in the form 

. ds2 = dt2 − a2(t)

|
dq2

1 + kq2
+ q2dY2

|
.

This metric is known as the Friedmann–Lemaître–Robertson–Walker metric (or 
FLRW metric) of the Universe. 

Problema 10.8.2 Consider the case of the cosmological fluid such that the con-
travariant energy–momentum tensor is 

. T i j = (ρ0 + p0)u
iu j − p0g

i j + V

K
gi j ,

where. V is the cosmological constant. Under the conditions of the previous theorem, 
let us find the coefficients if the metric for Universe is 

. ds2 = c2dt2 − a2(t)
|
dr2 + q2(r)dθ2 + q2(r) sin2 θdφ2

|
.

Hint: We obtain .T t
t = ρ0 + V

K
, T r

r = T θ
θ = T φ

φ = −p0 + V

K
and . T = ρ0 −

3p0 + 4V

K
, but we have to complete the computations using 

.Ri
j − Vδij = K ·

(
T i
j − 1

2
δij T

)
.
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Problema 10.8.3 Consider the metric 

. ds2 = α(x + y + z)dt2 − 1

2

(
dx2 + dy2 + dz2

)
,

where . α is a constant. Compute .Ri j − 1

2
R gi j . 

Hint. Denote.x0 := t, x1 := x, x2 := y, x3 := z. It is easy to obtain. T0
10 = T0

01 =
T0
20 = T0

02 = T0
30 = T0

03 = 1

2(x + y + z)
and .T1

00 = T2
00 = T3

00 = α. Then 

. Rii = − 3α

2(x + y + z)
, R00 = α

4(x + y + z)2
, i = 1, 2, 3,

that is, 
. R = Ri

i = −3
α

(x + y + z)2
.

It results in 

. Ri j − 1

2
R gi j = −1

2

⎛
⎜⎜⎝
0 0 0 0
0 (x + y + z)−2 0 0
0 0 (x + y + z)−2 0
0 0 0 (x + y + z)−2

⎞
⎟⎟⎠ .

Can you derive some conclusions about .Ti j tensor? 

The equations of geodesics are 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2t

dτ 2
+ 3

x + y + z

dt

dτ

(
dx

dτ
+ dy

dτ
+ dz

dτ

)
= 0

d2x

dτ 2
+ α

(
dt

dτ

)2
= 0

d2y

dτ 2
+ α

(
dt

dτ

)2
= 0

d2z

dτ 2
+ α

(
dt

dτ

)2
= 0

An important question for the reader is 

Exercise 10.8.4 Can these equations be the geodesic equations of the classical con-
stant gravitational field .(−α,−α,−α)?
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Hint. Start by analysing the necessary condition .
dt

dτ
= 1 and the norm (with 

respect to the metric) of the tangent vector to the geodesic. The answer is no. 

10.8.1 More About FLRW Universes 

In the previous subsection, we saw that the problem to find a metric for the general 
Einstein field equations describing the Universe started from the fact that the observed 
Universe appears homogeneous and isotropic beyond a given scale, therefore we have 
to consider, at the beginning, a spherical symmetry for the cosmic space-time. 

The spatial part first considered there was 

. dr2 + q2(r)
(
dθ2 + sin2 θdφ2

)
,

where .q(r) will be determined, so, the first trial metric was 

. ds2 = dt2 − a2(t)
|
dr2 + q2(r)dθ2 + q2(r) sin2 θdφ2| .

The function.a(t) introduced is necessary to preserve the proposed spherical symme-
try of the spatial part of the metric which can, eventually, expand under a homothetic 
transformation. This way.a2(t) becomes an expansion factor of the Universe. We have 
to mention that Friedmann and Lemaître used only the expansion factor .a2(t) in the 
front of the spatial part of the metric without to consider the .q(r) factor described 
above. 

We are working in geometric coordinates, that is, .c = 1. 
FLRW universes with or without cosmological constant are obtained only if the 

contravariant energy-momentum tensor is describing a perfect fluid with components 

. T i j = (ρ0 + p0)u
iu j − p0g

i j ,

where .gi j are the inverse components of the metric tensor matrix which satisfies 
Einstein’s field equations, .ρ0 is the constant density of the fluid, .p0 is the constant 
pressure of the fluid, and .ui are the components .(ut , vxut , vyut , vzut ) of the fluid 
4-velocity. To finish the classical description, .a(t) is determined from the equation 

. ȧ2 − 8πG

3
ρ0 · a2 = k1

where .k1 can have the values . 1/R2 ;−1/R2 ; 0.

What if we are interested to explore a little beat more? Let us propose the spatial 
part to be 

.dr2 + q2(r)
(
dθ2 + A2(θ)dφ2) ,
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where . A is a function we have to determinate together with .q(r) and .a(t) such that 
the metric 

. ds2 = dt2 − a2(t)
|
dr2 + q2(r)dθ2 + q2(r)A2(θ)dφ2

|

satisfies the Einstein field equations in the same conditions as in the classical case 
presented above (see [ 33]). Of course, we expect to obtain at least the solution 
.A(θ) = sin θ, together with the classical known.q(r) and . a(t).

Let us prove 

Theorem 10.8.5 A FLRW universe appears if and only if the metric 

. dY2
A = dθ2 + A2(θ)dφ2

describing the 2D generating spatial part has constant Gaussian curvature. 

Proof We start by calculating the Ricci symbols of the metric proposed in the intro-
duction above. From 

. g00 = 1, g11 = −a2(t), g22 = −a2(t)q2(r), g33 = −a2(t)q2(r)A2(θ)

. g00 = 1, g11 = − 1

a2(t)
, g22 = − 1

a2(t)q2(r)
, g33 = − 1

a2(t)q2(r)A2(θ)

we observe 
. Ti

jk = gisT jk,s = gi iT jk,i ; Ti
jk = 0, i /= j /= k.

After denoting by . ȧ the derivative with respect to . t and by .q ' the derivative with 
respect to. r we successively obtain 

.T0
11 = a · ȧ, T0

22 = a · ȧ · q2, T0
33 = a · ȧ · q2 · A2(θ), 

.T1
01 = T1

10 = ȧ

a
, T1

22 = −q · q ', T1
33 = −q · q ' · A2(θ), 

.T2
02 = T2

20 = ȧ

a
, T2

12 = T2
21 = q '

q
, T2

33 = −A'(θ)A(θ), 

.T3
03 = T3

30 = ȧ

a
, T3

13 = T3
31 = q '

q
, T3

32 = T3
23 = A'(θ)

A(θ)
, otherwise .Tk

i j = 0. 

We have 

. Rtt = −3
ä

a
.

We obtain 

.Rrr = 2ȧ2 + ä · a − 2
q ''

q
,
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. Rθθ = 2q2 · ȧ2 + q2 · a · ä − q · q '' − (q ')2 + A''(θ)
A(θ)

,

. Rφφ = A2(θ) · Rθθ.

Using .Ri
j = gis Rs j , we rise an index:  

. Rt
t = −3

ä

a
,

. Rr
r = −2

ȧ2

a2
− ä

a
+ 2

q ''

a2 · q ,

. Rθ
θ = −2

ȧ2

a2
− ä

a
+ 1

a2 · q2

(
A''(θ)
A(θ)

+ q · q '' + (q ')2
)

,

. Rφ
φ = Rθ

θ .

The key of finding the metric is related to the lowering of indexes of the contravariant 
energy–momentum tensor mentioned above. It follows that. T t

t = ρ0 and. T r
r = T θ

θ =
T φ

φ = −p0, that is . T = T i
i = ρ0 − 3p0.

If we arrange the Einstein’s field equation in the form 

. Ri
j = 8πG ·

(
T i
j − 1

2
δij T

)

we obtain 

. Rt
t = −3

ä

a
= 8πG ·

(
T t
t − 1

2
T

)
= 4πG · (ρ0 + 3p0)

and . Rr
r = Rθ

θ = Rφ
φ = −4πG (ρ0 − p0) .

Now, the condition .Rr
r = Rθ

θ highlights the equality 

. 2
q ''

a2 · q = 1

a2 · q2

(
A''(θ)
A(θ)

+ q · q '' + (q ')2
)

which makes sense if and only if the right member doesn’t depend on . θ. And this 

means that the ratio .
A''(θ)
A(θ)

is a constant denoted by . K . 

Considering the following possible situations.K < 0; K = 0; K > 0, we deter-
mine the function .q(r) from the equation 

.q · q '' − (q ')2 = K
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and .A(θ) from the differential equation 

. A''(θ) − K A(θ) = 0.

.a(t) is determined from the equation 

. 
ȧ2

a2
− q ''

a2 · q = 8πG

3
ρ0.

This one is obtained after we replace 

. Rt
t = −3

ä

a
= 4πG · (ρ0 + 3p0)

in 

. Rr
r = −2

ȧ2

a2
− ä

a
+ 2

q ''

a2 · q = −4πG (ρ0 − p0) .

I. The case . K = − 1

R2
< 0.

This case allows the particular solutions .A1(θ) = sin
θ

R
and .A2(θ) = cos

θ

R
. 

The general solution is a linear combination of these two solutions. 

Then, the equation .q · q '' − (q ')2 = − 1

R2
and the corresponding Friedmann 

equation 

. 
ȧ2

a2
− q ''

a2 · q = 8πG

3
ρ0

describe the classical FLRW case. 

Let us underline that this case is highlighted from a 2D-metric of constant Gaus-
sian positive curvature, 

. KG = −K = 1

R2
.

The new situations appear from the analysis of the other cases. 

II. The case .K = 0. We have .A(θ) = hθ, or .A(θ) = h. 
It follows 

.(q ')2 − q · q '' = 0
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with the solution .q(r) = ekr , where . k is a constant. 

So, the ratio .
q ''

q
= k2 and .a(t) is determined by the equation 

. ȧ2 − 8πG

3
ρ0a

2 = k2.

We know to obtain the general solution of an equation as 

. ȧ2 − A2a2 = B2,

that is, 

. a(t) = C1

2A
eAt − B2

2C1A
e−At .

To maintain the way in which the FLRW solution is done, we choose .C1 = B, 
therefore we consider the solution in the form 

. a(t) = k/
8πG

3
ρ0

sinh

(/
8πG

3
ρ0 · t
)

.

So, in the case.K = 0 the two metrics are described by the previous.a(t),. q(r) =
ekr and .A1(θ) = hθ and .A2(θ) = h, that is, 

. ds2 = dt2 − 3k2

8πGρ0
sinh2
(/

8πG

3
ρ0 · t
) |

dr2 + e2kr (dθ2 + A2
i (θ)dφ2)

|
.

We can observe that the initial generating 2D metric . dY2
A = dθ2 + A2

i (θ)dφ2

used to create the FLRW metric above has in both cases null Gaussian curvature, 
. KG = −K = 0.

III. The case . 
A''(θ)
A(θ)

= K = 1

R2
> 0.

In this case. A1(θ) = eθ/R; A1(θ) = e−θ/R; A3(θ) = sinh
θ

R
; A4(θ) = cosh

θ

R
and linear possible combinations. 
We determine .q(r) from the differential equation 

. q · q '' − (q ')2 = K = 1

R2
.

The solution is 
.q(r) = cosh

r

R
.
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.a(t) is determined by the equation 

. ȧ2 − 8πG

3
ρ0a

2 = 1

R2
.

The solution is obtained as above, 

. a(t) = 1

R

/
8πG

3
ρ0

sinh

/
8πG

3
ρ0 · t.

This .a(t) together with .q(r) = cosh
r

R
is part of all the metrics corresponding 

to this case, that is, we get 

. ds2 = dt2 − 3k2

8πGρ0
sinh2
(/

8πG

3
ρ0 · t
)T

dr2 + cosh2
r

R

(
dθ2 + A2

i (θ)dφ2)| .

Now, if you look at the 2D metrics .dY2
A = dθ2 + A2

i (θ)dφ2 used to create the 
FLRW metric in this case, all are constant Gaussian negative curvature, .KG =
−K = − 1

R2
. [

10.8.2 A Remarkable Universe without Matter from FLWR 
Conditions 

It is possible to use the FLRW conditions for a universe suggested by the Poincaré 
half-plane, extended to four dimensions in a Minkowski space-time. The properties 
of a Minkowski–Poincaré half-plane in two dimensions are described by the metric 

. ds2 = 1

x2
(dt2 − dx2).

We obtain 

. T0
01 = T0

10 = T1
00 = T1

11 = −1

x
; R0

101 = − 2

x2
, R0101 = − 2

x4
,

that is the Gauss-Minkowski curvature is . 2 and the geodesic equations 

.ẗ − 2

x
ṫ ẋ = 0, ẍ − 1

x
(ṫ)2 − 1

x
(ẋ)2 = 0
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are satisfied by .x(s) = t (s) = es
√
2 and .x(s) = −t (s) = es

√
2. Of course, the light-

cones induced by the condition .ds2 = 0 are formed by geodesics of this metric. 
According to [ 33], we can consider a system of coordinates where the metric 

. ds2 = 1

z2
|
dt2 − a2(t)

(
dx2 + dy2 + dz2

)|

can be written by the FLRW conditions. Let us denote by . ȧ and . ä, the first and the 
second derivative of the function .a(t) with respect to . t . Computing the non-zero 
second-type Christoffel symbols, we have 

. T0
03 = T0

30 = −a2

z
; T3

00 = T1
13 = T1

31 = T2
23 = T2

32 = T3
33 = −1

z
; T3

11 = T3
22 = 1

z
;

. T0
11 = T0

22 = T0
33 = aȧ; T1

10 = T1
01 = T2

02 = T2
20 = T3

30 = T3
03 = ȧ

a
.

The only non-zero Ricci tensor components are 

. R00 = 4 − a2

z2
− 3

ä

a
; R11 = R22 = −2 + a2

z2
+ aä + 2ȧ2;

R33 = −2 + a2

z2
+ aä + 3ȧ2

therefore 

. R0
0 = 4 − a2 − 3z2

ä

a
; R1

1 = R2
2 = 2 + a2

a2
− z2

ä

a
− 2z2

ȧ2

a2
;

R3
3 = 2 + a2

a2
− z2

ä

a
− 3z2

ȧ2

a2
.

The FLWR conditions .R1
1 = R2

2 = R3
3 lead to the simple Friedmann equation 

.ȧ = 0. Rescaling the variables .x, y, z, we can consider the solution . a(t) = 1.
The FLWR conditions give us the particular metric 

. ds2 = 1

z2
|
dt2 − (dx2 + dy2 + dz2

)|
.

Looking at the above formulas, we get the metric of an Einstein manifold, which 
satisfies the formulas 

. Ri j = 3 gi j .

Since .R = 12, the Einstein equation can be written in the form 

.Ri j − 1

2
R gi j + V gi j = 0



10.8 Cosmological Solutions of the Einstein Field Equations … 329

for the cosmological constant.V = 3. So, we have obtained a universe without matter 
because.Ti j = 0. If we look at the condition.ds2 = 0 which gives the structure of the 
lightcone, we have a structure similar to the one appearing in the usual Minkowski 
space-time. 

10.8.3 The Cosmological Expansion 

This subsection is dedicated to the expansion of the Universe. We saw that Einstein 
Static Universe imposed the existence of a new term in the fields equations, because 
in a Universe in which the matter is constrained to interact only by gravity, all the 
matter sources will be concentrated in the same region, in contrast with the desired 
Einstein static structure. 

The new term was proposed to establish a repulsive effect to counterweight 
the attractive effect of gravity. However, Einstein discarded the cosmological 
term when Hubble discovered evidences for cosmological expansion. In any case, 
Theorem 10.8.1 suggests that we can obtain an expanding universe even if the cos-
mological constant is not considered. Is Hubble’s law related to the cosmological 
metrics obtained above? The answer is yes! 

Let us describe the Hubble law for recession of galaxies. 
First, we have to mention that Hubble used Doppler’s effect to establish his result 

related to the redshift of distant galaxies. The light in the Universe is produced by 
stars. The hydrogen of stars, in thermonuclear fusion, produces primarily helium 
and energy that radiates in space, some of it in form of light. Hubble considered the 
four lines of the hydrogen light spectrum. For distant galaxies, the same four lines 
of hydrogen spectrum are seen shifted to the right in comparison to normal pattern 
of light decomposition detected in laboratory. Hubble realized that this is a Doppler 
effect and the observed redshift means that the distant galaxies are moving away 
from us. He stated that the redshifts in spectra of distant galaxies are proportional to 
the distance of galaxies from us. The mathematical form is 

. V = H · D,

where .D is the proper distance from us to the galaxy, .V := Ḋ is the proper speed 
of the galaxy, and .H is a constant called the Hubble constant. The farther away the 
galaxy is, the faster it moves away from us. The entire space, the entire texture of 
the Universe is moving away from us carrying the galaxies in it. 

Alternatively, let us suppose we have a ruler of coordinates marked 
.0, 1, 2, 3, 4, .... The distance between two consecutive coordinates is denoted 
by. a. The distance measured with this ruler is denoted by. D..D = a · /x , where. /x
is the difference between the coordinates of the chosen points we wish to measure. 

Now, suppose we have a rubber band marked in the same way as our ruler; we 
pin the origin and start to stretch. The coordinate points remain drawn on the rubber
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band but the distance between them increases. Therefore . a depends on time, it is 
.a(t). The distance .D becomes .D(t) = /x · a(t). We have  

. V := Ḋ = /x · ȧ.

This relation can be written as 

. V · a = a · /x · ȧ = D · ȧ,

that is, 

. V = ȧ(t)

a(t)
D.

We define .H := ȧ(t)

a(t)
and obtain Hubble’s law 

. V = H · D.

What is new in this approach is the fact that it is suggested the stretch of the texture of 
the universe. Such a stretch was seen in Sect. 9.9 when we discussed about a possible 
metric for the Cosmos. The metric proposed was 

. ds2 = c2dt2 − a2(t)
|
dr2 + q2(r)dθ2 + q2(r) sin2 θdφ2

|
,

where.q(t) and.a(t)were determined from the general Einstein field equations under 
some conditions imposed by the energy–momentum tensor .Ti j . 
The differential equation for.a(t) will be found now under some physical conditions 
and important consequences will come out. 

Consider two galaxies in the Universe such that the distance between them is . D. 
Let us consider one of them and the sphere of radius.D centred at the chosen galaxy. 
Denote by .M the total mass of galaxies inside the sphere and by .m the mass of the 
second galaxy. This galaxy moves away from the galaxy at the centre of the sphere 
with speed .V = H · D. The gravitational force which acts on the galaxy of mass . m
is 

. F = GMm

D2
.

The potential energy for that galaxy is 

. PE = −GMm

D

and the kinetic energy is 

.KE = mV 2

2
.
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The total energy acting on the second galaxy is a constant, 

. PE + KE = const = k1.

Thanks to the Equivalence Principle, we can divide by .m and then it results 

. − 2GM

D
+ V 2 = k.

But .D(t) = /x · a(t) and .V (t) = /x · ȧ(t), that is 

. (/x · ȧ(t))2 − 2GM

/x · a(t)
= k.

Some remarks are in order now..M = Vol × densi ty. If the volume increases when 
the Universe is expanding but the number of galaxies does not change, the density 
decreases. Since 

. M = 4

3
π · D3 · ρ(t) = 4

3
π · (/x · a(t))3 · ρ(t),

we have 

. (/x)2 · (ȧ(t))2 − 8πG

3
· (/x)2 · (a(t))2 · ρ(t) = k.

We arrange in a dimensional way the previous formula replacing . k by .−K · /x . 
Finally, we obtain the differential equation 

. 

(
ȧ(t)

a(t)

)2
− 8πG

3
· ρ(t) = − K

a2(t)
.

This is a sort of Friedmann–Lemaître–Robertson–Walker equation as obtained in 

Sect. 10.8.1. The  term .
8πG

3
· ρ(t) is always positive. If .K is negative, the equation 

written in the form 

. 

(
ȧ(t)

a(t)

)2
= 8πG

3
· ρ(t) − K

a2(t)

can be solved. Such an equation describes a spatially open Universe. If, for some 
. t , .K is such that the right member becomes negative at a point, this Universe will 
increase until that point; then it can remain unchanged or even it can contract. This 
kind of Universe is called a spatially closed universe. If .K = 0, the universe will be 
called a spatially flat Universe. This Universe expands too. In such a Universe there 
is a perfect balance between the kinetic and the potential energy. 

The observational evidences show that our Universe is a flat one. So, it remains 
to solve the equation
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. 

(
ȧ(t)

a(t)

)2
= 8πG

3
· ρ(t).

In a flat, matter-dominated Universe .(mdu), in a cube of side .a(t), having inside 
galaxies whose total mass is . M , the density is expressed by the formula . ρmdu(t) =
M

a3(t)
. The corresponding .(FLRW ) equation is 

. 

(
ȧ(t)

a(t)

)2
= 8πG

3
· M

a3(t)
.

The solution, expressing the expansion of a matter-dominated Universe, is then 

. a(t) = B · t2/3,

where . B is a positive constant. 
After the Big Bang and inflation [159], there was a period when the universe 

was radiation dominated .(rdu). To describe its expansion, we consider the same 
cube of side .a(t), now full of photons. Since the energy is expressed by the formula 

.E = hν = h
c

λ
and, when .a(t) is increasing, the wavelength . λ is increasing too, we 

can suppose that .E = C

a(t)
is describing the energy formula. Here .C is a constant. 

The density of such a Universe is given by 

. ρrdu = E

a3(t)
= C

a4(t)
.

The corresponding .(FLRW ) equation is 

. 

(
ȧ(t)

a(t)

)2
= 8πG

3
· C

a4(t)
.

The solution, which expresses the expansion of a radiation-dominated universe, is 

. a(t) = A · t1/2,

where . A is a positive constant. 
Now, let us observe something crucial. We know two important physic formulas, 

Planck’s one.E = hν = h
c

λ
and Boltzmann’s one.E = kBT . Using the same reason-

ing as before we deduce the direct proportionality between the temperature .T and 

.
1

a(t)
. As said, after Big Bang and inflation, our Universe was radiation dominated, 

and the temperature at which the atoms can form is less than.3 × 103 K degrees. Now, 
the today cosmic background radiation has approximatively. 3K degrees. Therefore,
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if we suppose that in the period in our Universe started to be matter dominated, the 

temperature decreases of the ratio .∼ 3 × 103

3
, it is easy to see the ratio .

atoday
aionized

, 

where .aionized is the epoch in which ionized atoms appear. It is 

. 
Tionized
Ttoday

= atoday
aionized

= 103 = t2/3today

t2/3ioni zed

.

Since.ttoday is about.1010 years, i.e. the age of the observed Universe,.tioni zed becomes 
about .3 × 105 years after Big Bang. It means that the Universe was radiation dom-
inated for almost .3 × 105 years. More precisely, it takes about .3 × 105 years for 
the Universe, expanding and cooling after Big Bang, to allow electrons and protons 
to couple and form neutral atoms. At this point, even the photons are free to move 
and get to us, providing us with the first “photograph” of the Universe that can be 
obtained, that is, the Cosmic Microwave Background Radiation. 3 Clearly, this is only 
a rough calculation to derive the order of magnitudes. For a detailed discussion on 
primordial Universe phenomenology, see [158, 159]. 

We are now ready to understand some basic facts about dark energy and the 
pressure exerted to expand our Universe. Specifically, dark energy is the hypothetical 
fluid fueling the observed accelerated expansion revealed at the end of twentieth 
century [ 13]. Let us begin by analysing the pressure exerted on the faces of a cube 
imagined in our Universe. Obviously, there is no pressure in a matter-dominated 
Universe because the galaxies inside the cube do not exert any pressure on the faces 
of the cube. 

In a radiation-dominated universe, it is possible to study the pressure in the fol-
lowing way. Let us consider a photon which can move between “the extremities” of 
a segment line of length . L . The small amount of time necessary to move between 

the extremities can be denoted as .dt and we have the formula .dt = 2L

c
. The force 

which produces the pressure on the extremities is 

. F = dp

dt
= 2p

2L

c

= pc

L
= E

L
.

If we denote by. L the length of the side of a cube in a radiation-dominated Universe 
and by .d A the infinitesimal area of a square drawn on a face (the sides parallel to 
the sides of the face), now corresponding to the perpendicular direction on the given 
face, we have 

.P = F

dA
= E

Ld A
.

3 Actually the recombination of hydrogen happened at a redshift.z = 1089 corresponding to a period 
of.3.79 × 105 years after Big Bang. Here the redshift correspond to the above.atoday/aionized . See  
[198]. 
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Therefore the pressure. P exerted can be though as the ratio between the energy and a 
volume corresponding to .d A and the above-mentioned perpendicular direction, that 
is, an energy density . ρ. In fact we have 

. P = wρ,

where .w = 0 in the case of matter-dominated Universe and .w = 1

3
in an radiation-

dominated Universe; . 3 appears because we have three perpendicular direction on 
faces. 

These numbers represent two possibilities for the equation of state of a standard 
perfect fluid where.0 ≤ w ≤ 1 is the so-called Zel’dovich interval [199]. Being. w =( cs
c

)2
, with .cs the sound speed, the fluids in the Zel’dovich interval agree with the 

causality condition implying that the speed of light has to be.c > cs . In other words, 
standard matter cannot be constituted by tachyons, that is, particles faster than light. 

Suppose now that the pressure expands the cosmic cube of a .dV volume. Taking 
into account the work done by the force . F , .F · d = P · A · d = P · dV , and the 
variation of the energy . E , we have  

. dE = −P · dV .

At the same time, 
. E = ρ · V .

It results in 
. dE = dρ · V + ρ · dV = −P · dV,

i.e. 
. V · dρ = −(P + w)dV = −ρ(w + 1)dV .

We have obtained the differential equation 

. 
dρ

ρ
= −(w + 1)

dV

V

with the solution 
. ρ = NV−(w+1) = Na−3(w+1),

where .N is a constant. 
For.w = 0, we obtain the formula corresponding to a matter-dominated Universe, 

while for .w = 1

3
we obtain the formula of a radiation-dominated Universe.
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Let us insert this last formula in the .(FLRW ) equation, we get 

. 

(
ȧ(t)

a(t)

)2
= 8πG

3
· N

(a(t))3(w+1)
.

Clearly, in the above discussion, the functions.P and. ρ are functions of time and the 
above definition of the energy–momentum tensor can be generalized to describe a 
perfect fluid of the form 

. T i j = (ρ + P)uiu j − pgi j .

What happens if .w = −1? The .(FLRW ) equation becomes 

. 

(
ȧ(t)

a(t)

)2
= 8πG

3
· ρ0,

where .ρ0 is a constant. Now we are in the case of a Universe expanding according 
to the law 

. 
ȧ(t)

a(t)
= H0 =

/
8πGρ0

3
.

The solution of the expansion is exponential, 4 that is, 

. a(t) = a0e
H0t ,

where .a0 is a constant related to the initial value of the scale factor .a(t). The  value  
.w = −1 is clearly out of the above Zel’dovich interval, i.e. it is not a standard perfect 
fluid, and corresponds to “something” which determines the exponential accelerated 
expansion. Such an expansion is in agreement with the existence of a possible cos-
mological constant .V (that is, . ρ0). This “something” manifests itself as a pressure 
implying an energy density. As said, this energy is neither produced by the ordinary 
matter nor by the radiation. 5 This is a simple example of dark energy that gives rise 
to accelerated expansion. The mechanism can work both in early Universe, giving 
rise to inflation, and in late Universe, giving the observed accelerated expansion of 
the Hubble flow. Clearly the scales of energy are completely different and between 
inflation and recent accelerated epoch there are radiation- and matter-dominated eras. 
It is worth noticing that, according to data, the dark energy constitutes . ∼70% of the 
total amount of matter–energy content of the Universe [ 13]. Understanding nature 
and dynamics of dark energy is one of the main challenges of modern cosmology.

4.H0 is assumed constant because.ρ0 is constant. 
5 It is important to note that any form of standard matter, in the interval .0 ≤ w ≤ 1, gives  rise  to  
decelerated expansion. 
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10.9 Measuring the Cosmos 

Let us consider some physical constants and astronomic units necessary to evaluate 
the age, the radius, the volume, the mass, and the density of our observable Universe. 

We know already both the gravitational constant.G = 6.67 · 10−11 (m)3

(kg) · (s)2
and 

the speed of light in vacuum .c = 3 · 105 (m)

(s)
. Let us write the value of the Hubble 

constant 

. H = 70
Km

s
· 1

1 parsec · 106

and .1 parsec = 3, 086 · 1016 (m). If we compute the value of Hubble constant we 
obtain 

. H = 70 · 103 (m)

(s)
· 1

3, 086 · 1016 · 106(m)
= 2, 3 · 10−18 1

(s)
.

The number of seconds of a year is 

. Ns = 365 · 24 · 60 · 60 (s) = 3, 15 · 107(s).

Since the age of the Universe is .AU = 1

H
, it results that the age of the Universe 

measured in years is 

. AU = 1

2, 3
· 1018 1

3, 15 · 107 years = 1, 38 · 1010 years.

In words means .13, 8 billions years. 
Now, let us give a “sketch” on how the radius of the observable Universe can 

be computed. When we are talking about the radius of the observable Universe, 
we are taking into consideration the facts explained in the previous sections. In 
principle, a primordial photon can travel to reach our eye from .13, 8 billions years. 
According to the Hubble law, the texture of the Universe is in continuous expansion. 
Therefore, to establish the distance crossed by the photon it is not enough to multiply 
the time, i.e. the age of this Universe, by the speed of light in vacuum. Therefore a 
formula as.R = C · AU = c · dt will not describe the exact value of the radius.RO of 
our observable Universe. We need to take into account the “expansion factor”. The 
expansion factor is 

. a(t) := dx(t)

dx(t0)
.

Here.t0 := 13, 8By and.dx(t0) is the variation of the real distance crossed by photon 
in . t0 years. We obtain 

.dx(t0) = dx(t)

a(t)
= cdt

a(t)
,



10.9 Measuring the Cosmos 337

therefore, for a chosen .a(t), we have  

. RO =
{ t0

0
dx(t0) =

{ t0

0

c

a(t)
dt ≈ 46Bly.

Therefore, this leads to the unrealistic radius of the observable Universe of.46 billion 
light years. 

Now we can imagine the .3D spatial part of the observable Universe as a sphere 
with the radius .RO . The volume of this observable Universe is 

. VolU = 4/3π R3
O ≈ 5 · 1080(m)3.

The real value has 3,566 instead of . 5, but this value was obtained both because our 
simplified value of speed of light in vacuum and our approximations. 

The mass of the observable Universe can be computed thinking at the escape 
velocity formula seen in the black hole section. In this case, we have to think about 
a galaxy escaping from our observable Universe. In the formula seen there, 

. 
1

2❩
mv2 = GM❩m

R
,

the mass .m of the escaping galaxy is cancelled. .M becomes the mass of all the 
observable Universe, .G is the gravitational constant, .R must be the radius of the 
observable Universe, .RO , and the escape velocity must be the speed of light, . c. It  
results in 

. M = c2RO

2G
.

Replacing the values, we obtain the mass of the observable Universe,.M ≈ 1053(Kg). 
The density of the observable Universe is computed using the formula 

. ρU = M

VolU
.

The value of this density is .≈ 2 · 10−28 (Kg)

(m)3
if we compute in our approximation. 

This means about .10 protons per each cubic metre of space. 
The above calculations give a rough image of some basic observables of our 

Universe. Clearly, they have to be confronted with data and some results can be 
completely different. This fact points out that more details on cosmological dynamics 
are needed.
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10.10 The Fermi Coordinates 

After the above summary on cosmological expansion, let us define a system of 
coordinates very useful to describe the geodesic motion. From a mathematical point 
of view, Fermi’s coordinates are local coordinates adapted to a geodesic, that is, at 
a given point. P on a geodesic.c(τ ), there exists a local system of coordinates around 
.P such that: 

• the geodesic locally becomes .(x0, 0, 0, .., 0); 
• the metric tensor along geodesic is the Minkowski metric (or the Euclidean metric; 
it depends on the context); 

• all the Christoffel symbols vanish along geodesic. 

A nice treatment of this subject 6 and its applications can be seen in [ 46, 137]. 
In our context, we intend to describe the topic in a simplified way. 

Consider a coordinate frame at rest denoted by .R : (y0, y1, y2, y3) together with 
a given metric .ds2 = ḡi j dyidy j . 

We intend to describe the free fall of an observer .F in the gravitational field 
induced by .ḡi j . 

1. In the coordinate frame at rest, . R, the freely falling observer .F is moving on a 
geodesic of the metric .ds2 = ḡi j dyidy j , say .c(τ ). 

The geodesic equations of .c(τ ) are .
d2yi

dτ 2
+ T̄i

jk

dy j

dτ

dyk

dτ
= 0. 

This geodesic is the world line of .F in . R. 
2. From. F point of view, there is no field. Consider. F in a spacecraft, somewhere in 

an almost empty region of the space. That is, to describe the free falling, means 
to create a coordinate frame .F : (x0, x1, x2, x3) such that, along the world line 
of .F in .R in these coordinates, we have .Ti

jk = 0. For  . F , the geodesic equations 

become .
d2xi

dτ 2
= 0, that is, .F should move on a straight line. 

We make the assumption: Let .x0-axis be the world line of .F in . R. 
3. Now, more clearly, we have to construct a map .M : F → R which transfers .x0-

axis into the geodesic .c(τ ), in such a way that the .x0-axis becomes a geodesic in 
.F endowed with the metric .gi j = dMt

x · ḡi j · dMx . 

Therefore, .M maps the .x0-axis into the image of the geodesic .c(τ ). 
If . τ is the geodesic parameter for the curve .c(τ ), we can consider the same 

parameter for the .x0-axis, i.e. .x0 = τ is the current coordinate of this axis. 
At each point . τ , we have  

.c(τ ) = (y0(τ ), y1(τ ), y2(τ ), y3(τ )) ∈ R,

6 It is interesting saying that the paper reporting these results was the first one written by Enrico 
Fermi when he was student at Scuola Normale Superiore di Pisa [101]. 
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therefore the map .M : F → R gives rise to 

. (x0, 0, 0, 0) → (y0(x0), y1(x0), y2(x0), y3(x0)),

where .(y0(x0), y1(x0), y2(x0), y3(x0)) are the coordinates of the points of the 
geodesic in . R. Therefore our transformation .M : F → R can be thought 

. (τ , 0, 0, 0) → c(τ ),

with some considerations on the functions .yk we need to describe. 
Let us keep in our mind that we are interested in transferring the property “c is a  

geodesic in . R” to the .x0-axis in . F . So, we have 

Lemma 10.10.1 Along the geodesic . c in . R, it can be highlighted an orthonormal 

frame with respect to the metric .ḡi j whose time-like vector is the tangent vector .
dc

dτ
. 

Proof We know that at each point .c(τ ), i.e. along the geodesic . c, the tangent vector 

.
dc

dτ
=
(
dy0

dτ
,
dy1

dτ
,
dy2

dτ
,
dy3

dτ

)
is a time-like unit vector. We denote it by .e0(τ ). We 

know that .e0(τ ) is parallel transported along the geodesic . c in .R preserving all its 
properties. 

Consider the point corresponding to .τ = 0, that is, the point .c(0) on the 
geodesic. We choose the spatial vectors .e1(0), e2(0), e3(0) such that the frame 
.{e0(0), e1(0), e2(0), e3(0)} is orthonormal with respect to the metric .ḡi j and we par-
allel transport it along the geodesic . c. 

At each point .c(τ ), the vectors .{e0(τ ), e1(τ ), e2(τ ), e3(τ )} form an orthonormal 
frame with respect to the metric .ḡi j . [

Lemma 10.10.2 Every point .(x0, x1, x2, x3) in .F can be uniquely described in the 

form .(τ , l
→
v ), where .l

→
v is an appropriate Euclidean description of its spatial part. 

Proof Consider a point .(x0, x1, x2, x3) in. F which does not belong to.x0-axis. This 
point is .(τ , x1, x2, x3) and at least one spatial component is non-zero. 

Denote 
. l :=
/

(x1)2 + (x2)2 + (x3)2

and construct the vector 

. 
→
v :=
(
x1

l
,
x2

l
,
x3

l

)
:= (v1, v2, v3).

It appears the possibility to describe the point .(x0, x1, x2, x3) by . (τ , lv1, lv2, lv3)

or, simply, by .(τ , l
→
v ). [
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10.10.1 Determining the Fermi Coordinates 

Consider in .Tc(τ )R the vector 

. 
→
V (τ ) := v1e1(τ ) + v2e2(τ ) + v3e3(τ ).

Observe 

. ds2
(→
V (τ ),

→
V (τ )
)

= ḡαβvαvβ = −(v1)2 − (v2)2 − (v3)2.

We may impose .ds2
(→
V (τ ),

→
V (τ )
)

= −1, that is .
→
V is a spatial unit vector. Let us 

observe that this spatial part has the same property.(v1)2 + (v2)2 + (v3)2 = 1 as the 
vector .

→
v from the above lemma. 

According to the equations of geodesics, we may conclude that it exists a unique 
geodesic of . R, denoted by .y→

V
(s) passing through the point .c(τ ) at .s = 0, such that 

its tangent vector at origin is .
→
V , that is, .

dy→
V

ds
(0) =→

V . 

According to the above notations, the local map.M : F → R, describing the Fermi 
coordinates, is 

. M(x0, x1, x2, x3) = M(τ , s
→
v ) := y→

V
(s).

Observe that the tangent vector along the spatial geodesic .y→
V
(s) is a unit vector. 

The immediate consequence is: For a given point .(τ , s0
→
v ), the spatial distance 

to.(τ , 0, 0, 0) is. s0. The length of the spatial geodesic between its initial point. c(τ ) =
y→
V
(0) and .y→

V
(s0) is also . s0, because the length formula is 

. 

{ s0

0

|||||
|||||
dy→

V

ds
(s)

|||||
||||| ds =

{ s0

0
ds = s0.

The coordinates induced in .F by .M are called Fermi’s coordinates. 
It remains to prove that in . F , in Fermi’s coordinates, with respect to the induced 

metric .gi j , the .x0 axis .(τ , 0, 0, 0) is a geodesic and .Ti
jk(τ , 0, 0, 0) = 0. 

Let us discuss the consequences on the map . M . 

Theorem 10.10.3 The map .M in invertible in the neighbourhood of each point 
.P(τ , 0, 0, 0) of the .x0-axis. 

Proof According to the inverse function theorem, it is enough to prove that the matrix 
.dMP transforms a basis of the tangent space.TP F into linear independent vectors of 
.TM(P)R. 

We know 
.M(P) = M(τ , 0, 0, 0) = c(τ ).
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Consider the standard basis of .TP F , denoted by .εi , i ∈ {0, 1, 2, 3}, .εi having . 1 on 
the. i th row,. 0 elsewhere. Therefore, by the way we defined. M ,. dMP(εi ) = ei (τ ), i ∈
{0, 1, 2, 3}, i.e. .M is locally invertible. [

The meaning of the word “neighborhood” in this context is “tube around the 
geodesic”. 

Now, it makes sense the metric .gi j = dMt
x · ḡi j · dMx as a metric of . F . 

Theorem 10.10.4 The .x0-axis is a geodesic of .F with respect to the metric .gi j . 

Proof The previous theorem allows us to observe that the tangent vector.ε0 is parallel 
transported along the .x0-axis, therefore .x0 axis is a geodesic of . F . [

Exercise 10.10.5 All orthogonal lines to .x0 axis are geodesics of .F with respect to 
the .gi j metric. 

Hint. .M maps these orthogonal lines into geodesics .y→
V
. 

Proposition 10.10.6 At each point .(τ , 0, 0, 0) of the .x0-axis, it is 

. gi j (P) =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Proof We have 

. ds2F (εi , ε j ) = ds2R(dMP(εi ), dMP(ε j )) = ds2R(ei (τ ), e j (τ )) = δi j ,

where .δi j is the Kronecker symbol. [

According to the local definition of . M , we can prove the main 

Theorem 10.10.7 In Fermi coordinates, at every point .P belonging of the .x0 axis, 
the gravitational field is null, that is . Ti

jk(P) = 0.

Proof From the above exercise, we know that the line .γ(s) := (τ , sv1, sv2, sv3) is 
a geodesic. The geodesic equations are 

. 
d2xi

ds2
+ Ti

jk(τ , s
→
v )

dx j

ds

dxk

ds
= 0, i, j, k ∈ {0, 1, 2, 3}.

Since.
dxα

ds
= vα, α ∈ {1, 2, 3}, it results.d

2xα

ds2
= 0. Then, being.

dx0

ds
= 0 (because 

.x0 is parameterized by . τ ), it is .
d2xi

ds2
= 0. From the geodesic equations, it remains 

only
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. Ti
αβ(τ , s

→
v )vαvβ = 0, i ∈ {0, 1, 2, 3}, α,β ∈ {1, 2, 3}.

Now, for .s = 0, we have  

. Ti
αβ(τ , 0, 0, 0)vαvβ = 0, i ∈ {0, 1, 2, 3}, α,β ∈ {1, 2, 3}

for any given vector . 
→
v , therefore 

. Ti
αβ(τ , 0, 0, 0) = 0, i ∈ {0, 1, 2, 3}, α,β ∈ {1, 2, 3}.

It remains to prove 

. Ti
j0(τ , 0, 0, 0) = 0, i, j ∈ {0, 1, 2, 3}.

We know that the vectors .εi are parallel transported along .x0-axis. Let us write the 
parallel transport equations for these vectors with all components constant, .εk = δik . 
It is 

. 
dδik
dτ

+ Ti
jl(τ , 0, 0, 0)δ j

k

dxl

dτ
= 0.

The only non-null terms are obtained when . j = k and .l = 0, which ends the 
proof. [

Three consequences can immediately be proved: 

1. From.Ti j,k = gkrT
r
i j we have 

. Ti j,k(τ , 0, 0, 0) = 0.

2. From.
∂gi j

∂xk
= Tik, j + T jk,i it results 

. 
∂gi j

∂xk
(τ , 0, 0, 0) = 0.

3. From 

. lim
h→0

∂gi j

∂xk
(τ + h, 0, 0, 0) − ∂gi j

∂xk
(τ , 0, 0, 0)

h
= 0

we obtain 

. 
∂2gi j

∂x0∂xk
(τ , 0, 0, 0) = 0.

Starting from these considerations, the Fermi coordinates offer another view, more 
physical than geometrical, about the field equations in vacuum.
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10.10.2 The Fermi Viewpoint on the Einstein Field 
Equations in Vacuum 

Consider the tidal acceleration equations, written in Fermi’s coordinates, with respect 
to a freely falling observer whose world line has the equation.ah(τ ) = (τ , 0, 0, 0, 0). 
Suppose this world line is part of a family of geodesic.xh(τ , q) such that . xh(τ , 0) =
ah(τ ).

Therefore 

. 
∇2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q
,

where 

. Kh
j = Rh

i jk

dxi

dτ

dxk

dτ
.

For the components of our curve.ah(τ ) = (τ , 0, 0, 0), there is only the term.Rh
0 j0 for 

.Kh
j . 
So, the relativistic equations of tidal acceleration vector along the curve . ah(τ ) =

(τ , 0, 0, 0) are 

. 
∇2

dτ 2

∂xh

∂q
= −Rh

0 j0
∂x j

∂q
, h, j ∈ {0, 1, 2, 3}.

Theorem 10.10.8 In Fermi’s coordinates, the tidal acceleration equations along 
the curve .ah(τ ) = (τ , 0, 0, 0) have the form 

. 
∇2

dτ 2

∂xh

∂q
= −∂Th

00

∂x j

∂x j

∂q
.

Proof Denote by . A a point belonging to the curve . ah . Since .Ti
jk(A) = 0, it results 

. Rh
0 j0(A) = ∂Th

00

∂x j
(A) − ∂Th

0 j

∂x0
(A).

Now, .Th
0 j (τ , 0, 0, 0) = 0 for every . τ , that is .

∂Th
0 j

∂x0
(A) = 0, therefore 

. Kh
j (A) = Rh

0 j0(A) = ∂Th
00

∂x j
(A).

The tidal acceleration equations for all points .(τ , 0, 0, 0) become 

.
∇2

dτ 2

∂xh

∂q
= −∂Th

00

∂x j

∂x j

∂q
.

[
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It remains to compute .
∂Th

00

∂x j
(A). 

Theorem 10.10.9 It is 

. 
∂Th

00

∂x j
(A) = ± ∂2g00

∂xh∂x j

Proof . Th
00 = ghsT00,s = ghs

2

(
2
∂g0s

∂x0
− ∂g00

∂xs

)

. 
∂Th

00

∂x j
= 1

2

∂ghs

∂x j

(
2
∂g0s

∂x0
− ∂g00

∂xs

)
+ ghs

2

(
2

∂2g0s

∂x j∂x0
− ∂2g00

∂x j∂xs

)
.

We know.2
∂g0s

∂x0
(A) − ∂g00

∂xs
(A) = 0 and .

∂2g0s

∂x j∂x0
(A) = 0, therefore 

. 
∂Th

00

∂x j
(A) = −ghs

2

∂2g00

∂x j∂xs
(A).

Since.g00(A) = 1, gαα(A) = −1, α ∈ {1, 2, 3}, ghs = 0 when.h /= s, we obtain 

.
∂Th

00

∂x j
(A) = ±1

2

∂2g00

∂xh∂x j
.

[

Let us construct now the matrix .Kh
j . It results in . 

∂Tα
00

∂xβ
(A) =

1

2

∂2g00

∂xα∂xβ
(A), α,β ∈ {1, 2, 3}, i.e. 

. K α
β (A) = K β

α (A) = 1

2

∂2g00

∂xα∂xβ
(A), α,β ∈ {1, 2, 3}.

Using .
∂2g00

∂xk∂x0
(A) = 0, k ∈ {0, 1, 2, 3}, it is 

. K 0
j = ∂T0

00

∂x j
(A) = 1

2

∂2g00

∂x j∂x0
(A) = 0, j ∈ {0, 1, 2, 3}

and 

. Kh
0 = ∂Th

00

∂x0
(A) = 1

2

∂2g00

∂x0∂xh
(A) = 0, h ∈ {0, 1, 2, 3}.

Therefore, in Fermi’s coordinates, the tidal acceleration equations 

. 
∇2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q

along the world line .ah(τ ) = (τ , 0, 0, 0) highlight the symmetric matrix
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. Kh
j (A) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
∂2g00

(∂x1)2
∂2g00

∂x1∂x2
∂2g00

∂x1∂x3

0
∂2g00

∂x2∂x1
∂2g00

(∂x2)2
∂2g00

∂x2∂x3

0
∂2g00

∂x3∂x1
∂2g00

∂x3∂x2
∂2g00

(∂x3)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

having, as components, second-order partial derivatives. 
The information about the gravitational field depends on the gravitational poten-

tial. 
If in these Fermi’s coordinates, we identify the classical gravitational potential. Φ

as .
1

2
g00, the Hessian matrix of the gravitational potential . Φ,

. d2Φx̄ =
(

∂2Φ(x̄)

∂xi∂xk

)
i,k

can be identified with the “spatial part” .
1

2

(
∂2g00

∂xα∂xβ

)
α,β∈{1,2,3}

of the matrix .Kh
j . 

The information encapsulates in the trace of the Hessian of the gravitational field, 
that is, the vacuum field equation .V2Φ = 0 appears when we consider the trace of 
entire matrix.Kh

j in the form.TrK h
j = Kh

h = 0. This means that.Kh
h = Rh

ihk = 0, i.e. 
.Rik = 0. 

Now, we apply the Principle of General Covariance. 
The equations 

. Ri j = 0

represent, in any system of coordinates, the relativistic field equations in vacuum. 

10.10.3 The Gravitational Coupling in the Einstein Field 
Equations: K = . 8πG

c4

Let us consider the energy–momentum tensor as a perfect fluid. We can choose such 
a tensor as a .4 × 4 symmetric matrix . (T i j )

.(T i j ) =

⎛
⎜⎜⎝
T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

⎞
⎟⎟⎠
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whose most important property is its null divergence expressed in terms of covariant 
derivative, 

. T kl
;l = 0.

This property means that “at each moment, the quantity of matter and energy in the 
interior of a given infinitesimal parallelepiped is constant”. 

A first example of energy–momentum tensor was related to the Friedmann– 
Lemaître–Robertson–Walker metric of the Universe. In fact, the key point in the 
computations of the metric in geometric coordinates was related to the chosen form 
of energy–momentum tensor. Physicists proposed to look at galaxies as molecules 
of an ideal gas. In this case, the contravariant energy–momentum tensor was 

. T i j = (ρ + p)uiu j − pgi j ,

where .gi j are the inverse components of the metric tensor matrix which satisfies 

Einstein’s field equations .Ri j − 1

2
Rgi j = KTi j , 

• . ρ is the density; 
• . p is the pressure; 
• .ui are the components .(ut , vxut , vyut , vzut ) of the gas .4-velocity. The previous 
null divergence property is obviously recovered. 

Energy and matter can be seen in different ways according to physics models. 
The next description, known as the energy–momentum tensor of a swarm of par-

ticles, is useful to determine the constant .K in Einstein’s field equations 

. Ri j − 1

2
Rgi j = KTi j .

How can we describe a swarm of particles? 
They have to be identical, they have to be uniformly distributed in space, and they 

have to be non-interacting. Each particle has the rest mass .m0 and we suppose that, 
in an unit of volume of a given space-time, if the swarm is at rest, there are exactly 
.n0 particles (see [ 46]). 

The mass can be incorporated in a .4-momentum vector 

. P := (m,m
→
v ),

where .m is the mass of each non-interacting particle which moves at speed . v. If the  
swarm is at rest, 

.P0 = (m0,
→
0 ).
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The proper .4-velocity of a particle moving at speed . v is 

. V :=
(

1√
1 − v2

,

→
v√

1 − v2

)
,

that is, . P = m0V.

Another .4-vector can be related to the number of particles, denoted by . n, in the  
unit of volume of the previous space-time which move at speed . v, 

. N := (n, n
→
v ).

At rest, we choose 

. N0 = (n0,
→
0 ).

It results in . N = n0V.

If we define the density of mass for the swarm by the product between the mass 
of a particle and the number of particles in a unit volume of the space-time, we have 

. ρv := mn

if the swarm is moving at speed . v and 

. ρ0 := m0n0

if the swarm is at rest. Even if 

. mn = m0√
1 − v2

n0√
1 − v2

= m0n0
1 − v2

,

that is, the product of first components is not a covariant quantity, the .(1, 0) con-
travariant vectors .P = (p0, p1, p2, p3) and .N = (n0, n1, n2, n3) produce a . (2, 0)
contravariant tensor, 

. T i j := pin j =

⎛
⎜⎜⎝

p0n0 p0n1 p0n2 p0n3

p1n0 p1n1 p1n2 p1n3

p2n0 p2n1 p2n2 p2n3

p3n0 p3n1 p3n2 p3n3

⎞
⎟⎟⎠ ,

such that the mass-density is incorporated in the .T 00-component. 
Now let us cancel the geometric coordinates which helped us to find a 

possible energy–momentum tensor and consider the dimensional coordinates 
.(x0, x1, x2, x3) = (ct, x, y, z). It results in
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. V = (c, ẋ, ẏ, ż) = (c, v1, v2, v3) = (c,
→
v ),

. P =
(
E

c
, p1, p2, p3

)
,

where .E = mc2 is the relativistic energy of a particle of the swarm and 

. N = (nc, nv1, nv2, nv3).

The energy–momentum tensor becomes 

. T i j :=

⎛
⎜⎜⎝

En Env1/c Env2/c Env3/c
cp1n p1nv1 p1nv2 p1nv3

cp2n p2nv1 p2nv2 p2nv3

cp3n p3nv1 p3nv2 p3nv3

⎞
⎟⎟⎠ .

We have 
. T 00 = En = mnc2 = ρc2,

therefore we can call .T 00 the density of the relativistic energy of the swarm. 
One may describe all the components of the energy–momentum tensor according to 
the physic units. However only .T 00 is used to determine . K . 

Suppose we are working in Fermi’s coordinates with a swarm of non-interacting 
particles which move together such that the world line of a particle is the .x0-axis. 
Therefore 

. V = (c, 0, 0, 0)

and the energy–momentum.T i j has only one term, 

. T 00 = T 0
0 = T00 = T = ρc2.

Along the .x0-axis, the Einstein equations, written in the form 

. Ri j = K

(
Ti j − 1

2
T gi j

)
,

become the only equation 

. R00 = K

(
T00 − 1

2
T g00

)
= K

(
ρc2 − 1

2
ρc2
)

,

that is 

.R00 = K
1

2
ρc2.
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Since dimensionally we have 

. R00 = Ks
s = 1

2

3E
α=1

∂2g00

∂(xα)2
= 1

c2
V2Φ = 1

c2
4πGρ,

it results 

. 
1

c2
4πG✁ρ = K

1

2✁ρc
2,

that is 

. K = 8πG

c4
.

Therefore Einstein’s field equations are 

. Ri j − 1

2
Rgi j = 8πG

c4
Ti j ,

where the gravitational coupling is written in physical constants. 

10.11 Weak Gravitational Field and the Classical 
Counterparts of the Relativistic Equations 

We are interested in seeing under which conditions it is possible to recover the 
Classical Mechanics basic formulas involving gravity from the relativistic formulas 
seen in the present chapter. 

Let us discuss this point in a mathematical language: In this section we show 
that, in the case of a “week gravitational field”, for “particles with slow motion”, the 
classical field equations emerge from their relativistic counterparts, that is, 

. 
d2xi

dτ 2
= −Ti

jk

dx j

dτ

dxk

dτ
−→ d2xα

dt2
= − ∂Φ

∂xα
,

. Ri j − 1

2
gi j R = 8πG

c4
Ti j −→ ∇2Φ = 4πρ,

. Ri j = 0 −→ ∇2Φ = 0.

A complete treatment of these results can be found in [ 46]. Of course, the basic facts 
were presented by Einstein himself in [133].
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Consider the Minkowski metric which describes a frame with no gravity 

. J := Ji j = J i j :=

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Adding small variations of order.
1

ck
, k ≥ 2we introduce gravitational effects. There-

fore, the following definition is necessary to introduce our working frame: 

Definition 10.11.1 A weak gravitational field is described by a metric 

. gi j = Ji j + 1

c2
g(2)
i j + 1

c3
g(3)
i j + O

(
1

c4

)

with the supplementary properties 

. g(m)
i j = O(1),

∂g(m)
i j

∂t
= O(1),

∂g(m)
i j

∂xα
= O(1), m ∈ {2, 3}, α ∈ {1, 2, 3}.

Here, .g(2)
i j are coefficients of the metric .gi j related to the factor .

1

c2
, etc. In other 

words, .
1

c2
is our expansion parameter related to the strength of the field. 

Let us first observe that, for a weak gravitational field, it is 

. gi j = Ji j + O

(
1

c2

)

and 

. gi j = J i j + O

(
1

c2

)
.

Therefore, for a weak gravitational field, we have the following consequences of the 
previous definition: 

.g0 j = O

(
1

c2

)
, gαα = O(1),

∂gi j

∂xα
= O

(
1

c2

)
and . det (gi j ) = −1 + O

(
1

c2

)
.

Then, it is easy to see that 

.

∂g(m)
i j

∂x0
= ∂g(m)

i j

∂t

∂t

∂x0
= O(1)

1

c
= O

(
1

c

)
.
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In the same way, 

. 
∂gi j

∂x0
= ∂gi j

∂t

∂t

∂x0
= O

(
1

c2

)
1

c
= O

(
1

c3

)
.

Theorem 10.11.2 The Christoffel symbols of a weak gravitational field have the 
properties 

. Tk0,k = O

(
1

c3

)
, Ti j,k = O

(
1

c2

)
, T0

00 = Th
h0 = O

(
1

c3

)
,

. Tα
00 = 1

2c2
∂g(2)

00

∂xα
+ O

(
1

c3

)
, Ti

αβ = O

(
1

c2

)
.

Proof We present two computations and we leave to the reader the details. 
The first one: 

. T0
00 = g0iT00,i = g00T00,0 + g0αT00,α =

. 

(
1 + O

(
1

c2

))
O

(
1

c2

)
+ O

(
1

c2

)(
1

c3

)
= O

(
1

c3

)
.

The second one: 

. Tα
00 = gαiT00,i = gααT00,α + gα0T00,0 + gαβT00,β =

. =
(

−1 + O

(
1

c2

))
T00,α + O

(
1

c2

) (
T00,0 + T00,β

)
.

Replacing .T00,α, it results in 

. Tα
00 =
(

−1 + O

(
1

c2

))
T00,α + O

(
1

c3

)
=

. =
(

−1 + O

(
1

c2

))(
∂g0α

∂x0
− 1

2

∂g00

∂xα

)
+ O

(
1

c3

)
,

that is, 

.Tα
00 = 1

2

∂g00

∂xα
+ O

(
1

c3

)
= 1

2c2
∂g(2)

00

∂xα
+ O

(
1

c3

)
.

[

Denote by .X (t) := (x1(t), x2(t), x3(t)) the trajectory of a classical particle; its 
classical speed is .Ẋ := (ẋ1(t), ẋ2(t), ẋ3(t)).
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Definition 10.11.3 The particle is “slow” if . ẋα(t) = O(1), α ∈ {1, 2, 3}.

The corresponding worldcurve is .
→
X= (ct, X (t)) and its relativistic speed is . 

→
V=

(ct, Ẋ(t)). Observe that 

. L(t) =
{ t

t0

|| →
V (s)||gds =

{ t

t0

/
gi j ẋ i (s)ẋ j (s)ds

has length dimension. 

Parameterizing .
→
X by proper time means to consider .τ (t) := 1

c
L(t). Let us 

observe that .τ (t) has time dimension. 

Theorem 10.11.4 In a Minkowski metric, if a particle is moving “slow” uniformly 
along a curve parameterized by proper time, then 

. 
dτ

dt
= 1 + O

(
1

c2

)
.

Proof From 

. dτ = || →
V ||M
c

dt =
||||1 − 1

c2

3E
α=1

(ẋα(t))2dt =
/
1 − 1

c2
O(1),

it results 

. 
dτ

dt
=
/
1 − O

(
1

c2

)
dt.

Since .
√
1 − A ≈ 1 + A

2
, we have  

.
dτ

dt
= 1 + O

(
1

c2

)
.

[

Now, parameterizing with respect to . τ in a metric .gi j , we have  

. dτ = || →
V ||g
c

dt =
/

gi j ẋ i ẋ j

c2
dt =
/

gi j
ẋ i

c

ẋ j

c
dt.

Theorem 10.11.5 If a particle is moving “slow” in a weak gravitational field along 
a curve parameterized by proper time, then
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. 
dτ

dt
= 1 + O

(
1

c2

)
.

Proof We have .ẋ0 = d

dt
(ct) = c. The particle is “slow” and, by definition, this 

means .ẋα = O(1). Therefore 

. gi j
ẋ i

c

ẋ j

c
= g00 + 2g0α

ẋα

c
+ gαβ

ẋα

c

ẋβ

c
= 1 + O

(
1

c2

)
.

We have used . g00 = 1, gαα = O(1), gαβ = O

(
1

c2

)
, α /= β, g0α = O

(
1

c2

)
.

Finally, 

. 
dτ

dt
=
/

gi j
ẋ i

c

ẋ j

c
dt =
/
1 + O

(
1

c2

)
dt,

i.e. 

. 
dτ

dt
= 1 + O

(
1

c2

)
.

Observe we can also obtain 

.
dt

dτ
= 1 + O

(
1

c2

)
.

[
Theorem 10.11.6 If a particle is moving “slow” along a curve parameterized by 

proper time, then it is .
d2x0

dτ 2
= O

(
1

c

)
and . 

d2xα

dτ 2
= ẍα + O

(
1

c2

)
.

Proof From.
dx0

dτ
= dx0

dt

dt

dτ
= c

(
1 + O

(
1

c2

))
= c + O

(
1

c

)
, we obtain 

. 
d2x0

dτ 2
= d

dt

(
c + O

(
1

c

))
= O

(
1

c

)
,

and, from 

. 
dxα

dτ
= dxα

dt

dt

dτ
= ẋα

(
1 + O

(
1

c2

))
= ẋα + O

(
1

c2

)
,

it results in 

.
d2xα

dτ 2
= d

dt

(
ẋα + O

(
1

c2

))
= ẍα + O

(
1

c2

)
.

[
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Theorem 10.11.7 In a weak gravitational field, the four geodesic equations for 
“slow” particles reduce to the three classical equations of motion, that is, 

. 
d2xi

dτ 2
= −Ti

jk

dx j

dτ

dxk

dτ
, i, j, k ∈ {0, 1, 2, 3} −→ d2xα

dt2
= − ∂Φ

∂xα
, α ∈ {1, 2, 3}.

Proof We already proved that, if a particle is moving “slow,” then.
d2x0

dτ 2
= O

(
1

c

)
, 

so the left-hand side part is a .O

(
1

c

)
quantity. 

We consider 

. 
d2x0

dτ 2
= −T0

jk

dx j

dτ

dxk

dτ
= −T0

00

(
dx0

dτ

)2
− 2T0

0α
dx0

dτ

dxα

dτ
− T0

αβ

dxα

dτ

dxβ

dτ

and we observe 

. T0
00

(
dx0

dτ

)2
= O

(
1

c3

)(
c + O

(
1

c

))2
= O

(
1

c

)
,

. T0
0α
dx0

dτ

dxα

dτ
= O

(
1

c2

)(
c + O

(
1

c

))(
ẋα + O

(
1

c2

))
= O

(
1

c

)

. T0
αβ

dxα

dτ

dxβ

dτ
= O

(
1

c2

)(
ẋα + O

(
1

c2

))(
ẋβ + O

(
1

c2

))
= O

(
1

c2

)
.

The right-hand side part of the equation of geodesic is.O

(
1

c

)
, therefore, for a “slow” 

particle, the first geodesic equation is an equality between “very small” quantities. 
As a consequence, we can neglect it. 

We already proved that the left-hand side part of the geodesic equations is 

. 
d2xα

dτ 2
= ẍα + O

(
1

c2

)
.

Now, for the right-hand side part, we proceed as above. 

. 
d2xα

dτ 2
= −Tα

jk

dx j

dτ

dxk

dτ
= −Tα

00

(
dx0

dτ

)2
− 2Tα

0β
dx0

dτ

dxβ

dτ
− Tα

βγ

dxβ

dτ

dxγ

dτ

and we observe 

.Tα
00

(
dx0

dτ

)2
=
(

1

2c2
∂g(2)

00

∂xα
+ O

(
1

c3

)) (
c2 + O (1)

)2 = 1

2

∂g(2)
00

∂xα
+ O

(
1

c

)
,
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. Tα
0β
dx0

dτ

dxβ

dτ
= O

(
1

c3

)(
c + O

(
1

c

))(
ẋα + O

(
1

c2

))
= O

(
1

c2

)
,

. Tα
βγ

dxβ

dτ

dxγ

dτ
= O

(
1

c2

)(
ẋβ + O

(
1

c2

))(
ẋγ + O

(
1

c2

))
= O

(
1

c2

)
,

that is the right-hand side of the geodesic equations is 

. − 1

2

∂g(2)
00

∂xα
+ O

(
1

c

)
,α ∈ {1, 2, 3}.

Neglecting the “small” quantities, the geodesic equations 

. 
d2xi

dτ 2
= −Ti

jk

dx j

dτ

dxk

dτ
, i, j, k ∈ {0, 1, 2, 3}

reduce to 

.
d2xα

dt2
= − ∂Φ

∂xα
, α ∈ {1, 2, 3}, Φ = 1

2

∂g(2)
00

∂xα
.

[

Theorem 10.11.8 The relativistic equations of the weak gravitational field reduce 
to the classical Poisson field equation: 

. Ri j − 1

2
gi j R = 8πG

c4
Ti j −→ ∇2Φ = 4πGρ.

Proof We consider the relativistic equation written with respect to the Laue scalar 

. Ri j = 8πG

c4

(
Ti j − 1

2
gi j T

)
.

Suppose the matter–energy tensor written in the previous form consisting of a swarm 
of identical non-interacting particles having density. ρ. The only non-zero component 
is .T00 = ρc2. The right member is 

. 
8πG

c4

(
Ti j − 1

2
gi j T

)
= 8πG

c4

|
ρc2 − 1

2

(
1 + O

(
1

c2

))
ρc2
|

= 8πG

c4

|
ρc2

2
+ O(1)

|
=

= 1

c2
· 4πGρ + O

(
1

c4

)
.

Now, let us look at the left member.
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. R00 = Rs
0s0 = R0

000 + Rα
0α0 = Rα

0α0 = ∂Tα
00

∂xα
− ∂Tα

0α

∂x0
+ Tm

00T
α
mα − Tm

0αTα
m0.

The two products of Christoffel symbols are at least .O

(
1

c4

)
. 

Then, since .Tα
0α = O

(
1

c3

)
, it results  . 

∂Tα
0α

∂x0
= ∂Tα

0α

∂t

∂t

∂x0
= O

(
1

c3

)
1

c
=

O

(
1

c4

)
.

If we consider the derivative with respect to.xα of the equality. Tα
00 = 1

2c2
∂g(2)

00

∂xα
+

O

(
1

c3

)
, it is 

. 
∂Tα

00

∂xα
= 1

2c2
∂2g(2)

00

(∂xα)2
+ O

(
1

c3

)
, α ∈ {1, 2, 3},

that is, 

. R00 = 1

2c2

3E
α=1

∂2g(2)
00

(∂xα)2
+ O

(
1

c3

)
.

Since .Φ = 1

2
g(2)
00 , we finally obtain the right member as 

. R00 = 1

c2
V2Φ + O

(
1

c3

)
.

Neglecting the small quantities, the relativistic weak field equations reduce to the 
classical Poisson field equation 

.V2Φ = 4πGρ.

[

Corollary 10.11.9 The relativistic equations of the weak gravitational field in vac-
uum reduce to the classical Laplace field equation in vacuum: 

.Ri j = 0 −→ ∇2Φ = 0.
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10.12 The Einstein Static Universe and the Cosmological 
Constant 

On 8 February 1917, the Prussian Academy of Science in Berlin published a paper by 
Albert Einstein where the first application of his theory, published on 25 November 
1915, was presented [ 92]. The paper discussed a dynamical system describing a 
static space-time representing the Universe. It can be considered the birth of modern 
Cosmology. The model proved wrong after the discovery or recession of galaxies by 
Hubble, however it is important because several concepts presented in it were used 
in the further developments of this science. Let us give now a quick presentation 
of it. 

Consider before some mathematical preliminaries. Let . U := (0, 2π) ×(
− π

2
,
π

2

)
×
(

− π

2
,
π

2

)
, .(α,β, θ) ∈ U and the map . f : U → R

4, 

. f (α,β, θ) :=

⎧⎪⎪⎨
⎪⎪⎩

u1 = r cosα cosβ cos θ
u2 = r sinα cosβ cos θ
u3 = r sin β cos θ
u4 = r sin θ

It is easy to see that .u21 + u22 + u23 + u24 = r2. 
The image of . f in .R4, . f (U ), is the  .3-sphere centred at the origin having 

radius . r . 
In classical notation, it is .S3(O, r). 
The coefficients of the metric are computed with the Euclidean inner product of 

the partial derivatives of . f . The only non-zero coefficients of the metric are 

. gαα = r2 cos2 β cos2 θ, gββ = r2 cos2 θ, gθθ = r2,

therefore the metric induced by the Euclidean.4-space in the tangent.3-planes of this 
surface is 

. ds2 = gαα(dxα)2 + gββ(dxβ)2 + gθθ(dx
θ)2.

The volume of .S3(O, r) is 

. Vol[S3(O, r)] =
{ 2π

0

{ π/2

−π/2

{ π/2

−π/2

/
det (gi j )dαdβdθ =

. = r3
{ 2π

0

{ π/2

−π/2

{ π/2

−π/2
cosβ cos2 θdαdβdθ = 2π2r3.

Einstein’s static universe is .E := R × S3(O, r) and it does not evolve. If we accept 
the Einstein point of view, the Universe is static. Let us study the mathematical 
formalism to find its properties.
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Let us choose the homogeneous coordinates .(x0, x1, x2, x3) := (ct,α,β, θ). 
Now, we use the Minkowski product of partial derivatives to determine the met-
ric of . E. It results in a simple form for the metric of Einstein’s static universe 

. ds2 = (dx0)2 − r2 cos2 x1 cos2 x3(dx1)2 − r2 cos2 x3(dx2)2 − r2(dx3)2.

The only non-zero Christoffel symbols are 

. T1
12 = T1

21 = − tan x2; T1
13 = T1

31 = T2
23 = T2

32 = − tan x3;

. T2
11 = sin x2 cos x2; T3

11 = cos2 x2 sin x3 cos x3; T3
22 = sin x3 cos x3.

Using 

. R jl = Rh
jhl = ∂Th

jl

∂xh
− ∂Th

jh

∂xl
+ Ts

jlT
h
sh − Ts

jhT
h
sl

it results in 

. R00 = ∂Th
00

∂xh
− ∂Th

0h

∂x0
+ Ts

00T
h
sh − Ts

0hT
h
s0 = 0.

In the same way, we compute .Rii = − 2

r2
gi i , i ∈ {1, 2, 3}. 

If we consider the Einstein field equations with the cosmological constant 
included, it is 

. Ri j − 1

2
Rgi j + Vgi j = 8πG

c4
Ti j,

in the equivalent form 

. Ri j − Vgi j = 8πG

c4

(
Ti j − 1

2
T gi j

)
.

If .i = j = 0, the Einstein field equations reduced to: 

. R00 − Vg00 = 8πG

c4

(
T00 − 1

2
T g00

)
.

If . i = j /= 0,

. Rii − Vgi i = 8πG

c4

(
Tii − 1

2
T gi i

)
.

Einstein assumed that the matter–energy appears only in the form of a swarm of non-
interacting particles of uniform density. ρ. Only.T 00 = ρc2, all the other components 
are . 0. The first equation becomes
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. V = −4πG

c2
ρ.

The other three equations lead to a single equation, 

. − 2

r2
− V · (−1) = 8πG

c4

(
0 − 1

2
ρc2 · (−1)

)
,

i.e. 

. − 1

r2
= V

Combining the two equations, it results in 

. r = c

2
√

πGρ
.

The total amount of matter, denoted as .ME, in Einstein’s universe is finite. It is 
computed as the product between the spatial density . ρ and the volume of .S3(O, r), 
that is, 

. ME = ρ · 2π2r3 = ρ · 2π2 · r · r2 = ❆ρ2π ❈2 1√−V

c2

4❩πG❆ρ
= πc2

2G
√−V

.

Of course, the radius of this universe is the constant computed before, that is, 

. r = c

2
√

πGρ
.

Einstein did not consider any more this model after Hubble discovered the evidence 
of cosmological expansion, however the concept of cosmological constant, used here, 
was considered later in view of the issues of cosmological inflation and dark energy 
discussed above. 

10.13 Cosmic Strings 

Cosmic strings are one-dimensional hypothetical structures emerged as topological 
defects of space-time in some phase transition after the Big Bang. They should 
have acted like seeds for cosmological large-scale structure formation [158]. A nice 
presentation of this topic is in [142]. Here, we adapted it for a metric with signature 
.(+ − −−).
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In a system of geometric coordinates .(t, r,φ, z), the metric which describes a 
static string around and along the .z-axis is 

. ds2 = dt2 − dr2 − f 2(r)dφ2 − dz2,

where . f (r) has to be determined. The only non-zero Christoffel symbols are 

. T1
22 = f (r) f '(r); T2

12 = T2
21 = f '(r)

f (r)
.

We have 

. 
∂T2

12

∂r
= ∂T2

21

∂r
= f ''(r) f (r) − ( f '(r))2

f 2(r)
; ∂T1

22

∂r
= ( f '(r))2 + f ''(r) f (r).

Then 

. R2
121 =

/
/
/∂T2
11

∂φ
− ∂T1

12

∂r
+❍❍❍T2

s2T
s
11 − T2

s1T
s
12 = − f ''(r) f (r) −❳❳❳❳( f '(r))2

f 2(r)
−

❩
❩

❩❩

( f '(r))2

f 2(r)

= − f ''(r)
f (r)

,

that is 

. R11 = Rs
1s1 = − f ''(r)

f (r)
.

From 

. R1
212 = ∂T1

22

∂r
−

/
/
/∂T1
21

∂φ
+❍❍❍T1

s1T
s
22 − T1

s2T
s
21

= ✘✘✘✘
( f '(r))2 + f ''(r) f (r) −✘✘✘✘✘✘✘

f (r) f '(r)
f '(r)
f (r)

,

we deduce 
. R22 = Rs

2s2 = f ''(r) f (r).

Since 

. R = Ri
i = g11R11 + g22R22 = ❅

❅
❅

f ''(r)
f (r)

+
❳❳❳❳❳❳❳❳❳

( −1

f 2(r)

)
f ''(r) f (r) = 0,

we obtain
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. 

⎧⎪⎨
⎪⎩

R11 +
✚

✚
✚✚1

2
R g11 = − f ''(r)

f (r)

R22 +
✚

✚
✚✚1

2
R g22 = f ''(r) f (r).

Einstein’s field equations in geometric coordinates are 

. Ri j − 1

2
Rgi j = 8πGTi j .

Now using the previous result, that is, .R1
1 = −R2

2 = f ''(r)
f (r)

, to choose the tensor 

.T i
j : .T

i
j = 0 except .T 1

1 = −T 2
2 = σ(r), where . σ is a given positive smooth function 

expressing the unit energy density of the string. It remains to find . f which satisfies 
the equation 

. f ''(r) = −8πGσ(r) f (r).

In order to avoid singularities, the metric has to reduce to the flat Minkowski 
metric at the origin. This means that . f (r) approaches . r for small . r . Therefore, two 
conditions for . f have to be given: . f (0) = 0 and . f '(0) = 1. 

Denote by .rs the value of . r such that .σ(r) = 0 if .r ≥ rs . The physical area of a 
ring of radius . r and width .dr in the given metric is 

. 

{ 2π

0

{ dr

0

/− det gi j dφdz = 2π f (r)dr.

It implies that the string energy per unit of length is 

. E =
{ rs

0
σ(r)2π f (r)dr,

therefore, integrating the equation .R11 = −8πGσ(r), we obtain 

. f '(rs) − f '(0) =
{ rs

0
f ''(r)dr = −4G

{ rs

0
σ(r)2π f (r)dr = −4GE .

If .r > rs , it is  
. f '(r) = 1 − 4GE .

Integrating again, it results in 

. f (r) = (1 − 4GE)r + K ,

where .K is a constant that should be . 0 because . f (0) = 0.
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The metric obtained outside the string is 

. ds2 = dt2 − dr2 − (1 − 4GE)2r2dφ2 − dz2,

which is a flat metric. In this way, we have the simplest expression of a metric 
describing an infinite, straight, and independent of time string lying along the.z-axis 
of our chosen coordinate system. 

10.14 Planar Gravitational Waves 

Also the issue of gravitational waves can be dealt under the standard of our geometric 
approach. Here, we shall give just a short summary of this important topic. For a 
detailed discussion on the history, the theoretical foundation, and the discovery, we 
refer the reader to specialized texts and papers [ 1, 135, 178]. 

In order to deal with gravitational waves, we have to obtain metrics in a geometric 
coordinate system as 

. ds2 = (αi j + ehi j )dx
idx j ,

such that both Einstein’s field equations and .[hi j = 0 are satisfied. 
Here, 

. [ := (∂0)2 − (∂1)2 − (∂2)2 − (∂3)2,

where 

. (∂k)2 := ∂2

(∂xk)2
.

If.μi j are the coefficients of the classical Minkowski metric, the previous d’Alembert 
operator definition can be written in a simpler form as 

. [ := μi j∂
i∂ j .

In any case it is difficult to find such kind of metrics because we have to develop the 
whole theory of tensor perturbations in General Relativity [135]. Instead of trying 
to find out general gravitational wave solutions, let us focus on planar gravitational 
waves which are easier to obtain. See [171] for details. We follow this last reference 
to offer a first glance on this subject. Consider the metric 

. ds2 = (1 + cos(t − x)[2 + cos(t − x)])dt2 − (1 − cos2(t − x))dx2 − dy2 − dz2 −

. − 2 cos(t − x)(1 + cos(t − x))dtdx .
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The previous metric can be seen as a slightly perturbation of the Minkowski metric 
.μi j because 

. gi j = μi j + hi j .

A metric which such coefficients is called a linearized metric. If it satisfies both 
Einstein’s vacuum field equations and the conditions .[ hi j = 0, such a linearized 
metric describes gravitational planar waves. 

Theorem 10.14.1 The previous metric having the following non-zero coefficients 

. g00 = 1 + cos(t − x)(2 + cos(t − x)); g11 = 1 − cos2(t − x); g22 = g33 = −1;

. g01 = g10 = − cos(t − x)(1 + cos(t − x));

describes gravitational planar waves. 

Proof We have the non-zero perturbations 

. h00 = cos(t − x) (2 + cos(t − x)); h11 = − cos2(t − x);

. h01 = h10 = − cos(t − x)(1 + cos(t − x)).

It is easy to see that 

. [ cos(t − x) = (∂0)2 cos(t − x) − (∂1)2 cos(t − x) = 0

and 
. [ cos(t − x) = (∂0)2 cos2(t − x) − (∂1)2 cos2(t − x) = 0,

therefore the conditions 
. [ hi j = 0

are fulfilled. 
Now it seems we have a lot of difficult computations to do in order to prove 

.Ri j = 0. 
It is easy to provide a coordinate transformation for which the Ricci tensor can 

be computed. Let us consider the Minkowski metric 

. ds2 = dt̄2 − dx̄2 − d ȳ2 − dz̄2

and the transformation
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. t̄ = t + sin(t − x), x̄ = x, ȳ = y, z̄ = z.

Since 

. dt̄ = (1 + cos(t − x))dt − cos(t − x)dx, dx̄ = dx, d ȳ = dy, dz̄ = dz,

the Minkowski metric turns into our metric 

. ds2 = (1 + cos(t − x)[2 + cos(t − x)])dt2 − (1 − cos2(t − x))dx2 − dy2 − dz2 −

. − 2 cos(t − x)(1 + cos(t − x))dtdx .

Therefore .R̄i j = 0 transforms into the desired .Ri j = 0. [
Gravitational waves were among the early predictions of Einstein’s General Rel-

ativity. Their discovery a century later can be considered one of the greatest achieve-
ments of modern Science. 

10.15 The Gödel Universe 

Another interesting metric is the one describing the so-called Gödel Universe [108] 
published 7 in 1949. 

First, let us show that the metric 

. ds2 = (dx0)2 − (dx1)2 + e2x
1

2
(dx2)2 − (dx3)2 + 2ex

1
dx0dx2

written in geometric coordinates satisfies Einstein’s field equations in the case when 

the cosmological constant is.V = 1

2
and the stress-energy tensor describes dust with 

constant density .ρ = 1

8πG
. This is called Gödel’s first metric . The coefficients 

involved in computations are 

. 
(
gi j
) =

⎛
⎜⎜⎜⎜⎝

1 0 ex
1

0
0 −1 0 0

ex
1

0
e2x

1

2
0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ ,
(
gi j
) =
⎛
⎜⎜⎝

−1 0 2e−x1 0
0 −1 0 0

2e−x1 0 −2e−2x1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Since only the derivative with respect to.x1 of the metric coefficients can be non-zero, 
the first-type Christoffel symbols are

7 The story of this solution is very nice. Kurt Gödel gave it to Albert Einstein as a gift for his 70th 
birthday when they both lived in Princeton. 
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. T12,2 = T21,2 = 1

2
e2x

1
, T01,2 = T10,2 = 1

2
ex

1;

. T02,1 = T20,1 = −1

2
ex

1; T22,1 = −1

2
e2x

1;

. T12,0 = T21,0 = 1

2
ex

1
.

The non-zero second-type Christoffel symbols are 

. T0
10 = T0

01 = 1, T0
12 = T0

21 = 1

2
ex

1;

. T1
02 = T1

20 = 1

2
ex

1; T1
22 = 1

2
e2x

1;

. T2
01 = T2

10 = −e−x1 .

Then 

. R00 = Ri
0i0 =

/
//∂Ti
00

∂xi
−❅

❅❅

∂Ti
0i

∂x0
+✟✟✟

Ti
siT

s
00 − Ti

s0T
s
0i = −Ti

10T
1
0i − Ti

20T
2
0i

= −T2
10T

1
02 − T1

20T
2
01 = 1

. R22 = Ri
2i2 = ∂Ti

22

∂xi
−❅

❅❅

∂Ti
2i

∂x2
+ Ti

siT
s
22 − Ti

s2T
s
2i

= ∂T1
22

∂x1
+ Ti

1iT
1
22 − T1

02T
0
21 − T0

12T
1
20 = e2x

1

. R02 = R20 = Ri
2i0 = ∂Ti

20

∂xi
−❅

❅❅

∂Ti
2i

∂x0
+ Ti

siT
s
20 − Ti

s0T
s
2i = ∂T1

20

∂x1
+ Ti

1iT
1
20 = ex

1

The others .Ri j are null. Now, 

. R0
0 = g0s Rs0 = g00R00 + g02R20 = 1,

. R2
2 = g2s Rs2 = g20R02 + g22R22 = 0,

i.e. the trace is 
. R = 1.

Consider the contravariant vector.ui := (1, 0, 0, 0) = (u0, u1, u2, u3). The corre-
sponding covariant vector is .ui := gisus = (1, 0, ex

1
, 0) = (u0, u1, u2, u3).
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Let us observe . R00 = 1 = u0u0; R22 = e2x
1 = u2u2; R02 = R20 = ex

1 = u0u2,

that is, in our case, for .V = 1

2
and .Ti j = ρuiu j = 1

8πG
uiu j we have 

. Ri j −❩
❩

❩❩

1

2
R gi j +✟✟✟Vgi j = uiu j = 8πGTi j .

Therefore Gödel’s metric is a solution for Einstein’s field equations when the 

cosmological constant is .V = 1

2
and .Ti j = 1

8πG
uiu j . 

Consider Gödel’s change of coordinates . (t, r,φ, y) → (x0, x1, x2, x3)

. 

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 = 2t − φ
√
2 + 2

√
2 arctan

(
tan

(
φ

2

)
e−2r

)
,φ /= π; x0 = 2t i f φ = π

x1 = ln [cosh(2r) + cosφ sinh(2r)]

x2 =
√
2 sin φ sinh(2r)

cosh(2r) + cosφ sinh(2r)
x3 = 2y.

It can be written in the form 

. 

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tan

(
φ

2
+ x0 − 2t

2
√
2

)
= tan

(
φ

2

)
e−2r

ex
1 = cosh(2r) + cosφ sinh(2r)

x2ex
1 = √

2 sin φ sinh(2r)
x3 = 2y.

Let us look at the coordinates.x1 and.x2 when.r ≥ 0; 0 ≤ φ ≤ π. It can be seen a. 2π
periodicity of .x1 and.x2 when. r is fixed. These coordinates can be called cylindrical 
coordinates for the manifold . M . Computing Gödel’s metric in the new coordinates, 
we find another form of the previous solution of the Einstein field equations, that is, 

. ds2 = 4
T
dt2 − dr2 − dy2 + (sinh4 r − sinh2 r)dφ2 + 2

√
2 sinh2 rdφdt

|
,

called second Gödel’s second metric. 
We do not present the computations because they are heavy to be reported. We 

leave the calculations as an exercise for the reader. We can prove: 

Theorem 10.15.1 Denote by .M := R
4 the set having the coordinates 

.(x0, x1, x2, x3). Then 

1. For any two events . A and .B there is a transformation on .M carrying . A into . B, 
that is, there are not privileged points. From the physical point of view, it means 
that .M is homogeneous.
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2. .M has rotational symmetry, i.e. there exists a transformation of coordinates 
depending on one parameter only such that . A is carried into . A. 

Proof 1. Consider the transformation 

. 

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0 + a
x̄1 = x1

x̄2 = x2

x̄3 = x3

Let us check that this is an isometry of. M . We observe.dx̄k = dxk and. ds̄2 = ds2.
Then, consider two points .A0(x0(λ0), x1(λ0), x2(λ0), x3(λ0)) and . A1(x0(λ1),

x1(λ1), x2(λ1), x3(λ1)) joined by the curve . c(λ) = (x0(λ), x1(λ), x2(λ),

x3(λ)), λ ∈ [λ0,λ1] and their images . Ā0(x̄0(λ0), x̄1(λ0), x̄2(λ0), x̄3(λ0)), 
. Ā1(x̄0(λ1), x̄1(λ1), x̄2(λ1), x̄3(λ1)) joined by the curve . c̄(λ) =
(x̄0(λ), x̄1(λ), x̄2(λ), x̄3(λ)), λ ∈ [λ0,λ1]. It results in 

. lc(A0, A1) =
{ λ1

λ0

||ċ(λ)||dλ,

where the norm is expressed with respect to .ds2. The  same,  

. lc̄( Ā0, Ā1) =
{ λ1

λ0

|| ˙̄c(λ)||1dλ,

where this second norm is expressed with respect.ds̄2. Since. ||ċ(λ)|| = || ˙̄c(λ)||1
it results in .lc(A0, A1) = lc̄( Ā0, Ā1), that is we deal with an isometry of . M . 
Three other isometries can be highlighted: 

. 

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1 + b
x̄2 = e−bx2

x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1

x̄2 = x2 + c
x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1

x̄2 = x2

x̄3 = x3 + d

.

Combining all four previous transformations, any point of .M can be mapped 
into any point of .M without changing metric properties of . M , i.e. any point can 
be seen as an origin. Therefore .M is homogeneous. 

2. The previous discussion allows us to consider any point .A as the origin of . M . 
Therefore in the new coordinates .(t, r,φ, y), .rA = 0. Consider the group of 
transformations with respect to the parameter .K ∈ R, 

.(t, r,φ, y) → (t, r,φ + K , y).
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The point . A is a fixed point of this group, and according to the previous obser-
vation, there exists a .2π periodicity experienced by any other point. Therefore 
.M allows rotations with respect any given point of it. [

A space-time is time orientable, if the time-like and null vectors can be classified 
into two classes, the future-pointing and the past-pointing vectors as we did it in the 
case of the .2-Minkowski space (that is, with respect to a given vector). 

Let us remember: in the case of the Minkowski metric.ds2 = dt2 − dx2, provided 
by the Minkowski product.< p, q >M= tptq − xpxq , the vector.e1 = (1, 0) is a time-
like vector because .< e1, e1 >M> 0 and the time-like vector .v = (3, 2) becomes a 
future-pointing time-like vector because .< v, e1 >M> 0. The vector .−v becomes a 
past-pointing time-like vector. The vector.w = (1, 1) is a null future-pointing vector, 
etc. 

A curve. ψ is called time-like if the tangent vectors. ψ̇ are time-like future-pointing 
vectors. 

If we choose two events .E0(λ0) and .E1(λ1) connected by a time-like curve, we 
say that.E0 is in the past of.E1 (or, equivalently,.E1 is in the future of.E0) if.λ0 < λ1. 

In the case of Gödel’s second metric, the vector.ui = (1, 0, 0, 0) has the property 
.gi j ui u j = 4 > 0, that is, .ui is a time-like vector. If .v j is a time-like vector, that 
is, .gi jviv j > 0, we say that .v j is future pointing if .gi j uiv j > 0. If  .gi j uiv j < 0 the 
vector .v j is called past pointing. The same, if .wk is a null vector, we can define past 
pointing and future-pointing null vectors according to the sign of.gi j uiwk . Therefore 
.M becomes time orientable. 

Theorem 10.15.2 The time orientable Gödel’s universe allows 

1. closed time-like curves; 

2. time-like loops, i.e. any two events connected by a time-like curve can be con-
nected by a closed time-like curve. 

Proof 1. Consider the curve .α(s) := (0, R, bs, 0), b ∈ N. 
Its velocity vector is .α̇(s) = v j = (0, 0, b, 0). The norm of this vector depends 
on 

. gi jv
iv j = (sinh4 R − sinh2 R)b2.

If we choose, from the beginning .R > ln(1 + √
2), i.e. .sinh R > 1, this vector 

is a time-like one. The chosen curve is a time-like curve according to the second 
statement of the previous theorem and.α(0) = α(2π). We have obtained a closed 
time-like curve in . M . 

2. First, if we look only at the coordinates .(r,φ, t), we observe that they deter-
mine completely the coordinates.(x1, x2, x3). More precisely, for particular given 
.(r,φ, t), we have particular corresponding.(x1, x2, x3). It remains the coordinate 
.x0 which depends on. t ; therefore the.t−lines of matter, in cylindrical coordinates, 
are .x0−lines of matter.
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Consider the point .Bt1 with the coordinates .(t1, R, 0, 0). The curve 

. γ(s) =
(
t2 + t1 − t2

2πn
s, R, bs, 0

)

is time-like because the vector 

. γ̇(s) = vi =
(
t1 − t2
2πn

, 0, b, 0

)

is time-like. Indeed, for a chosen . n, big enough, and .R > ln(1 + √
2), we have  

. gi jv
iv j = 4

|
(t1 − t2)

2

4π2n2
+ (sinh4 R − sinh2 R)b2 − sinh2 R ·

(
t1 − t2
2πn

)
b

|
> 0.

We observe that .γ(0) = Bt2 and .γ(2nπ) = Bt1 . 
Using the same idea, we can derive time-like curves between .Bt2 and .Bt3 and 
between .Bt3 and .Bt1 . The concatenation of the three time-like curves is a time-
like loop starting from.Bt1 , passing through.Bt2 , then to .Bt3 , to finally reach .Bt1 . 
We can conclude that. t is not a proper time coordinate, because if it is so, moving 
forward in time we return in our past. Therefore no global time coordinate exists 
in Gödel’s universe. [

More about this very nice and difficult subject can be found in [108, 113, 176]. 
An exhaustive discussion on closed time-like curves and their physical implications 
can be found in [103]. Here we developed this Universe model because it can be 
easily framed in our geometric picture. 

10.16 Is it Possible a Space-Time without Matter and Time? 

Let us start from the metric [ 32] 

. ds2 = (dx0)2 + (dx1)2 + (dx2)2 − (dx3)2.

This is a Minkowski .(3, 1) signature metric. Let us denote by .M the set involving 
the coordinates .(x0, x1, x2, x3). We are dealing with a metric derived from 

. Ri j = 0.

So, we have a space-time without matter.
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Let us consider a simple change of coordinates . (t, r,φ, y) → (x0, x1, x2, x3) :

. 

⎧⎪⎪⎨
⎪⎪⎩

x0 = t + y, t, y ∈ R,

x1 = r sin φ, r > 0, φ ∈ R,

x2 = r cosφ,

x3 = 2y + 2r.

The new metric obtained after considering 

. 

⎧⎪⎪⎨
⎪⎪⎩

dx0 = dt + dy
dx1 = sin φ dr + r cosφ dφ
dx2 = cosφ dr − r sin φ dφ
dx3 = 2dy + 2dr

is 
. ds̄2 = dt2 − 3dr2 + r2dφ2 − 3dy2 + 2dtdy − 8drdy.

Denote by .M̄ the new space having the coordinates .(t, r,φ, y). If we look at the 
coordinates.x1 and.x2 when.r > 0, φ ∈ R, it can be seen a.2π periodicity of.x1 and. x2

for. r is fixed. These are the cylindrical coordinates for the initial set.M(x0, x1, x2, x3). 
The points .(t, r,φ, y) and .(t, r,φ + 2kπ, y), k ∈ Z in .M̄ describe the same point 
.(x0, x1, x2, x3) in . M . We can prove, for the initial set of coordinates denoted by . M , 
the following 

Theorem 10.16.1 (i) For any two events .A and .B in .M there exists a transfor-
mation of .M carrying .A into . B, that is there is no privileged point. From the 
physical point of view, it means that .M is homogeneous. 

(ii) .M has rotational symmetry, i.e. there exists a transformation of coordinates 
depending on one parameter only such that . A is carried into . A. 

Proof (i) The transformations of coordinates below 

. 

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0 + a
x̄1 = x1

x̄2 = x2

x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1 + b
x̄2 = x2

x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1

x̄2 = x2 + c
x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1

x̄2 = x2

x̄3 = x3 + d

.

are obviously isometries of .M because they preserve the metric, i.e. .ds2 = ds̄2. 
Combining the four previous transformations, any point of .M can be mapped 
into any point of .M without changing metric properties of . M , i.e. any point can 
be seen as an origin. There is no privileged point. Therefore.M is homogeneous. 

(ii) Consider the group of transformations with respect to the parameter .b ∈ R, 

.(t, r,φ, y) → (t, r,φ + b, y)
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and apply it to any point of. M . The.2π periodicity shows that.M allows rotations 
with respect to any given point of it. [

As we know, a space-time is time orientable if the time-like vectors can be clas-
sified into two classes, the future- and the past-pointing vectors. If the definition 
of time-like vectors in this case is something classic, only a well-chosen time-like 
vector . e allows the classification in the two classes. 

In the case of our second metric with coefficients denoted here by .ḡi j , the vector 
.e = (e0, e1, e2, e3) = (1, 0, 1, 0) has the property .ḡi j (t, r,φ, y)ei e j = 1 + r2 > 0, 
that is, . e is a time-like vector. If .v = (v0, v1, v2, v3) is a time-like vector, i.e. 
.ḡi j (t, r,φ, y)viv j > 0 we say that . v is future pointing if .ḡi j (t, r,φ, y)eiv j > 0. If  
.ḡi j (t, r,φ, y)eiv j < 0, the vector . v is called past pointing. Let us observe that if 
. v is time-like and future pointing then .−v is still time-like but past pointing. It is 
easy to see that .−e is past pointing because .ḡi j (t, r,φ, y)ei (−e j ) = −1 − r2 < 0. 
Therefore .M̄ becomes time orientable. 

Theorem 10.16.2 The time orientable set .M̄ allows time-like loops. 

Proof Consider the curve .α(s) := (0, R, 2ns, 0). 
Its velocity vector is .α̇(s) = (v0, v1, v2, v3) = (0, 0, 2n, 0). We have at each point 
of this curve that 

. ds̄2(α̇(s), α̇(s)) = ḡi j (0, R, 2ns, 0)viv j = 4n2R2 > 0,

i.e. this vector is a time-like one. More, 

. ds̄2(α̇(s), e) = ḡi j (0, R, 2ns, 0)vi e j = 2nR2 > 0,

that is, the vector.α̇(s) is future pointing. At the same time,.α(0) and.α(2π) have the 
same image in . M , therefore the image of the curve . α in .M is starting from a point 
of .M to return at the same point. We have obtained a loop in . M . 

We have to observe that if we choose any point .B of this loop, the first arch 
.AB ⊂ M is time oriented by the corresponding arch of . α in . M̄ , therefore the event 
. B is in the future of the event. A, while the arch.BA ⊂ M , using the same reasoning, 
makes the event . A to be in the future of . B. We can say, in simple words, that going 
towards the future, we return to the past. [

Theorem 10.16.3 (i) Any two points induced in .M by the coordinates . (t1, R, 0, 0)

and .(t2, R, 0, 0) of .M̄ (such that .R2 >
1

2π
|t2 − t1|) can be joined by a time-like 

curve such that the second point is in the future of the initial first point. 

(ii) .M allows time-like closed curves. 

Proof (i) First, if we look only at the coordinates .(r,φ, y), we observe that they 
determine completely the coordinates .(x1, x2, x3). It remains the coordinate . x0

which depends on. t , therefore the.t−lines of matter in cylindrical coordinates are
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in fact.x0− lines of matter. This observation allows to consider the.x0 coordinate 
as a time coordinate in the first metric. Specifically, the initial metric has signature 
.(+,+,+,−)with the time type coordinate followed by.(+,+,−). It is definitely 
different by the Lorentz-type metric having signature.(+,−,−,−)whose spatial 
part has three components with the same sign minus. 
Therefore, let us consider the point .Bt1 , Bt2 ∈ M̄ with the coordinates 
.(t1, R, 0, 0), .(t1, R, 0, 0), respectively. We proceed as we did it in the previous 
theorem. The curve 

. γ(s) =
(
t1 + t2 − t1

2π
s, R, s, 0

)
⊂ M̄

is a time-like curve because the vector 

. γ̇(s) = (w0, w1, w2, w3) =
(
t2 − t1
2π

, 0, 1, 0

)

has the property 

. ds̄2(γ̇(s), γ̇(s)) = ḡi jw
iw j =

(
t2 − t1
2π

)2
+ R2 > 0.

Furthermore, 

. ds̄2(γ̇(s), e) = ḡi jw
i e j = t2 − t1

2π
+ R2.

The last expression is positive for the condition of theorem, that is, .γ̇(s) is 
pointing the future. We observe that .γ(0) = Bt1 and .γ(2π) and .Bt2 have the 
same image in . M . Therefore, for the images in . M , i.e. .E1 and .E2, we can say 
that the event .E2 occurs after the event .E1. 

(ii) Using the previous idea we can generate the same time-like curves between . Bt2
and.Bt3 and between.Bt3 and.Bt1 . The concatenation of the three time-like curves 
is the time-like “chain-curve” starting from .Bt1 , passing through .Bt2 , then to 
.Bt3 , to finally reach .Bt1 again. Taking into consideration how events occur in 
relation to the future time-like tangent vectors of the curves, we can conclude 
that neither . t nor .x0 can be proper time coordinates, because if it is so, moving 
forward in time would mean to return in our past. Therefore no global time 
coordinate exists in this model. So we have derived a universe without both time 
and without matter. [

The Case of Planar Gravitational Waves in this Space-time 
The issue of gravitational waves can be dealt in the context of the space-time without 
matter and time. Again, the power of coordinates change together with the convenient 
physical interpretation is the key for the desired result. Let us consider the initial 
metric [ 32]
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. ds2 = (dx0)2 + (dx1)2 + (dx2)2 − (dx3)2 ,

and the transformation of coordinates 

. x0 = t + sin(t − z), x1 = x, x2 = y, x3 = z.

Since 

. dx0 = (1 + cos(t − z))dt − cos(t − z)dz, dx1 = dx, dx2 = dy, dx3 = dz,

the initial metric turns into the metric 

. ds2 = (1 + cos(t − z)[2 + cos(t − z)])dt2 + dx2 + dy2 − (1 − cos2(t − z))dz2

. − 2 cos(t − z)(1 + cos(t − z))dtdz.

We observe that the metric can be arranged in the form 

. ds2 = gi j dx
idx j = (αi j + hi j )dx

idx j ,

where the . α00 = α11 = α22 = 1, α33 = −1,αi j = 0 if i /= j.
The non-zero coefficients are 

. g00 = 1 + cos(t − z)(2 + cos(t − z)); g11 = 1; g22 = 1; g33 = −1 + cos2(t − z);

. g03 = g30 = − cos(t − z)(1 + cos(t − z));

therefore the non-zero “perturbations” which appear are 

. h00 = cos(t − z) (2 + cos(t − z)); h33 = − cos2(t − z);

. h03 = h30 = − cos(t − z)(1 + cos(t − z)).

According to the theory in [171], the metric 

. ds2 = gi j dx
idx j = (αi j + hi j )dx

idx j

describes planar gravitational waves if it satisfies both the Einstein field equations 
(in our case .Ri j = 0) and the wave equation, derived from them, 

. [ hi j = 0

for each perturbation involved in the metric coefficients. We remember that the wave 
equation is written with respect to the d’Alembert operator here in the form induced 
by the metric coefficients,
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. [ := (∂0)2 + (∂1)2 + (∂2)2 − (∂3)2,

where 

. (∂k)2 := ∂2

(∂xk)2
.

It is easy to see that 

. [ cos(t − z) = (∂0)2 cos(t − z) − (∂3)2 cos(t − z) = 0

and 
. [ cos2(t − z) = (∂0)2 cos2(t − z) − (∂3)2 cos2(t − z) = 0,

therefore the conditions 
. [ hi j = 0

are fulfilled. Our space-time without matter and time has a texture describing planar 
gravitational waves. This section shows again the power of the coordinate change 
when we model physical aspects. 

10.17 A Remarkable Universe without Time 

A natural development of the previous considerations is the following. Let us consider 
the metric 

. ds2 = f (x3)(dx0)2 + (dx1)2 + (dx2)2 − (dx3)2

for an appropriate function . f . The above computations show that the only non-zero 
Christoffel symbols are 

. T0
03 = T0

30 = 1

2

f '(x3)
f (x3)

; T3
00 = 1

2
f '(x3),

therefore the only non-zero Ricci tensor components are 

. R00 = 1

2
f "(x3) − 1

4

(
f '(x3)
)2

f (x3)
; R33 = −1

4

(
f '(x3)
)2

f 2(x3)
.

Using the Gödel idea to adopt exponential functions, if we choose . f (x3) = ex
3
, we  

obtain 

.R00 = 1

4
ex

3; R33 = −1

4
,
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that is 

. R = 1

2
.

The Einstein field equations are 

. Ri j − 1

2
R gi j = 8πG Ti j

where 

. Ti j = 1

8πG

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 −1

4
0 0

0 0 −1

4
0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

Therefore the metric 

. ds2 = ex
3
(dx0)2 + (dx1)2 + (dx2)2 − (dx3)2

satisfies Einstein’s field equations on .M = R4. 
The change of coordinates . (t, r,φ, y) → (x0, x1, x2, x3) :

. 

⎧⎪⎪⎨
⎪⎪⎩

x0 = t, t ∈ R,

x1 = r sin φ, r > 0, φ ∈ R,

x2 = r cosφ,

x3 = y, y ∈ R

transforms the initial metric into the metric 

. ds̄2 = eydt2 + dr2 + r2dφ2 − dy2

on the set .M̄ described by the new coordinates. 
In this case, it is important to split the time-like vectors in two classes. 

Denote the second metric coefficients by .ḡi j . The vector . e = (e0, e1, e2, e3) =
(1, 1, 1, 0) has the property.ḡi j ei e j = ey + 1 + r2 > 0, that is. e is a time-like vector. 
If .v = (v0, v1, v2, v3) is a time-like vector, i.e. .ḡi jviv j > 0, we say that . v is future 
pointing for.ḡi j eiv j > 0. If.ḡi j eiv j < 0, the vector. v is past pointing. Let us observe 
that if . v is time-like and future pointing, then .−v is still time-like but past pointing. 
It is easy to see that .−e is past pointing because .ḡi j ei (−e j ) = −ey − 1 − r2 < 0. 
This way .M̄ becomes time orientable. 

All results stated in the three theorems of the previous section remain valid. We 
have also to mention the form of isometries of .M in this case:
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. 

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0 + a
x̄1 = x1

x̄2 = x2

x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1 + b
x̄2 = x2

x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1

x̄2 = x2 + c
x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = e−d/2x0

x̄1 = x1

x̄2 = x2

x̄3 = x3 + d.

.

Therefore we described a universe without a proper global time coordinate. If we 
look at the chain of curves, we understand that the “history” can change for someone 
who travels between two events in the way the observer decides. It is easy to see that 
chain curves do not satisfy the geodesic equations in . M . Therefore a chain curve, or 
only a part of it, is not an imposed geometric trajectory of . M , it is completed by the 
“desire” of a moving point to follow the chosen trajectory. It remains only to think if 
it is acceptable to say that at each point.Bt this universe splits in an infinity of similar 
universes offering the superposition of all possible futures to a given inhabitant of it. 

10.18 Another Exact Solution of Einstein Field Equations 
Induced by the Gödel One 

In this section we present an solution of Einstein field equations generated by a 
particular form of matter–energy tensor. This solution is related to an attempt to find 
another Gödel-type metric [ 32]. 

Let us keep in mind the Gödel first metric description in a more general form 

. ds2 = (dx0)2 − (dx1)2 + f (x1)(dx2)2 − (dx3)2 + 2g(x1)dx0dx2.

The coefficients, after cancelling . x1, involved in computations are 

. 
(
gi j
) =
⎛
⎜⎜⎝
1 0 g 0
0 −1 0 0
g 0 f 0
0 0 0 −1

⎞
⎟⎟⎠ ,
(
gi j
) =

⎛
⎜⎜⎜⎜⎜⎝

f

f − g2
0

−g

f − g2
0

0 −1 0 0
−g

f − g2
0

1

f − g2
0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

.

We find the non-zero Ricci tensor coefficients: 

. R00 = 1

2

(g')2

g2 − f

. R22 = 1

2
f '' − 1

4

gg' f '

g2 − f
+ 1

2

(g')2 f
g2 − f

.R02 = R20 = 1

2
g'' + 1

4

f 'g'

g2 − f
,
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where . f ', f '' and .g', g'' are the first and the second derivatives with respect to . x1
of the functions . f , respectively, . g. 

Of course, if . f (x1) = 1

2
e2x

1
and .g(x1) = ex

1
, we obtain exactly the results 

obtained in the case of Gödel first metric, i.e. 

. R00 = 1

. R22 = e2x
1

. R02 = R20 = ex
1

and then .R = 1. 
The issue is to find some other coefficients such that the Einstein field equations 

are satisfied, in particular using polynomials instead of exponential functions. If we 

choose . f (x1) = 1

2
(x1)2 and .g(x1) = x1, we obtain 

. R00 = 1

(x1)2

. R22 = 1

2

. R02 = R20 = 1

2x1
,

therefore 

. R = Ri
i = R0

0 + R2
2 = g0s Rs0 + g2s Rs2 = g00R00 + g02R20 + g20R02 + g22R22 = 0.

The Einstein field equations 

. Ri j − 1

2
Rgi j + Vgi j = 8πGTi j

are satisfied for.V = 0 and the “artificial matter” created by using the covariant vector 

. u :=
(

1

x1
, 0,

1

2
, 0

)
= (u0, u1, u2, u3)

after the rule 

.Ti j = ρ ai j uiu j , ρ = 1

8πG
,
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where the matrix .(ai j ) can be chosen with the form 

. 
(
ai j
) =
⎛
⎜⎜⎝
1 0 1 0
0 a 0 0
1 0 2 0
0 0 0 b

⎞
⎟⎟⎠ where a and b are real parameters.

Even if this solution cannot highlight another Gödel-type universe, it is important 
because it shows us how we can create an artificial matter in a form such that the 
Einstein field equations are satisfied. 

10.19 The Wormhole Solutions 

In 1973, two interesting papers on traversable wormholes appeared. We are talking 
about results by Ellis [ 93] and Bronnikov [ 39], who independently studied possible 
wormhole solutions of the Einstein field equations. We present here the conclusions 
of these papers to give an idea of wormhole solutions. 

Consider the metric 

. ds2 = c2dt2 − dr2 − (r2 + a2) dθ2 − (r2 + a2) sin2 θ dφ2,

where . a is a real positive parameter. 
Denoting .t := x0, r := x1, θ := x2 and .φ := x3, the form of the metric is 

. ds2 = c2(dx0)2 − (dx1)2 − ((x1)2 + a2)(dx2)2 − ((x1)2 + a2) sin2 x2(dx3)2

and we are ready for necessary computations. Before starting, let us observe that if 
.a = 0 the metric is 

. ds2 = c2dt2 − dr2 − r2 dθ2 − r2 sin2 θ dφ2,

i.e. it is the Minkowski metric 

. ds2 = c2dt2 − dx2 − dy2 − dz2

written in spherical coordinates, 

.

⎧⎨
⎩
x = r sin θ cosφ
y = r sin θ sin φ
z = r cos θ.
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We are interested only by the case.a /= 0. The only non-zero Christoffel symbols are 

. T1
22 = −x1; T1

33 = −x1 sin2 x2; T2
12 = T2

21 = x1

(x1)2 + a2
; T2

33 = − sin x2 cos x2;

. T3
23 = T3

32 = cot x2; T3
13 = T3

31 = x1

(x1)2 + a2
.

It is easy to see that .R00 = 0. Then, for .R11 = Ri
1i1, it is  

. R11 = ∂Ti
11

∂xi
− ∂T1

1i

∂x1
+ Ti

siT
s
11 − Ti

s1T
s
1i = −∂T2

12

∂x1
− ∂T3

13

∂x1
− T2

21T
2
12 − T3

31T
3
13

= −2a2

((x1)2 + a2)2
.

Similar computations lead to 
. R22 = R33 = 0.

Now, let us represent the results in the more suggestive way given by the first coor-
dinates used to write the metric. So, for 

. ds2 = c2dt2 − dr2 − (r2 + a2) dθ2 − (r2 + a2) sin2 θ dφ2

the only non-zero Christoffel symbols are 

. Tr
θθ = −r; Tr

φφ = −r sin2 θ; Tθ
rθ = Tθ

θr = r

r2 + a2
; Tθ

φφ = − sin θ cos θ;

. T
φ
θφ = T

φ
φθ = cot θ; T

φ
rφ = T

φ
φr = r

r2 + a2

and 

. Rtt = Rθθ = Rφφ = 0 and Rrr = −2a2

(r2 + a2)2
.

It results in 

. R = Rrr = −2a2

(r2 + a2)2
.

Therefore, the Einstein field equations 

.Ri j − 1

2
Rgi j = 8πG

c4
Ti j
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lead to 

. Ttt = a2c6

8πG

1

(r2 + a2)2
.

In the same way we obtain 

. Trr = −3a2c4

8πG

1

(r2 + a2)2
,

. Tθθ = −a2c4

8πG

1

r2 + a2
,

. Tφφ = −a2c4

8πG

sin2 θ

r2 + a2
.

Ellis imagined the Einstein field equations written in the form 

. Ri j − 1

2
Rgi j = −2

(
∂y

∂xi
∂y

∂x j
− 1

2

3E
k=0

(
∂y

∂xk

)2
gi j

)
= 8πG

c4
Ti j ,

with respect to a function .y = y(x0, x1, x2, x3). He observed that, in the case of 
his metric, the function has one variable only, i.e. .y = y(r), and has to satisfy the 
equation 

. 
∂y

∂r
= a

r2 + a2
.

Such a function can be 
. y(r) = arctan

r

a
.

The idea to write the stress–energy tensor with respect to a scalar function. y = y(r)
is the key point of this result. 

Before continuing, let us present the revolution surface called catenoid. This 
surface was discovered by Euler and it is arising by rotating a catenary curve (see 
Problem 8.9.4) around an axis. We consider the parameterization 

. 

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = l cosh
x1

l
cos x2

y = l cosh
x1

l
sin x2

z = x1.

The metric induced by the Euclidean .3D metric is 

.ds2 = cosh2
x1

l
(dx1)2 + l2 cosh2

x1

l
(dx2)2.

8.9.4
 1981
43709 a 1981 43709 a
 
http://dx.doi.org/10.1007/978-3-031-54823-9_8
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The mirror metric, corresponding to .t = 0; .θ = π

2
; .a = l and 

. ds2 = c2dt2 − dr2 − (r2 + a2) dθ2 − (r2 + a2) sin2 θ dφ2,

is 
. ds̄2 = dr2 + (r2 + l2)dφ2.

A change of coordinates, 

. 

⎧⎨
⎩ r = l sinh

x1

l
φ = x2

switches the metric .ds̄2 into the catenoid metric 

. ds2 = cosh2
x1

l
(dx1)2 + l2 cosh2

x1

l
(dx2)2.

Now, imagine the catenoid with his throat surrounded by the circle 

. x2 + y2 = l2

obtained in our parameterization for .x1 = 0. The wormhole throat is stable because 

there is no evolution of it in the considered choice .

(
t = 0 and θ = π

2

)
. 

Let us now take into account the geodesics of the metric 

. ds̄2 = dr2 + (r2 + l2)dφ2 .

The geodesic equations are 

. 

⎧⎨
⎩
r̈ − r φ̇2 = 0

φ̈ + 2r

r2 + l2
ṙ φ̇ = 0

The second equation leads to 

. φ̇ = k

r2 + l2
,

where . k is a constant. Let us observe that the derivative of 

.(ṙ)2 + k2

r2 + l2
= 1,
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taking into account the above equation, 

. φ̇ = k

r2 + l2
,

is exactly the first equation 
. r̈ − r φ̇2 = 0.

There are two possible cases. 
In the first case, the condition .ṙ ≡ 0 leads to a constant . k, 

. k2 = r2 + l2 ≥ l2.

at the same time .φ̇ = 1

k
, i.e. 

. φ(s) = 1

k
s + k1 and r(s) =

/
k2 − l2.

Looking at the first equation we see that only .k = l can be considered in order to 
solve it. 

The second case is obtained if . ṙ is not identically null. We combine the two 
equations, written now in the form, 

. 

⎧⎪⎪⎨
⎪⎪⎩

(
dr

ds

)2
+ k2

r2 + l2
= 1

dφ

ds
= k

r2 + l2

into the equation 

. 

(
dφ

dr

)2
= k2

(r2 + l2)(r2 + l2 − k2)
.

If .k2 > l2, the solution is related to the condition .r2 ≥ k2 − l2 > 0, therefore the 
geodesic is included in one of the two parts of the throat. 

If.k2 = l2, we have again.r = 0 separating the parts where a geodesic is included. 
If .k2 < l2, the geodesic can traverse the wormhole. 
It is easy to draw numerically the geodesics corresponding to the described situ-

ations. 
To conclude, we can say that this is just a simple prototype of wormhole solutions. 

Interested reader can consider the so-called Morris–Thorne wormhole [143] where 
traversability and stability conditions can be related to the energy conditions and the 
presence of exotic matter. A detailed discussion of the problem is reported in the book
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by Frolov and Novikov [103]. It is also possible to derive wormhole solutions where 
geometric contributions stabilize and make the structures traversable [ 59]. Also if 
wormholes have not been observed yet, this is a very important research area. See, 
for example [ 84], for a general discussion on the topic in Metric-Affine Theories of 
Gravity.



Chapter 11 
A Geometric Realization of Relativity: 
The de Sitter Space-time 

Rem tene, verba sequentur. 

Cato 

We want to conclude this book considering a gravity theory without masses which can 
be constructed in Minkowski spaces using a geometric Minkowski potential. From 
the point of view of this book, this can be considered a full geometric realization of the 
relativistic approach. The affine space-like spheres can be seen as the regions of the 
Minkowski space-like vectors characterized by a constant Minkowski gravitational 
potential. They highlight, for each dimension .n ≥ 3, a model of space-time, the de 
Sitter one, which satisfies Einstein’s field equations in the absence of matter, and it 
is now intuitive why. This chapter is based on results that can be found in [ 28, 31, 
82, 112, 173]. 

11.1 About the Minkowski Geometric Gravitational Force 

Denote by .Mn the Minkowski .n-dimensional space, .n ≥ 3, endowed by the 
Minkowski product 

. <a, b>M := a0b0 −
n−1E

α=1

aαbα

With respect to given.b = (b0, b1, ..., bn−1), we consider all vectors . x = (x0, x1, ...,
xn−1) such that .x − b is a space-like vector, that is .<x − b, x − b>M < 0. We denote 
by 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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. r :=
||||−(x0 − b0)2 +

n−1E

α=1

(xα − bα)2

the Minkowski “length” of the space-like vector .x − b and by 

. u = −1

r
(x0 − b0, x1 − b1, ..., xn−1 − bn−1)

the unit vector of .b − x . We can define the Minkowski geometric gravitational force 
as 

. Fn
M := 1

n − 1

1

rn−1
u.

If 

. An
M := n − 2

rn−1
u

is by definition the Minkowski geometric gravitational field, we have the following 
“Minkowski-Newton second principle”: 

. Fn
M = 1

(n − 1)(n − 2)
An
M .

Let us define the Minkowski gradient and the Minkowski Laplacian: 

. ∇M :=
(

− ∂

∂x0
,

∂

∂x1
, ...,

∂

∂xn−1

)

. ∇2
M := <∇M ,∇M >M = ∂2

∂x20
− ∂2

∂x21
− ... − ∂2

∂x2n−1

.

For each dimension . n, we can define the Minkowski gravitational potential 

. Φn
M := − 1

rn−2
.

The following computations 

. 
∂Φn

M

∂x0
= (2 − n)

x0 − b0
rn

; ∂Φn
M

∂xα
= (n − 2)

xα − bα

rn
, α ∈ {1, 2, ..., n − 1};

. 
∂2Φn

M

∂x20
= (2 − n)

r2 + n(x0 − b0)
2

rn+2 ; ∂2Φn
M

∂x2α
= (n − 2)

r2 − n(xα − bα)2

rn+2 , α ∈ {1, 2, ..., n − 1}.

lead us to the following two theorems.
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Theorem 11.1.1 The Minkowski gradient of the Minkowski gravitational potential 
is the opposite of the Minkowski gravitational field. 

Proof It is easy to check the equality .∇MΦn
M = −An

M . [

Theorem 11.1.2 The Minkowski Laplacian of the Minkowski gravitational potential 
is null. 

Proof The same, it is easy to check .∇2
MΦn

M = 0. [

The last relation is the equation of the Minkowski geometric gravitational field. 

In the case when . b is the origin of the Minkowski space, the Minkowski uni-
tary space-like sphere can be thought as the set of points of .Mn described by the 
constant gravitational Minkowski potential.Φn

M = −1. In this theory, at each dimen-
sion. n, the Minkowski geometrical gravitational force and the Minkowski geometric 

gravitational field have the physical dimension.
1

(l)n−1
. The Minkowski gravitational 

potential has the physical dimension .
1

(l)n−2
where .(l) is a length. 

We may conclude: for each dimension, in the Minkowski space-like vectors 
region, a natural geometric Minkowski gravity appears in the absence of matter. 
An equivalent of the Newton gravity theory can be constructed starting from the 
Minkowski geometric gravitational potential. The affine space-like spheres can be 
seen as the regions of the Minkowski space-like vectors characterized by a con-
stant Minkowski gravitational potential. They highlight, at each dimension.n ≥ 3, a  
model of space-time, the de Sitter one, which satisfies Einstein’s field equations in 
the absence of matter, and it is now intuitive why. 

11.2 De Sitter Spacetime and Its Cosmological Constant 

In the case .n = 3, we choose to represent the .2-surface as 

. X2
0 − X2

1 − X2
2 = −a2,

in the form. f : R × (−π,π) −→ M
3, 

. f (t, x1) = (a sinh t, a cosh t cos x1, a cosh t sin x1).

Some computations lead to the metric 

.ds22 = a2dt2 − a2 cosh2 t dx21 .
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The non-zero Christoffel symbols are 

. T1
01 = T1

10 = tanh t, T0
11 = cosh t sinh t

and 

. R0
101 = ∂T0

11

∂t
− ∂T0

10

∂x1
+ T0

s0T
s
11 − T0

s1T
s
10 = cosh2 t.

It results .R0101 = g00R0
101 = a2 cosh2 t , that is . KM

f = − 1

a2
.

For this .2-de Sitter space-time, according to the Einstein theorem for surfaces 
.Ri j = KM

f gi j , we have  

. Ri j + 1

a2
gi j = 0.

This last equation can be written also as.Ri j − 1

2
R gi j = 0, that is.V = 0 and.Ti j = 0. 

In the case .n = 4, the  .3-de Sitter space-time is the Minkowski time-like sphere 
of .M4 given by the equation 

. X2
0 − X2

1 − X2
2 − X2

3 = −a2.

The standard parameterization is 

. f (t, x1, x2) = (a sinh t cos x2, a cosh t cos x1 cos x2, a cosh t sin x1 cos x2, a sin x2).

The metric is 

. ds23 = a2 cos2 x2 dt
2 − a2 cosh2 t cos2 x2 dx

2
1 − a2dx22 .

We observe 
. ds23 = cos2 x2( a

2dt2 − a2 cosh2 t dx21 ) − a2dx22 .

therefore 
. ds23 = cos2 x2 ds

2
2 − a2dx22 .

The non-zero Christoffel symbols are 

. T0
02 = T0

20 = − tan x2, T0
11 = cosh t sinh t,

. T1
01 = T1

10 = tanh t, T1
12 = T1

21 = − tan x2,

.T2
00 = − sin x2 cos x2, T2

11 = cosh2 t cos x2 sin x2.
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Now, if we compute 

. Rii = Rs
isi = ∂Ts

ii

∂xs
− ∂Ts

is

∂xi
+ Th

iiT
s
hi − Th

isT
s
hi ,

we find 
. R00 = −2 cos2 x2; R11 = 2 cosh2 t cos2 x2; R22 = 2.

The other Rici symbols are null, . Ri j = 0, i /= j. Therefore 

. Ri j + 2

a2
gi j = 0.

If we compute .R := Ri
i , taking into account .R

i
j = gis Rs j , it results .R = − 6

a2
. 

The left hand of Einstein’s field equations become 

. Ri j − 1

2

(
− 6

a2

)
gi j + Vgi j .

If we choose .V = − 1

a2
, the left hand becomes 

. Ri j + 2

a2
gi j ,

that is the left hand becomes . 0. The de Sitter space-time presented above satisfies 
the Einstein field equations 

. Ri j − 1

2
R gi j + V gi j = 8πG

c4
Tik

for .R = − 6

a2
, V = − 1

a2
and .Ti j = 0. A space-time without matter appears as we 

expected. 
In the case .n = 5, the parameterization is 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X0 = a sinh t cos x2 cos x3
X1 = a cosh t cos x1 cos x2 cos x3
X2 = a cosh t sin x1 cos x2 cos x3
X3 = a sin x2 cos x3
X4 = a sin x3

The metric related to this parameterization is 

.ds24 = a2 cos2 x2 cos
2 x3dt

2 − a2 cosh2 t cos2 x2 cos
2 x3dx

2
1 − a2 cos2 x3dx

2
2 − a2dx23 .
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In the same way, as above, it is 

. ds24 = cos2 x3(a
2 cos2 x2dt

2 − a2 cosh2 t cos2 x2dx
2
1 − a2dx22 ) − a2dx23 ,

therefore 
. ds24 = cos2 x3 ds

2
3 − a2dx23 .

Again, if we compute 

. Rii = Rs
isi = ∂Ts

ii

∂xs
− ∂Ts

is

∂xi
+ Th

iiT
s
hi − Th

isT
s
hi ,

we find 

. R00 = −3 cos2 x2 cos
2 x3, R11 = 3 cosh2 t cos2 x2 cos

2 x3, R22 = 3 cos2 x3, R33 = 3,

that is 

. Ri j + 3

a2
gi j = 0,

which leads to 

. R = −12

a2
, V = − 3

a2
, Ti j = 0,

for Einstein’s field equations. 
In the general case, the .(n − 1)-de Sitter space-time is the Minkowski .(n −

1)-sphere determined by the ends of all the space-like vectors with Minkowski 
length . a. 

This is a hypersurface of the Minkowski .n-dimensional space .Mn having the 
algebraic equation 

. X2
0 − X2

1 − ... − X2
n−1 = −a2.

The related parameterization is 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0 = a sinh t cos x2 cos x3.... cos xn−2

X1 = a cosh t cos x1 cos x2 cos x3.... cos xn−2

X2 = a cosh t sin x1 cos x2 cos x3.... cos xn−2

X3 = a sin x2 cos x3 cos x4.... cos xn−2

X4 = a sin x3 cos x4.... cos xn−2

............................................

Xn−2 = a sin xn−3 cos xn−2

Xn−1 = a sin xn−2.

This parameterization makes sense for .n ≥ 5.
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For .n ≥ 6, we can denote .X0,n := X0; X1,n := X1; Xn−1,n := Xn−1 and we can 
write 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X0,n = X0,n−1 cos xn−2

X1,n = X1,n−1 cos xn−2

.............................

Xn−2,n = Xn−2,n−1 cos xn−2

Xn−1,n = a sin xn−2

with 
. X2

0,n−1 − X2
1,n−1 − ... − X2

n−2,n−1 = −a2.

A direct consequence is 

. X0,n−1dX0,n−1 − X1,n−1dX1,n−1 − ... − Xn−2,n−1dXn−2,n−1 = 0.

Using 

. 

⎧
⎪⎪⎨

⎪⎪⎩

dX0,n = dX0,n−1 cos xn−2 − X0,n−1 sin xn−2dxn−2

..............................................................................

dXn−2,n = dXn−2,n−1 cos xn−2 − Xn−2,n−1 sin xn−2dxn−2

dXn−1,n = a cos xn−2dxn−2

and denoting by 

. ds2k = dX2
0,k+1 − dX2

1,k+1 − ... − dX2
k,k+1 ,

we obtain 
. ds2n−1 = a2 cos2 xn−2 ds

2
n−2 − a2dx2n−2, n ≥ 6,

a formula which is the generalization of the formulas obtained for the previous cases 
. n = 4 and .n = 5. 

Therefore, in all cases, we proved that the metric is a diagonal one and we have 
a recursive method to obtain it. Finally it looks like: 

. ds2n−1 = a2 cos2 xn−2 ds
2
n−2 − a2dx2n−2, n ≥ 4

and 
. ds22 = a2dt2 − a2 cosh2 t dx21 , n = 3.

Now, other considerations are in order. If 

. f (t, x1, x2, .., xn−2) = (
X0,n−1 cos xn−2, ..., Xn−2,n−1 cos xn−2, a sin xn−2

)

the direct consequence of the above results is .

/
f,

∂ f

∂t

\

M

= 0.
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Another computation leads to .

/
f,

∂ f

∂xk

\

M

= 0, while .

/
∂ f

∂xk
,
∂ f

∂t

\

M

= 0, 

.

/
∂ f

∂xk
,

∂ f

∂x j

\

M

= 0 are the consequences of the diagonal form of the metric and 

highlight the orthogonal frame of the tangent space at each point. 
Finally, the Minkowski normal to the hypersurface is 

. N (t, x1, ..., xn−2) = 1

a
f (t, x1, ..., xn−2),

that is the Minkowski distance from the origin to the tangent hyperplane at a given 
point of the hypersurface is. a and all the coefficients of the second fundamental form 
are computed with the formula established for the case .n = 2, 

. hi j =
/
∂N

∂xi
,

∂ f

∂x j

\

M

,

therefore 

. hi j = 1

a
gi j .

Since .<N , N >M = −1 < 0, we have  

. Ri jkl = − (
hikh jl − hilh jk

)
.

It results 

. Ri jkl = − 1

a2
(
gikg jl − gilg jk

)
, i, j, k, l ∈ {0, 1, ..., n − 2}.

Therefore each sectional curvature is 

. K = − 1

a2
.

From 

. Ri ji j = − 1

a2
(
gi ig j j − gi jg j i

)
,

it results 

. gmi Ri ji j = − 1

a2
(
gmigi ig j j − gmigi jg j i

)
,

that is 

.Rm
ji j = − 1

a2
(
δmi g j j − δmj g j i

)
.
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For .m = i , it remains 

. Rm
jmj = − 1

a2
g j j ,

for each .m /= j . Finally, 

. R j j =
n−2E

m=0, m /= j

Rm
jmj = −n − 2

a2
g j j .

If we start from 

. Ri jkl = − 1

a2
(
gikg jl − gilg jk

)
,

the same reasoning leads to 

. Rm
jml = − 1

a2
g jl ,

i.e. for . j /= l, we have .R jl = 0. Therefore 

. Ri j + n − 2

a2
gi j = 0

for all . i and . j . From this formula, we obtain 

. R = −(n − 1)(n − 2)
1

a2
.

Since 

. Ri j + 1

2
(n − 1)(n − 2)

1

a2
gi j − (n − 2)(n − 3)

2

1

a2
gi j = Ri j + n − 2

a2
gi j = 0 ,

it results that, if we choose 

. V = − (n − 2)(n − 3)

2

1

a2
,

the previous metric satisfies the Einstein field equations 

. Ri j − 1

2
R gi j + V gi j = 8πG

c4
Ti j

in the absence of matter, that is with .Ti j = 0.
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11.3 Some Physical Considerations 

Let us return to the .. 4th dimensional de Sitter space-time described by the parame-
terization 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X0 = sinh t cos x2 cos x3
X1 = cosh t cos x1 cos x2 cos x3
X2 = cosh t sin x1 cos x2 cos x3
X3 = sin x2 cos x3
X4 = sin x3

with the metric 

. ds24 = cos2 x2 cos
2 x3dt

2 − cosh2 t cos2 x2 cos
2 x3dx

2
1 − cos2 x3dx

2
2 − dx23 .

It is difficult to talk about photons travelling in this Universe but if we consider a slice 
in the previous de Sitter space, determined by .x2 = x3 = 0, we obviously highlight 
the .2-de Sitter space-time 

. 

⎧
⎨

⎩

X0 = sinh t
X1 = cosh t cos x1
X2 = cosh t sin x1

denoted here by 

. f (t, x1) = (X0, X1, X2) = (sinh t, cosh t cos x1, cosh t sin x1),

. f : R × (−π,π) −→ M
3, with the metric 

. ds22 = dt2 − cosh2 tdx21

and we can hope for a simpler approach of the problem. 
It exists two coordinate curves at each given point .(t0, x01 ). The first one is 

. c0(t) = f (t, x01 )

where .x01 is a constant. Since 

. ċ0(t) = ∂ f

∂t
= (

cosh t, sinh t cos x01 , sinh t sin x
0
1

)

is a time-like vector, i.e..

/
∂ f

∂t
,
∂ f

∂t

\
= 1, the curve.c0 is a world line for an observer, 

that is, we are talking about the evolution in time of an event. The relation 

.||ċ0(t)||M = 1
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shows that the parameter . t is the proper time because 

. τ (t) =
{ t

0
||ċ0(q)||Mdq = t.

The other possible curve 
. c1(x1) = f (t0, x1)

where. t0 is a constant, is a “circle” which cuts the “Euclidean hyperboloid”, and, at the 

same time, a space-like curve because . 

/
∂ f

∂x1
,

∂ f

∂x1

\
= − cosh2 t = − cosh2 τ < 0.

Let us analyse the “circumnavigation problem”, that is the possibility to go around 
the “hyperboloid” in a finite amount of time. The length of .c1 is 

. 

{ π

−π

||ċ1(τ )||Mdx1 =
{ π

−π

cosh τdx1 = 2π cosh τ .

The limit, as . τ approaches to .∞, is infinite, therefore this space-time is unbounded 
in both given directions. 

We are interested in understanding how photons travel in this de Sitter space-time. 
Firstly, the metric 

. ds22 = dt2 − cosh2 t dx21

is described by the metric tensor 

. 

(
1 0
0 − cosh2 t

)

whose light-cone vectors, in the .(t, x) plane, are .L+ =
(

x

x
1

cosh t

)
and . L− =

(
x

−x
1

cosh t

)
, . x ∈ R.

These vectors were deduced in the same way we deduced them in a Minkowski 
space, whose metric 

. ds2 = dt2 − dx2

is described by the metric tensor 

. 

(
1 0
0 −1

)
.

The light-cone vectors are .E+ =
(
x
x

)
and .E− =

(
x

−x

)
, x ∈ R.
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If we are looking at the vectors .L+, L− in their transposed form on .M
3, from  

. 

(
x,± x

cosh t

)
= x · (1, 0) ± x

cosh t
· (0, 1),

the formulas 

. d fx
(
L+) = x · ∂ f

∂t
+ x

cosh t

∂ f

∂x1
; d fx

(
L−) = x · ∂ f

∂t
− x

cosh t

∂ f

∂x1
,

results. This means that the velocity of photons is the ratio (with a sign) between the 

norms of the spatial vector .
x

cosh t

∂ f

∂x1
and the temporal vector .x

∂ f

∂t
, i.e. 

. ± 1

cosh t
· ||ċ0(t)||M
||ċ1(x1)||M = ±1

as we expected. 
Let us look again at the .t x1 plane and suppose we have the trajectory of a photon 

described by a function .x1(t) which is .x1(τ ). In fact, taking into account .L+, we  
have 

. x1(q) =
{

2

eq + e−q
dq =

{
2eq

e2q + 1
= 2 arctan(eq) + C1,

where .C1 is a constant. This function is increasing. The limit as . q approaches . −∞
is .C1 and the limit as . q approaches .+∞ is .π + C1, therefore a photon image curve 
in .t x1 plane is completely included in a strip with width . π. The same happens for 
the photon described by 

. x1(q) = −
{

2

eq + e−q
dq = −

{
2eq

e2q + 1
= −2 arctan eq + C2,

where .C2 is a constant. 
If we ask for photons having, at the origin of the.t x1 plane the vectors. L+(0), L−(0)

as tangent vectors respectively, we obtain the curves .x1(τ ) = 2 arctan eτ − π

2
, and 

.x1(τ ) = −2 arctan eτ + π

2
, respectively. The images of these two curves are the 

trajectories of photons in the de Sitter space-time. Therefore, if we choose the first 
curve, its image in the de Sitter space-time is 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X0(τ ) = sinh τ

X1(τ ) = cosh τ cos
(
2 arctan eτ − π

2

)

X2(τ ) = cosh t sin
(
2 arctan eτ − π

2

)
.
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Being 

. cos
(
2 arctan eτ − π

2

)
= 1

cosh τ

and 
. sin

(
2 arctan eτ − π

2

)
= tanh τ ,

therefore it is 

. 

⎧
⎨

⎩

X0(τ ) = sinh τ
X1(τ ) = 1
X2(τ ) = sinh τ .

We leave, as an exercise for the reader, to prove that the second curve is 

. 

⎧
⎨

⎩

X0(τ ) = sinh τ
X1(τ ) = 1
X2(τ ) = − sinh τ .

Finally, the trajectories of photons in the de Sitter space-time are lines with slopes . 1
and .−1 (as we expected) which belong, in this case, to the plane .X1 = 1. 

Even if it is just the investigation of a light cone at a single point, the reader has 
to imagine that, at each point of the de Sitter space-time, the situation is the same: 
the Euclidean hyperboloid have, at each point, a pair of straight lines embedded into 
its surface. 

11.4 A FLRW Metric for de Sitter Space-time Given 
by the Flat Slicing Coordinates Attached to the Affine 
Sphere 

In [112] it is presented a very interesting parameterization of the affine sphere 

. X2
0 − X2

1 − ... − X2
n−1 = −a2,

using the flat slicing coordinates: 

. f :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0 = a sinh
t

a
+ r2

2a
· et/a

X1 = a cosh
t

a
− r2

2a
· et/a

X2 = y1 et/a

X3 = y2 et/a

....................

Xn−1 = yn−2 et/a



398 11 A Geometric Realization of Relativity: The de Sitter Space-time

with 
. y21 + y22 + ... + y2n−2 = r2.

It results the relation 

. y1dy1 + y2dy2 + ... + yn−2dyn−2 = rdr

which helps us to find the corresponding metric. 
Now, 

. dX0 =
|
cosh

t

a
+ r2

2a2
et/a

|
dt + r

a
et/adr

. dX1 =
|
sinh

t

a
− r2

2a2
et/a

|
dt − r

a
et/adr

. dXk = et/a
|
dyk−1 + 1

a
yk−1dt

|
, k ∈ {2, 3, ..., n − 1}.

If we compute the metric, firstly we obtain 

. dX2
0 − dX2

1 =
|
1 + r2

a2
e2t/a

|
dt2 + 2r

a
e2t/adtdr.

Since 

. 

n−1E

k=2

dX2
k = e2t/a

n−1E

k=2

|
dy2k−1 + 2

a
yk−1dyk−1dt + 1

a2
y2k−1dt

2

|
=

. = e2t/a
n−1E

k=2

dy2k−1 + e2t/a
2r

a
drdt + e2t/a

r2

a2
dt2,

finally we find 

. ds2 = dt2 − e2t/a
(
dy21 + dy22 + .... + dy2n−2

)
.

For this metric we have  

.

⎧
⎪⎨

⎪⎩

Tα
0α = Tα

α0 = 1

a

T0
αα = 1

a
e2t/a, α ∈ {1, 2, ..., n − 2},
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all the other Christoffel symbols are null. Then, 

. R00 = ✚
✚✚R0
000 + Rβ

0β0 =
n−2E

β=1

Rβ
0β0 =

n−2E

β=1

⎡

⎣❅
❅
❅

∂T
β
00

∂xβ
−

/
/

/∂T
β
0β

∂x0
+✟✟✟✟

Tm
00T

β
mβ − Tm

0βT
β
m0

⎤

⎦ =

. = −n − 2

a2
= −n − 2

a2
g00;

. Rαα = Rs
αsα =✟✟✟Rα

ααα +
n−2E

s=0,s /=α

Rs
αsα =

n−2E

s=0,s /=α

|
∂Ts

αα

∂xs
−

/
//∂Ts
αs

∂xα + Tm
ααTs

sm − Tm
αsT

s
mα

|
=

. = 2

a2
e2t/a + (T1

01 + T2
02 + ... + Tn−2

0n−2)T
0
αα − Tα

0αT0
αα − T0

ααTα
0α = − n − 2

a2
e2t/a = − n − 2

a2
gαα.

Therefore 

. R = −(n − 1)(n − 2)
1

a2
,

that is choosing 

. V = − (n − 2)(n − 3)

2

1

a2
,

the previous metric satisfies the Einstein field equations in absence of matter, 

. Ri j − 1

2
R gi j + Vgi j = 0.

This metric can be written in the form 

. ds2 = dt2 − e2t/ady2

where 
. dy2 = dy21 + dy22 + .... + dy2n−2

is the flat metric in the .yk coordinates, which explains the name. 
This is an example of a FLRW metric for de Sitter space-time. 

Example 11.4.1 Consider de Sitter space-time having one of the previous metric 
.gi j . We know that 

. Ri j = −n − 2

a2
gi j

and 

.R = −(n − 1)(n − 2)
1

a2
.
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Therefore, in the case of . f (R) = R gravity, we obtain Einstein’s field equations 

. Ri j − 1

2
R gi j + V gi j = 0

with the cosmological constant 

. V = − (n − 2)(n − 3)

2

1

a2
,

because we have 

. Ri j + 1

2
(n − 1)(n − 2)

1

a2
gi j − (n − 2)(n − 3)

2

1

a2
gi j = Ri j + n − 2

a2
gi j = 0.

If we consider the case of . f (R) = R2 gravity, we have 

. f '(R)Ri j − 1

2
f (R)gi j + V f gi j = 0

if 

. V f = (n − 1)(n − 2)2(n − 5)

2a4
= −R

(n − 2)(n − 5)

2a2
.

Indeed, 

. 2R Ri j − 1

2
R2 gi j − R

(n − 2)(n − 5)

2a2
gi j = 2R

(
Ri j − 1

4
R gi j − (n − 2)(n − 5)

4a2
gi j

)
=

. = 2R

(
Ri j + (n − 1)(n − 2)

4a2
gi j − (n − 2)(n − 5)

4a2
gi j

)
= 2R

(
Ri j + n − 2

a2
gi j

)
= 0.

Therefore we have the following statement. 
The . f (R) = R2 gravity equations in absence of matter 

. f '(R)Ri j − 1

2
f (R)gi j + V f gi j = 0

in the case of the cosmological constant 

. V f = (n − 1)(n − 2)2(n − 5)

2a4

are satisfied by any metric 

.ds2 = gi j dx
idx j , i, j ∈ {0, 1, ..., n − 2}
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having the property 

. Ri j = −n − 2

a2
gi j .

An example is de Sitter space-time metric 

. ds2 = dt2 − e2t/a
(
dy21 + dy22 + .... + dy2n−2

)
.

A particular situation happens when .n = 5. The  . f (R) equations in vacuum are 
satisfied in the their original form 

. f '(R)Ri j − 1

2
f (R)gi j = 0,

that is no cosmological constant is needed. 

Exercise 11.4.2 For the unit space-like affine sphere 

. X2
0 − X2

1 − ... − X2
n−1 = −1

consider the parameterization 

. f :

⎧
⎪⎪⎨

⎪⎪⎩

X0 = a sinh t
X1 = y1 cosh t
................

Xn−1 = yn−1 cosh t

with 
. y21 + y22 + ... + y2n−1 = 1,

that is 
. y1dy1 + y2dy2 + ... + yn−2dyn−2 = 0.

(i) Show that the corresponding metric is 

. ds2 = dt2 − cosh2 t
(
dy21 + dy22 + .... + dy2n−1

)
.

(ii) Try to understand why the metric can be written in the form 

. ds2 = dt2 − cosh2 t dy2
n−2,

where .dy2
n−2 is the metric of the .Sn−2 sphere.
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11.5 Deriving Cosmological Singularities in the Context 
of de Sitter Space-time 

Let us consider the case .n = 3. The Euclidean one-sheet hyperboloid, which is in 
fact a Minkowki sphere, has the algebraic equation 

. X2
0 − X2

1 − X2
2 = −1.

Using the flat slicing coordinates 

. f :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X0 = sinh t + r2

2
· et

X1 = cosh t − r2

2
· et

X2 = r · et .

we find, as a particular case of our previous discussion, the metric 

. ds2 = dt2 − e2t dr2.

For this metric, we have 

. 

{
T1
01 = T1

10 = 1
T0
11 = e2t ,

all the other Christoffel symbols are null. 
Let us consider the Minkowski sphere. At .t = 0, consider the curve 

. m(r) =
(
r2

2
, 1 − r2

2
, r

)

obtained by replacing.t = 0 in the parameterization of. f . This curve is the intersection 
between the plane 

. X0 + X1 = 1

and the Minkowski sphere 
. X2

0 − X2
1 − X2

2 = −1.

We can conceive this curve as at the initial singularity at the origin of the de Sit-
ter space-time. Let us follow the evolution in time of it and choose a point of the 
singularity, 

.m(r0) =
(
r20
2

, 1 − r20
2

, r0

)
.



11.5 Deriving Cosmological Singularities in the Context of de Sitter Space-time 403

The evolution in time of this point is the line 

. c(t) =
(
sinh t + r20

2
· et , cosh t + r20

2
· et , r0 · et

)
.

Theorem 11.5.1 1. .c(t) is the intersection between the plane . X0 + X1 − 1

r0
X2 = 0

and the previous “hyperboloid” . X2
0 − X2

1 − X2
2 = −1.

2. The Minkowski product .< ċ(t), ċ(t) >M is . 1, i.e. the tangent vector, is a time-like 
vector. 
3. .c(t) is a time-like geodesic of de Sitter space-time. 

Proof We leave for the reader the proof of the first two points which are simple 
exercises. 
The equations of the geodesics are 

. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d2t

dτ 2
+ T0

11

dr

dτ

dr

dτ
= 0

d2r

dτ 2
+ 2T1

01

dt

dτ

dr

dτ
= 0,

i.e. 

. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d2t

dτ 2
+ e2t

dr

dτ

dr

dτ
= 0

d2r

dτ 2
+ 2

dt

dτ

dr

dτ
= 0.

The solution .t = τ , r = r0 corresponds to the curve . c. [
Therefore, the line is the evolution in time of the point and it is the first line we 

considered in the part of de Sitter space-time out of the singularity curve. 
Now, from each point of 

. m(r) =
(
r2

2
, 1 − r2

2
, r

)

consider the corresponding curve 

. cr (t) =
(
sinh t + r2

2
· et , cosh t + r2

2
· et , r · et

)
.

All these time-like geodesics for .t = τ > 0 starting from the initial singularity are 
part of the texture of the de Sitter space-time. Observe that not all of the Minkowski
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sphere is the texture of the “evolution started from the singularity”. Furthermore the 
parameterization makes sense also for.t = τ < 0. We have the image of an evolution 
of a singularity corresponding to the de Sitter space-time in a chosen time direction. 

De Sitter space-time is only a possible geometric realization of Relativity. Another 
possible realization is analysed in the next chapter. We are talking about the Anti-de 
Sitter space-time. We prefer to warn the reader about the fact that some geometric 
properties of de Sitter and Anti-de Sitter spaces-times are different if we prefer 
different metric signatures and other types of Minkowski spheres chosen in the basic 
definitions. Other interesting geometric realizations of space-times can be found in 
[167].



Chapter 12 
Another Geometric Realization 
of Relativity: The Anti-de Sitter 
Space–Time 

It is wrong to think that the task of Physics is to find out how 
Nature is. Physics concerns what we say about Nature. 

Niels Bohr 

There are a lot of similarities between de Sitter and Anti-de Sitter space–times; 
therefore, we want to present here some geometric aspects which are not highlighted 
in the previous chapter. Before developing a geometric theory of gravity which can 
be extended in Minkowski .M (p,q) spaces and before reaching the subject of Anti-de 
Sitter space–times as examples of universes without matter, we want to introduce 
some facts related to the centro-affine geometry, a branch of geometry developed by 
Gheorghe Tzitzeica. These facts are essential for the development of the chapter (see 
[ 30]). 

The theory of Tzitzeica surfaces in Euclidean spaces was the starting point of 
the affine differential geometry in which the differential invariants depend on the 
metric, but they are also preserved by affine transformations (see [151, 186, 187]). 
The geometric nature of de Sitter and Anti-de Sitter space–times is related to the 
Minkowski affine differential geometry and this is the main aspect we are going to 
present here. 

Shortly, in the case of Euclidean .3-dimensional space, the definition of a Tzitzeica 
surface is this: we choose a point . f (p) of the surface locally written in the form 
. f (x, y) = (x, y, u(x, y)) and we compute the Gaussian curvature .K f (p) at that 
point. Then, we compute the distance, denoted by .d f (p), from the origin . O(0, 0, 0)
to the tangent plane of the surface at the point. f (p). The surface is called a Tzitzeica 

surface, if the ratio .R f (p) := K f (p)

d4
f (p)

is a constant at each . p, that is .R f (p) = R f . 

The constant .R f is called “affine radius” and becomes an intrinsic number attached 
to the surface. 
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Both de Sitter and Anti-de Sitter space–times are Minkowski-affine Tzitzeica 
hypersurfaces and they have the affine radius related to their Ricci curvature scalar 
. R. We have to point out that only the Gauss constant geometric curvature is not essen-
tial for a surface to be an affine sphere. The pseudosphere has constant Gaussian 
curvature but it is not a Tzitzeica surface; de Sitter and Anti-de Sitter space–times 
have constant Ricci curvature and both fulfil the Tzitzeica property, which in fact 
makes them remarkable. 

Let us explain how it works in the case of surfaces. Suppose we have computed 
the affine radius 

. R f (p) := K f (p)

d4
f (p)

.

By definition, a centro-affine transformation of the surface . f consists in the product 
between the surface . f and .3 × 3 matrix . A, with .detA /= 0. Therefore the surface 
obtained is now 

. f̄ (x, y) = (a11x + a21y + a31u(x, y), a12x + a22y + a32u(x, y), a13x + a23y + a33u(x, y)),

where the coefficients .ai j are the components of the matrix . A.

For this surface . f̄ , when we compute .R f̄ (q) = K f̄ (q)

d4
f̄
(q)

, we obtain a constant if and 

only if the initial.R f (p) = K f (p)

d4
f (p)

is a constant. The constant is the same if and only 

if .detA = 1 and this can be called the total affine invariance condition. 
The previous observation allows to extend the definition of Tzitzeica surfaces to 

hypersurfaces in Euclidean and Minkowski .n-dimensional spaces, the affine radius 

being there the ratio .
K f (p)

d(n+1)
f (p)

. 

A general theory about curves and surfaces in Minkowski spaces.M (1,n) is reported 
in [132], while the extension of the concept of Tzitzeica surfaces to Minkowski three-
dimensional spaces is presented in [ 28]. Other basic results in Minkowski . M (1,n)

spaces are reported in [ 31]. In the following, we present a generalization for hyper-
surfaces in Minkowski .M (2,n) spaces in a way that can be immediately extended to 
Minkowski .M (p,q) spaces. All these results will be related to the Physics of Anti-de 
Sitter space–times (see [ 30]). 

12.1 The Minkowski .M(2,4) Geometric Gravitational Force 

The theory we present below is reported in details in [ 30] and can be formulated 
in any Minkowski .M (p,q) space. In the case of .M (1,n) Minkowski spaces, it was 
first presented in [ 31]. Let us say that .M (1,n) is the Minkowski .n-dimensional space 
endowed with the Minkowski product
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. <a, b>M := a0b0 −
n−1E

α=1

aαbα.

We discussed its properties in the previous chapter when we considered the de Sitter 
space–time. 

Let us denote by .M (2,4) the Minkowski .4-dimensional space endowed with the 
Minkowski product 

. <a, b>M := a0b0 + a1b1 −
3E

α=2

aαbα

Therefore,.(2, 4) is related to the fact that the signature we choose is.(+ + −−). With 
respect to a given .b = (b0, b1, b2, b3), we consider all vectors . x = (x0, x1, x2, x3)
such that .x − b is a space-like vector, that is .<x − b, x − b>M < 0. 

We denote by 

. r :=
/

−(x0 − b0)2 − (x1 − b1)2 + (x2 − b2)2 + (x3 − b3)2

the Minkowski “length” of the space-like vector .x − b and by 

. u = −1

r
(x0 − b0, x1 − b1, x2 − b2, x3 − b3)

the unit vector of .b − x . 
We define the Minkowski .M (2,4) geometric gravitational force by 

. F := 1

3

1

r3
u.

If 

. A := 2

r3
u

is by definition the geometric gravitational Minkowski .M (2,4) field, we have the 
adapted “Minkowski-Newton second principle”: 

. F = 1

6
A.

Let us define the Minkowski .M (2,4) gradient and the Minkowski .M (2,4) Laplacian: 

. ∇ :=
(

− ∂

∂x0
,− ∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
;

.∇2 := <∇,∇>M = ∂2

∂x20
+ ∂2

∂x21
− ∂2

∂x22
− ∂2

∂x23
.
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If we define the Minkowski .M (2,4) gravitational potential 

. Φ := − 1

r2

the following computations: 

. 
∂Φ

∂x0
= −2

x0 − b0
r4

; ∂Φ

∂x1
= −2

x1 − b1
r4

; ∂Φ

∂x2
= 2

x2 − b2
r4

; ∂Φ

∂x3
= 2

x3 − b3
r4

;

. 
∂2Φ

∂x20
= −2

r2 + 4(x0 − b0)2

r6
; ∂2Φ

∂x21
= −2

r2 + 4(x1 − b1)2

r6
;

. 
∂2Φ

∂x22
= 2

r2 − 4(x2 − b2)2

r6
; ∂2Φ

∂x23
= 2

r2 − 4(x3 − b3)2

r6
; .

lead us to the following two theorems. 

Theorem 12.1.1 The Minkowski .M (2,4) gradient of the Minkowski .M (2,4) gravita-
tional potential is the opposite of the Minkowski .M (2,4) gravitational field. 

Proof It is easy to check the equality .∇Φ = −A. [

Theorem 12.1.2 The Minkowski .M (2,4) Laplacian of the Minkowski .M (2,4) gravi-
tational potential is null. 

Proof The same, it is easy to check .∇2Φ = 0. [

The last relation is here the equation of the Minkowski .M (2,4) geometric gravita-
tional field. 

In the case when. b is the origin of the Minkowski.M (2,4) space, the unitary space-
like sphere can be thought as the set of points of .M (2,4) described by the constant 
gravitational Minkowski potential .Φ4

M = −1. 
The Minkowski.M (2,4) geometrical gravitational force and the Minkowski. M (2,4)

geometrical gravitational field have dimension.
1

(l)3
where.(l) is a length. Therefore, 

we can replace by.
1

(m)3
. In the  same  way,  the Minkowski.M (2,4) gravitational poten-

tial has as dimension .
1

(m)2
. 

We may conclude: For each dimension, generalizing the previous theory, in the 
Minkowski.M (p,q) space-like vectors region, a natural geometric Minkowski gravity 
appears in the absence of matter. Adapting the number of positive and negative signs, 
we can construct adapted Minkowski .M (p,q) gradients and Laplacians. An equiva-
lent of the Newton gravity theory can be constructed this way. The affine space-like
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spheres can be seen as the regions of the Minkowski .M (p,q) space-like vectors char-
acterized by a constant Minkowski gravitational potential. They highlight a model 
of space–time, the Anti-de Sitter one, which satisfies Einstein’s field equations in 
the absence of matter and this happens because they are surfaces generated by a 
Minkowski gravitational force described without mass distributions. 

12.2 The Minkowski–Tzitzeica Surfaces 

The theory we present here is developed in [ 31]. However, according to the geometric 
structure of Minkowski .M (2,q) some formulas are changed with respect to the cited 
reference. See also [ 30]. 

In a Minkowski .M (2,3) space, we have: 

• the Minkowski .M (2,3) product of vectors 

. <a, b>M := a0b0 + a1b1 − a2b2 ,

• the Minkowski .M (2,3) crossproduct of vectors 

. a ×M b := (a1b2 − a2b1,−a0b2 + a2b0, a1b0 − a0b1) ,

which can be understood from the formal determinant components, 

. 

|||||||

→
i

→
j − →

k
a0 a1 a2
b0 b1 b2

|||||||
,

• a surface locally represented by . f : U = ◦
U ⊂ R

2 −→ M (2,3) having the form 

. f (x, y) = (x, y, u(x, y)) ,

with the metric 

. ds2 =
(
1 −

(
∂u

∂x

)2
)
dx2 − 2

∂u

∂x

∂u

∂y
dxdy +

(
1 −

(
∂u

∂y

)2
)
dy2 ,

• the Gauss–Minkowski curvature .KM
f (p) of . f at the point . f (p), where .p =

(x, y) ∈ U,
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. KM
f (p) = R1212

det gi j
=

∂2u

∂x2
∂2u

∂y2
−

(
∂2u

∂x∂y

)2

|
1 −

(
∂u

∂x

)2

−
(

∂u

∂y

)2
|2 ,

• the equation of the tangent plane . α at the point . f (p) is 

. α : (X − x)

(
−∂u

∂x

)
− (Y − y)

(
∂u

∂y

)
+ (Z − u(x, y)) = 0 ,

• the Minkowski .M (2,3) “distance”, denoted .dM
f (p), from the origin to the tangent 

plane of the surface . f at the point . f (p) computed after the formula 

. dM
f (p) =

||||x
∂u

∂x
+ y

∂u

∂y
− u (x, y)

||||
||||

|||||1 −
(

∂u

∂x

)2

−
(

∂u

∂y

)2
|||||

.

An immediate consequence of the above formula is 

. 

KM
f (p)

(dM
f )4 (p)

=
∂2u

∂x2
∂2u

∂y2
−

(
∂2u

∂x∂y

)2

(
x
∂u

∂x
+ y

∂u

∂y
− u (x, y)

)4 .

Consider a matrix .A ∈ M3(R), such that .detA /= 0. 

By definition, a centro-affine transformation of . f is a surface . f̄ : U = ◦
U ⊂

R
2 −→ M (2,3) given by the formula . f̄ (x, y) = f (x, y) · A.

. f̄ (x, y) = (x, y, u(x, y)) ·
⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠

Therefore, 

. f̄ (x, y) = (a11x + a21y + a31u(x, y), a12x + a22y + a32u(x, y), a13x + a23y + a33u(x, y)) .

We denote by .K̄ M
f̄
, the Minkowski–Gauss curvature of . f̄ at the point . f̄ (p), where 

.p = (x, y), and by .dM
f̄ , the Minkowski distance from the origin to . ᾱ, the tangent 

plane of the surface . f̄ at the point . f̄ (p). One may observe that a centro-affine
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transformation changes the “shape” of a surface, the curvature of it at the new cor-
responding point and changes the distance between the origin and the tangent plane 
at the new corresponding point of the surface. Something remains invariant and the 
conclusion, after the following theorem, highlights this invariant. 

Theorem 12.2.1 

. 

K̄ M
f̄
(p)

(dM
f̄ )

4(p)
= 1

(detA)2
·

∂2u

∂x2
∂2u

∂y2
−

(
∂2u

∂x∂y

)2

(
x
∂u

∂x
+ y

∂u

∂y
− u(x, y)

)4 = 1

(detA)2
· KM

f (p)

(dM
f )4 (p)

.

We prefer, instead of a very long computational proof of this theorem, to offer the 
latter a very nice geometric argument. The previous theorem leads to a very important 
conclusion: 

Knowing that . f has the property .
KM

f (p)

(dM
f )4 (p)

is a constant, using the previous 

theorem, we obtain .

K̄ M
f̄
(p)

(dM
f̄ )

4(p)
is a constant, too. [

An important class of surfaces is highlighted in Minkowski .M (2,3) in the same way 
as it was presented in the case of Minkowski .M (1,3) space ([ 28, 31]). 

Definition 12.2.2 In a Minkowski .M (2,3) space a surface . f is called a Minkowski– 

Tzitzeica surface if .
KM

f (p)

(dM
f )4 (p)

is a constant. 

For a Minkowski–Tzitzeica surface, the quantity .
KM

f (p)

(dM
f )4 (p)

is called an affine 

radius. 

12.3 The Geometric Nature of the Affine Radius 
in a Minkowski .M(2,3) Space 

Let us look at the ratio .

KM
f (p)

dM 4
f (p)

. We can observe the numerator 

. L := ∂2u

∂x2
∂2u

∂y2
−

(
∂2u

∂x∂y

)2

which can be written with respect to the vectors basis
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. 
∂ f

∂x
=

(
1, 0,

∂u

∂x

)
; ∂ f

∂y
=

(
0, 1,

∂u

∂y

)

and four second-order vectors 

. 
∂2 f

∂x2
=

(
0, 0,

∂2u

∂x2

)
; ∂2 f

∂y2
=

(
0, 0,

∂2u

∂y2

)
; ∂2 f

∂x∂y
= ∂2 f

∂y∂x
=

(
0, 0,

∂2u

∂x∂y

)

in the form 

. L =

|||||||||||

0 0
∂2u

∂x2

1 0
∂u

∂x

0 1
∂u

∂y

|||||||||||

·

|||||||||||

0 0
∂2u

∂y2

1 0
∂u

∂x

0 1
∂u

∂y

|||||||||||

−

|||||||||||

0 0
∂2u

∂x∂y

1 0
∂u

∂x

0 1
∂u

∂y

|||||||||||

·

|||||||||||

0 0
∂2u

∂y∂x

1 0
∂u

∂x

0 1
∂u

∂y

|||||||||||

.

. L is in fact a difference of two products of .3-volumes. 
The denominator can be written in the form 

. 

|||||||||

x y u(x, y)

1 0
∂u

∂x

0 1
∂u

∂y

|||||||||

4

.

Therefore is the.. 4th power of a.3-volume. The ratio.

KM
f (p)

dM 4
f (p)

has at the denominator 

a dimension given as the second power of a .3-volume. The cubic root 

. 
3

|||| KM
f (p)

dM 4
f (p)

has as dimension .
1

(m)2
and we use this information later. 

And more, if we are looking at a centro-affine transformation, the vector basis we 
use are 

. 
∂ f̄

∂x
=

(
a11 + a31

∂u

∂x
, a12 + a32

∂u

∂x
, a13 + a33

∂u

∂x

)

. 
∂ f̄

∂y
=

(
a21 + a31

∂u

∂y
, a22 + a32

∂u

∂y
, a23 + a33

∂u

∂y

)

and the four other vectors are
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. 
∂2 f̄

∂x2
= ∂2u

∂x2
· (a31, a32, a33),

∂2 f̄

∂x∂y
= ∂2 f̄

∂y∂x
= ∂2u

∂x∂y
· (a31, a32, a33),

∂2 f̄

∂y2
= ∂2u

∂y2
· (a31, a32, a33).

The first determinant of the numerator is 

. 

|||||||||||

a31
∂2u

∂x2
a32

∂2u

∂x2
a33

∂2u

∂x2

a11 + a31
∂u

∂x
a12 + a32

∂u

∂x
a13 + a33

∂u

∂x

a21 + a31
∂u

∂y
a22 + a32

∂u

∂y
a23 + a33

∂u

∂y

|||||||||||

= detA · ∂2u

∂x2
,

therefore it becomes easy to see that the numerator has the value . detA2 ·(
∂2u

∂x2
∂2u

∂y2
−

(
∂2u

∂x∂y

)2
)

.

The denominator can be described by the following .. 4th power of a determinant 
together a sign we can neglect, 

. 

|||||||||

a11x + a21y + a31u(x, y) a12x + a22y + a32u(x, y) a13x + a23y + a33u(x, y)

a11 + a31
∂u

∂x
a12 + a32

∂u

∂x
a13 + a33

∂u

∂x

a21 + a31
∂u

∂y
a22 + a32

∂u

∂y
a23 + a33

∂u

∂y

|||||||||

4

.

It is easy to compute the determinant above using the usual properties of the deter-
minants. 

Finally, the denominator has the value . detA4 ·
(
x
∂u

∂x
+ y

∂u

∂y
− u (x, y)

)4

.

Therefore, Tzitzeica surfaces are related, both in the Minkowski .M (2,3) case and 
in the initially considered Minkowski .M (1,3) cases (see [ 28, 31]), to the volume 
invariance. 

One more comment we made also in [ 31]. Let us understand the meaning of an 
affine transformation. The vectors .(1, 0, 0); (0, 1, 0), (0, 0, 1) transform into the 
vectors 

. (a11, a12, a13); (a21, a22, a23); (a31, a32, a33)

described by the rows of the matrix . A. Therefore, the initial volume determined by 
the vectors .(1, 0, 0); (0, 1, 0), (0, 0, 1), that is . 1, is transformed into the volume 
.detA. 

In the same way we considered unit vectors on the initial axes, we may consider the 

vectors.
1

3
√
detA

(a11, a12, a13); ..., which determine the unit volume after the centro-

affine transformation. The affine radius is now fully preserved after a centro-affine 
transformation.
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12.4 Geometrical Considerations Related to the Affine 
Radius in the Minkowski .M(2,4) Space 

In a Minkowski .4−dimensional space .M (2,4), the  .3-surface we consider is . f (x, y,
z) = (x, y, z, u(x, y, z)), with .(x, y, z) belonging to an open three-dimensional 
domain. 

The vector we consider are related to the tangent .3-space, that is 

. 
∂ f

∂x
=

(
1, 0, 0,

∂u

∂x

)
; ∂ f

∂y
=

(
0, 1, 0,

∂u

∂y

)
; ∂ f

∂z
=

(
0, 0, 1,

∂u

∂z

)
,

together with the other six second-order derivatives 

. 
∂2 f

∂x2
=

(
0, 0, 0,

∂2u

∂x2

)
; ∂2 f

∂x∂y
=

(
0, 0, 0,

∂2u

∂x∂y

)
; ∂2 f

∂x∂z
=

(
0, 0, 0,

∂2u

∂x∂z

)
;

. 
∂2 f

∂y2
=

(
0, 0, 0,

∂2u

∂y2

)
; ∂2 f

∂y∂z
=

(
0, 0, 0,

∂2u

∂y∂z

)
; ∂2 f

∂z2
=

(
0, 0, 0,

∂2u

∂z2

)
;

If the surface is seen as a vector, there are involved seven 4-determinants we need to 

highlight the affine Minkowski radius. It is easy to compute.gi j =
/

∂ f

∂xi
(x) ,

∂ f

∂x j (x)

\

M
. 

Therefore, 

. det gi j = −1 +
(

∂u

∂x

)2
+

(
∂u

∂y

)2
−

(
∂u

∂z

)2
= e

|||||

(
∂u

∂x

)2
+

(
∂u

∂y

)2
−

(
∂u

∂z

)2
− 1

||||| ,

where . e is the algebraic sign of .det gi j . 
Then, the .4-Minkowski .M (2,4) normal .N to the surface is related to the formal 

developing of the determinant 

. 

|||||||||||||

→
i

→
j − →

k − →
l

1 0 0
∂u

∂x

0 1 0
∂u

∂y

0 0 1
∂u

∂z

|||||||||||||

,

that is 

.N := 1||||
|||||

(
∂u

∂x

)2

+
(

∂u

∂y

)2

−
(

∂u

∂z

)2

− 1

|||||

(
∂u

∂x
,
∂u

∂y
,−∂u

∂z
, 1

)
.
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If we denote.x1 = x, x2 = y, x3 = z, the coefficients of the second fundamental 
form.hi j in the case when the normal is a space-like vector are 

. hi j := −
/
N ,

∂2 f

∂xi∂x j

\

M

=
∂2u

∂xi∂x j||||
|||||

(
∂u

∂x

)2

+
(

∂u

∂y

)2

−
(

∂u

∂z

)2

− 1

|||||

and the defined 3-Minkowski curvature at . f (p), where .p = (x, y, z) is 

. KM
f (p) := −dethi j

detgi j
= −

E
σ∈E3

ε(σ )
∂2u

∂x1∂xσ(1)

∂2u

∂x2∂xσ(2)

∂2u

∂x3∂xσ(3)

e

|||||

(
∂u

∂x1

)2

+
(

∂u

∂x2

)2

−
(

∂u

∂x3

)2

− 1

|||||

5

2

.

If the normal is a timelike vector the sign .− in previous formulas becomes . +. The  
distance from origin to the tangent plane at . f (p) is 

. dM
f (p) =

||||
E3

i=1 xi
∂u

∂xi
− u(x1, x2, x3)

||||
||||

|||||

(
∂u

∂x

)2

+
(

∂u

∂y

)2

−
(

∂u

∂z

)2

− 1

|||||

;

therefore, the Minkowski affine radius is modulo a sign the ratio 

. 

KM
f (p)

(dM(p))5
= −

E
σ∈E3

ε(σ )
∂2u

∂x1∂xσ(1)

∂2u

∂x2∂xσ(2)

∂2u

∂x3∂xσ(3)||||
E3

i=1 xi
∂u

∂xi
− u(x1, x2, x3)

||||
5 .

It becomes clear that .
∂2u

∂xi∂xσ(i)
is the value of the determinant
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. 

|||||||||||||||

0 0 0
∂2u

∂xi∂xσ(i)

1 0 0
∂u

∂x

0 1 0
∂u

∂y

0 0 1
∂u

∂z

|||||||||||||||

and .

||||
E3

i=1 xi
∂u

∂xi
− u(x1, x2, x3)

|||| is the absolute value of the determinant 

. 

|||||||||||||

x y z u(x, y, z)

1 0 0
∂u

∂x

0 1 0
∂u

∂y

0 0 1
∂u

∂z

|||||||||||||

.

At the numerator, we have six terms as products of .4-determinants; therefore, the 
dimension is the third power of a .4-volume. At the denominator, we have the .. 5th 
power of a .4-volume, therefore the affine radius has, as dimension at denominator; 
the second power of a .4-volume, therefore 

. 
4

||||
|||||
K f (p)

d5
f (p)

|||||

is measured in .
1

(m)2
. 

After a centro-affine transformation.A ∈ M4(R) of the surface. f , the connection 
between the two affine radii is 

. 

K̄ M
f̄

(dM
f̄ )

5
= (detA)3

(detA)5
· KM

f

(dM
f )5

;

therefore, the same relation holds 

. 

K̄ M
f̄

(dM
f̄ )

5
= 1

(detA)2
· KM

f

(dM
f )5

.

Now we can understand how it can be extended to any dimension.
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12.5 Anti-de Sitter Space–Times as Affine Hypersurfaces. 
Their Cosmological Constant and Its Connection 
with the Affine Radius 

All de Sitter space–times are affine hypersurfaces whose cosmological constants are 
connected to their affine radii (see [ 31]). A similar conclusion can be seen in the case 
of Anti-de Sitter space–times. Let’s see why. 

In the case .n = 3, the Anti-de Sitter space–time here denoted .AdS(2, 3), is the  
Minkowski time-like sphere of .M (2,3) having the equation 

. X2
0 + X2

1 − X2
2 = −a2.

The two numbers involved in the above notation.AdS(2, 3) are. 2, from the dimension 
of the space-like sphere and . 3 from the total dimension of the ambient Minkowski 
space. 

We met it when we studied non-Euclidean geometries, more precisely, the hyper-
boloid model. 

For this Anti-de Sitter space–time, we have, according to the Einstein theorem 
for surfaces 

. Ri j = KM
f gi j

therefore 

. Ri j + 1

a2
gi j = 0.

This last equation can be written as 

. Ri j − 1

2
R gi j = 0,

that is ./ = 0 and .Ti j = 0. . R is still depending on the centro-affine invariant 

. 
3

||||
|||||
K f (p)

d4
f (p)

|||||.

In the case .n = 4, the Anti-de Sitter space–time, called .AdS(3, 4), is the  
Minkowski space-like sphere of .M (2,4) having the equation 

. X2
0 + X2

1 − X2
2 − X2

3 = −a2.

The standard parameterization is 

. f (t, x1, x2) = (a sinh t cos x1, a sinh t sin x1, a cosh t cos x2, a cosh t sin x2).
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The metric is 

. ds23 = (a2dt2 + a2 sinh2 t dx21 ) − a2 cosh2 tdx22 .

We observe 
. ds23 = ds22 − a2 cosh2 t dx22 .

The non-zero Christoffel symbols are 

. T0
11 = − sinh t cosh t, T0

22 = sinh t cosh t,

. T1
01 = T1

10 = coth t,

. T2
02 = T2

20 = tanh t.

Now, if we compute 

. Rii = Rs
isi = ∂Ts

ii

∂xs
− ∂Ts

is

∂xi
+ Th

iiT
s
hi − Th

isT
s
hi ,

we find 
. R00 = −2; R11 = −2 sinh2 t; R22 = 2 cosh2 t.

The other Ricci symbols are null, . Ri j = 0, i /= j. Therefore 

. Ri j + 2

a2
gi j = 0.

If we compute .R := Ri
i , taking into account .R

i
j = gis Rs j , it results .R = − 6

a2
. 

The left-hand side of Einstein’s field equations becomes 

. Ri j − 1

2

(
− 6

a2

)
gi j + /gi j .

If we choose ./ = − 1

a2
, the left hand becomes 

. Ri j + 2

a2
gi j ,

that is the left hand becomes . 0. The de Sitter space–time presented above satisfies 
the Einstein field equations 

.Ri j − 1

2
R gi j + / gi j = 8πG Tik
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for .R = − 6

a2
, / = − 1

a2
and .Ti j = 0. 

A space–time without matter appears as we expected. 
The normal is 

. N = (sinh t cos x1, sinh t sin x1, cosh t cos x2, cosh t sin x2) = 1

a
f,

therefore, it is 

. KM
f (p) := −det hi j

det gi j
:= − 1

a3
.

It is easy to see that.

/
f,

∂ f

∂xi

\

M

= 0, i ∈ {0, 1, 2}, that is.dM
f (p) = a. The Minkowski 

sphere becomes a Tzitzeica–Minkowski affine sphere because 

. 

KM
f (p)

(dM
f (p))5

= − 1

a8
.

According to both the affine invariant meaning and the fact that the quantity is 

measured in .
1

(m)2
, the geometric quantity 

. 
4

||||
|||||
KM

f (p)

(dM
f (p))5

|||||

is involved in the dimensional constants of the Anti-de Sitter.AdS(3, 4) space–time. 
So also in its cosmological constant. 

In the case of Minkowski .M (2,5) space, the parameterization of the . AdS(4, 5)
space–time 

. X2
0 + X2

1 − X2
2 − X2

3 − X2
4 = −a2.

is 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X0 = a sinh t cos x1
X1 = a sinh t sin x1
X2 = a cosh t cos x2
X3 = a cosh t sin x2 cos x3
X4 = a cosh t sin x2 sin x3

The metric related to this parameterization is 

. ds24 = (a2dt2 + a2 sinh2 tdx21 − a2 cosh2 tdx22 ) − a2 cosh2 t sin2 x2 dx
2
3 .

As in the previous case, we obtain
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. ds24 = ds23 − a2 cosh2 t sin2 x2dx
2
3 .

Again, if we compute 

. Rii = Rs
isi = ∂Ts

ii

∂xs
− ∂Ts

is

∂xi
+ Th

iiT
s
hi − Th

isT
s
hi ,

we find 

. R00 = −3, R11 = −3 sinh2 t, R22 = 3 cosh2 t, R33 = 3 cosh2 t sin2 x2,

that is 

. Ri j + 3

a2
gi j = 0,

which leads to 

. R = −12

a2
, / = − 3

a2
, Ti j = 0

for the Einstein’s field equations. 
As in the previous .n = 4 case, the Minkowski normal to the 4-hypersurface is 

. N (t, x1, x2, x3) = 1

a
f (t, x1, x2, x3),

a space-like vector. 
It means that the Minkowski distance from the origin to the tangent 4-hyperplane, 

at a given point of the 4-hypersurface, is . a and all the coefficients of the second 
fundamental form have the property 

. hi j = 1

a
gi j .

Therefore, 

. KM
f = −det hi j

det gi j
= − 1

a4

and 

. 

KM
f (p)

(dM
f (p))6

= − 1

a10
,

that is the absolute value of its .. 5th root establishes the invariant involved in the 
coefficients of the Einstein field equations. 

Let us consider now .x1 = 0, which implies .X1 = 0. The previous description of 
the Anti-de Sitter .AdS(4, 5) space–time 

.X2
0 + X2

1 − X2
2 − X2

3 − X2
4 = −a2 ,
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in the case of the Minkowski .M (2,5) space, leads to the parameterization 

. 

⎧
⎪⎪⎨

⎪⎪⎩

X0 = a sinh t
X2 = a cosh t cos x2
X3 = a cosh t sin x2 cos x3
X4 = a cosh t sin x2 sin x3

for the surface 
. X2

0 − X2
2 − X2

3 − X2
4 = −a2,

which is a de Sitter space–time we can call .dS(3, 4), whose ambient is a Minkowski 
.M (1,4) space whose metric signature obviously is .(+ − −−). 

The metric attached to this parameterization is 

. ds2 = a2dt2 − a2 cosh2 tdx22 − a2 cosh2 t sin2 x2 dx
2
3 .

We obtain 

. Ri j + 2

a2
gi j = 0,

that is the de Sitter space–time presented above satisfies the Einstein field equations 

. Ri j − 1

2
R gi j + / gi j = 8πGTik

for .R = − 6

a2
, / = − 1

a2
and .Ti j = 0 exactly as .AdS(3, 4). Let us observe that if 

we consider .X4 = 0 (for .x3 = 0), we obtain the inclusion .AdS(3, 4) ⊂ AdS(4, 5). 

This structure inclusion, 

. dS(3, 4) = AdS(4, 5) ∩ {X2 = 0} ⊂ AdS(4, 5) ⊂ M (2,5)

has an important physical consequence. 
Light can travel in .AdS(4, 5) because it can travel in any .dS(2, 3) (choosing . X0

and two among the three variables .X2, X3, X4), as we have seen in the previous 
chapter or in citeCallahan,Georges1. 

In the general case, the Anti-de Sitter.AdS(n − 1, n) space–time is the Minkowski 
.(n − 1)-sphere determined by the ends of all the space-like vectors with Minkowski 
length . a. 

This is a hypersurface of the Minkowski .n-dimensional space .M (2,n) having the 
algebraic equation 

.X2
0 + X2

1 − ... − X2
n−1 = −a2.
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The parameterization we present is 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0 = a sinh t cos x1
X1 = a sinh t sin x1
X2 = a cosh t cos x2
X3 = a cosh t sin x2 cos x3
X4 = a cosh t sin x2 sin x3 cos x4
X5 = a cosh t sin x2 sin x3 sin x4 cos x5
............................................

Xn−3 = a cosh t sin x2 sin x3... sin xn−4 cos xn−3

Xn−2 = a cosh t sin x2 sin x3... sin xn−3 cos xn−2

Xn−1 = a cosh t sin x2 sin x3... sin xn−3 sin xn−2

This parameterization makes sense for .n ≥ 4. 
We obtain 

. ds2n−1 = ds2n−2 − a2 sin2 x2 sin
2 x3... sin

2 xn−3 dx
2
n−2,

a formula which is the generalization of the formulas obtained for the previous cases 
. n = 4 and .n = 5. 

Therefore, in all cases, we proved that the metric is a diagonal one. 
Now, let us observe something else, a geometric property used in [ 31], which 

allows to substitute very complicated computations in order to achieve the main 
formula necessary to compute the cosmological constant value. We are talking about 

. R jl = −n − 2

a2
g jl .

We have.

/
f,

∂ f

∂t

\

M

= 0, .

/
f,

∂ f

∂xk

\

M

= 0, while.

/
∂ f

∂xk
,
∂ f

∂t

\

M

= 0,. 

/
∂ f

∂xk
,

∂ f

∂x j

\

M= 0 are the consequences of the diagonal form of the metric and highlight the orthog-
onal frame of the tangent space at each point. 

Therefore, the Minkowski normal to the hypersurface is 

. N (t, x1, ..., xn−2) = 1

a
f (t, x1, ..., xn−2),

that is the Minkowski distance from the origin to the tangent hyperplane at a given 
point of the hypersurface is. a and all the coefficients of the second fundamental form 
are computed with the formula established for the case .n = 2, 

. hi j =
/
∂N

∂xi
,

∂ f

∂x j

\

M

,

therefore 

.hi j = 1

a
gi j .
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Since .<N , N >M = −1 < 0, we have  

. Ri jkl = − (
hikh jl − hilh jk

)
.

It results 

. Ri jkl = − 1

a2
(
gikg jl − gil g jk

)
, i, j, k, l ∈ {0, 1, ..., n − 2}.

Therefore, each sectional curvature is 

. K = − 1

a2

and 

. Rm
jkl = gmi Ri jkl = − 1

a2
(
δmk g jl − δml g jk

)
.

Finally, 

. R jl =
n−2E

m=0

Rm
jml = − 1

a2

n−2E

m=0

(g jl − δml g jm) = −n − 2

a2
g jl .

Since 

. Ri j + 1

2
(n − 1)(n − 2)

1

a2
gi j − (n − 2)(n − 3)

2

1

a2
gi j = Ri j + n − 2

a2
gi j = 0,

it results that if we choose 

. / = − (n − 2)(n − 3)

2

1

a2
,

the previous metric satisfies the Einstein field equations 

. Ri j − 1

2
R gi j + / gi j = 8πGTi j

in the absence of matter, that is with .Ti j = 0. At the same time, 

. KM
f := −det hi j

det gi j
= − 1

an−1
; dM

f := a.

The generalization is immediate, for the .AdS(n − 1, n), the constants are written 
with respect to the Minkowski-affine invariant
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. 
n

||||
|||||

KM
f (p)

(dM
f (p))n+1

||||| = 1

a2
.

Therefore, this affine invariant is also involved in the cosmological constant of this 
space–time. 

Let us observe that the structure inclusion, 

. dS(n − 2, n − 1) = AdS(n − 1, n) ∩ {X2 = 0} ⊂ AdS(n − 1, n) ⊂ M (2,n)

allows light to travel in .AdS(n − 1, n) because it can travel in any . dS(2, 3) ⊂
dS(n − 2, n − 1) (choosing.X0 and two among the components.X2, X3, ...Xn−1. So, 
generally, we can claim that light travels in any Anti-de Sitter space–time because it 
travels in all de Sitter space–times included in the chosen Anti-de Sitter space–time.



Chapter 13 
More Than Metric: Geometric Objects 
for Alternative Pictures of Gravity 

Everything we call real is made of things that cannot be 
regarded as real. 

Niels Bohr 

In the previous discussions, we presented General Relativity as a theory essentially 
based on metric as the main object capable of being related to physical observables. 
Thanks to the Equivalence Principle, the Einstein formulation is a “metric theory 
of gravity” where causal structure (related to metric and light cones) and geodesic 
structure (related to geodesics and motions along them) coincide. This is not the only 
possibility and more general formulations of gravitational interaction can require 
other mathematical tools besides the metric [ 49, 55]. In other words, metric may 
have an “ancillary role” instead of being the main object of investigation as shortly 
discussed in Chap. 10. The need to extend or modify the Einstein theory comes mainly 
from several issues related to Physics (see, for example, [ 45, 61] for a discussion). 
We intend to present here, in a more abstract way, the geometric objects considered 
in the chapters devoted to Differential Geometry. We will see that the metric may 
not even be involved in the description of gravity. After presenting basic results 
about differentiable manifolds, tensors, exterior forms, differential forms, vector 
fields, and general affine connections, we will take into account a special affine 
connection, the Levi-Civita one. This connection is related to metric and then involves 
the Equivalence Principle. Then General Relativity is only a particular theory in 
the wide world of theories of gravity. Concepts as tetrad fields, the commutator 
of covariant derivatives, and the spin connection will give us the tools to develop 
metric-affine theories and then alternative pictures as Teleparallel Gravity. 
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13.1 Differentiable Manifolds 

Let us remember the way we studied the unit sphere in the chapter devoted to surfaces. 
“The algebraic point of view is related to equations defining manifolds. . X2 + Y 2 +
Z2 = 1 is the algebraic definition of a sphere centred at the origin with radius . 1. In  
Differential Geometry, we deal with smooth functions describing a surface. 

The previous sphere can be seen as the smooth function . f : (0,π) × (0, 2π) →
E
3, 

. f (x1, x2) = (sin x1 cos x2, sin x1 sin x2, cos x1), x1 ∈ (0,π), x2 ∈ (0, 2π)''.

Now, let us observe that the entire sphere is not the image of the previous function. 
The meridian arc between the North Pole.N (0, 0, 1) and the South Pole . S(0, 0,−1)
corresponding to .x2 = 0 is missing. We have obtained important results about the 
Differential Geometry of the unit sphere, but all results were obtained for the unit 
sphere minus the NS meridian arc. Therefore all geodesics of the unit sphere have a 
point which is missing, at least one. Of course, we understood the power of changing 
coordinates. Rotations can be used to give information about another image of the 
sphere, therefore the missing points can be included in the image of geodesics. The 
same rotations can be used to obtain information about Gaussian curvature of a 
missing point. Somehow, in our mind, it is clear that we can obtain the missing point 
information using a suitable coordinate transformation. Can we write all these in 
a formal mathematical language? The answer is yes and it is related to the notion 
of differentiable manifold. In simple words, a differentiable manifold is something 
which is locally similar to a system of coordinates to allow us to apply the calculus 
and the formulas seen in the chapter on Differential Geometry. This can be obtained 
using a collection of charts called atlas. 

In order to start in formalizing the problem, let us consider the Euclidean .n-
dimensional space .En . As we know, there is the Euclidean inner product which 
generates the Euclidean norm.|| · || of vectors and the Euclidean distance. d between 
two points. An open ball .Br (x) with . x as centre and . r as radius is the set 

. Br (x) := {y ∈ En| d(x, y) < r}.

Taking into account the Euclidean .n-dimensional space .En , we can say that the 
Euclidean topology on .Rn is the topology generated by these balls. Therefore the 
open sets of the Euclidean topology on .R

n consist of arbitrary unions of open balls 
.Br (x), r > 0, x ∈ R

n . 
We denote by . T the topology on .R

n described above. It will be used to define an 
atlas .Rn-type as we will understand from the following definition. 

Definition 13.1.1 Let .M be an arbitrary non-empty set. Consider a set of indexes 
denoted by. A. A smooth atlas on.M is a collection of charts . A = {(Ua, ha) | a ∈ A}
such that:
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.(A1) .Ua ⊂ M, for all .a ∈ A and . 

U

a∈A

Ua = M;
.(A2) .ha : Ua −→ R

n is an injective function, i.e. it maps distinct elements into 
distinct elements; 

.(A3) .ha
(
Ua

U
Ub

)
is an open set of .Rn for all .a, b ∈ A satisfying. Ua

U
Ub /= ∅;

.(A4) For all .a, b ∈ A such that ..Ua
U

Ub /= ∅, the chart change defined by the 
map .hb ◦ h−1

a : ha
(
Ua

U
Ub

) −→ R
n is a smooth one. 

Definition 13.1.2 The set .M together with the smooth atlas .A is called a differen-
tiable manifold. 

Let us understand the previous definitions looking at an example. Of course, we 
can choose the previous sphere considering a differentiable manifold structure. In 
this way, we understand the preliminaries made before the definitions. 

Example 13.1.3 Consider .S2 = {
(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1
}
and the stere-

ographic projections on the equatorial plane corresponding to the points . N (0, 0, 1)
and .S (0, 0,−1) having the form 

. 

hN : S2\ {N } −→ R
2, hN (M) =

(
x0

1 − z0
,

y0
1 − z0

)
and

hS : S2\ {S} −→ R
2, hS (M) =

(
x0

1 + z0
,

y0
1 + z0

)
.

The atlas.A = {(
S2\ {N } , hN

)
,
(
S2\ {S} , hS

)}
fulfills the conditions. (A1) , (A2)

and.(A3) of the first definition. It remains to prove that a . hS ◦ h−1
N : R2\ {(0, 0)} −→

R
2\ {(0, 0)} is a smooth map. 
Since .h−1

N : R2\ {(0, 0)} −→ S2\ {N } is 

. h−1
N (X,Y ) =

(
2X

X2 + Y 2 + 1
,

2Y

X2 + Y 2 + 1
,
X2 + Y 2 − 1

X2 + Y 2 + 1

)
,

we have. hS ◦ h−1
N (X,Y ) =

(
X

X2 + Y 2
,

Y

X2 + Y 2

)
which obviously is a smooth 

map. In other words, it is a differentiable manifold structure to the unit sphere with 
all described implications. 

Starting from this point all results can be done in the context of differentiable 
manifolds. To preserve our style, we continue to work with one chart of the atlas only. 
We preserve the name of this chart, i.e. system of coordinates, and the chart changes 
restricted only to our chart will be called as before, i.e. changes of coordinates.
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13.2 Abstract Frame for Tensors, Exterior Forms, 
and Differential Forms 

To succeed in giving an intuitive description, we start remembering some definitions 
used in the chapter devoted to surfaces. 

In the.3D Euclidean space.E3, each surface is an image of a function. f : U → E3, 
where .U is an open set of .R2. 
. • Denote by . p a point of . U . 
. • Therefore .p := (x1, x2). 

. • The vector tangents to the surface at the point . f (p) are .
∂ f

∂x1
and .

∂ f

∂x1
computed 

at . p. 
. • The vector space generated by these vectors is called a tangent space at . f (p) to 
the surface . f and it is denoted by .Tp f . 

. • .Tp f contains all vectors .vp written in the form. vp = v1 ∂ f

∂x1
(p) + v2 ∂ f

∂x1
(p).

. • According to the Theorema Egregium by Gauss, the extra dimension necessary to 
obtain geometric information on the surface can be cancelled. 

Following these considerations, let us see the above picture in a more abstract 
way, i.e. in the absence of the surface and increasing the number of dimensions. 
. • Let .M be a set of real coordinates .(x1, x2, ..., xn) in which we wish to develop 
geometric concepts. 
. • .p := (x1, x2, ..., xn) is a given point of . M . 
. • The tangent space at . p will be denoted by.TpM and consists in all vectors .vp such 
that they are described by 

. vp =
nE

k=1

vk

(
∂

∂xk

)

p

.

Of course, we can write a vector .vp using the Einstein summation rule, 

. vp = vk

(
∂

∂xk

)

p

.

. • At any . p, the above vector can be identified by its components, i.e. . vp =
(v1, v2, ..., vn). 
. • The tangent space .TpM is a .n-dimensional vector space. 

. • Denote by .T M :=
U

p∈M
TpM =

U

p∈M
{p} × TpM the tangent bundle of . M . 

. • Denote by .F(M) the set of all smooth functions on .M to . R. Remember that these 
functions are smooth at each .p ∈ M . 
. • For such a function.h : M → R at each.p ∈ N , it makes sense the operation. vp(h)

defined by the rule



13.2 Abstract Frame for Tensors, Exterior Forms, and Differential Forms 429

. vp(h) :=
nE

k=1

vk

(
∂h

∂xk

)

p

.

. • The last operation allows, for each .p ∈ M , to define the differential at . p of the 
map .h ∈ F(M). 
.(dh)p : TpM → R is by definition 

. (dh)p(v) := vp(h).

. • Denote by .T ∗
p M the dual of .TpM . It is called a cotangent space at . p and contains 

all linear functions defined on .TpM to . R. Obviously, .(dh)p ∈ T ∗
p M . 

. • Denote .(dxk)p(v) := vk, k ∈ {1, 2, ..., n}. Analogously, the set containing 

. 

(
∂

∂x1

)

p

,

(
∂

∂x2

)

p

, ...,

(
∂

∂xn

)

p

is the basis of the vector space .TpM , while the set 

. (dx1)p, (dx
2)p, ..., (dx

n)p

is the basis of the vector space .T ∗
p M . This basis is the dual of that of .TpM . 

. • It is obvious that the differential of . h at . p is a linear function and it can be written 
in the form 

. (dh)p =
nE

k=1

(
∂h

∂xk

)

p

(dxk)p.

. • Generally, a cotangent vector at . p to .M looks like 

. wp =
nE

i=1

wi (dx
i )p.

Starting from this point, we can work with general .n-dimensional real vector 
spaces .V and .V ∗ instead .TpM and .T ∗

p M . 
In fact, all these finite dimensional real vector spaces are isomorphic. 
If .{e1, e2, ..., en} is the canonical basis of .V and .{p1, p2, ..., pn} is the canonical 

basis of .V ∗, the connection between them is .pi (e j ) = δi j , exactly as in the case of 

. dxi
(

∂

∂x j

)

p

= δij .

More we talk about all these geometric objects and their properties without assum-
ing that they can be also smooth functions. This property can be added at any moment 
when we need to describe aspects of these objects involving the smoothness. We will 
consider this aspect later in this section. The considerations below are made in the 
absence of smoothness.
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Denote by 

. V 0,m = {T | T : V × V × ... × V −→ R, T is a m-linear map }

the set of.m-covariant tensors. This set can be endowed with a vector space structure 
considering the operations 

. (T1 ⊕ T2) (v1, ..., vm) := T1 (v1, ..., vm) + T2 (v1, ..., vm) ,

. (λT1) (v1, ..., vm) := λ · T1 (v1, ..., vm) , λ ∈ R, v1, ..., vm ∈ V .

A tensor product .⊗ : V 0,m × V 0,r :−→ V 0,m+r can also be defined by the formula 

. (T ⊗ S) (v1, ..., vm; u1, ..., ur ) := T (v1, ..., vm) · S (u1, ..., ur )

for .T ∈ V 0,m, S ∈ V 0,r and . v1, ..., vm; u1, ..., ur ∈ V .

Denote by .Sm the set of permutations of .m items. 

Definition 13.2.1 A.m-covariant tensor.ω ∈ V 0,m is called an alternating.m− tensor 
if 

. ω
(
vπ(1), ..., vπ(m)

) = ε (π) · ω (v1, ..., vm)

for all the permutations .π ∈ Sm and . v1, ..., vm ∈ V .

By definition, 

. /m
(
R

n,R
) := {

ω ∈ V 0,m | ω is a m-alternating tensor
}

is the set of all .m alternating tensors. 
The previous vector space operations on.V 0,m transform./m (Rn,R) into a vector 

subspace of the vector space .
(
V 0,m,⊕, ·λ

)
. / . R. 

Definition 13.2.2 The map . A : V 0,m −→ /m (Rn,R) ,

. A (ω) (v1, ..., vm) :=
E

π∈Sm
ε (π) · ω

(
vπ(1), ..., vπ(m)

)

is called an alternating multilinear map. 

It allows us to define the exterior product formula 

.ω1 ∧ ω2 := A (ω1 ⊗ ω2) ,
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for all .ω1 ∈ /m (Rn,R) and .ω2 ∈ /r (Rn,R) . Since 

. (ω1 ∧ ω2) (v1, ..., vm+r ) =
E

π∈Sm+r

ε (π) ω1
(
vπ(1), ..., vπ(m)

) · ω2
(
vπ(m+1), ..., vπ(m+r)

)
,

it results in . ω1 ∧ ω2 ∈ /m+r (Rn,R) .

Therefore the exterior product is obtained by the alternatization (we may say also 
alternatization) of the tensor product. 

Some textbooks define the wedge product in the form 

. ω1 ∧ ω2 := (m + r)!
m!r ! A (ω1 ⊗ ω2) ,

for all .ω1 ∈ /m (Rn,R) and . ω2 ∈ /r (Rn,R) .

This wedge product is often called “exterior product”. If one compares to our 
definition, it is only a constant which makes the difference. We continue to use our 
definition. 

Let us observe that .V ∗ is in fact .V 0,1. 
The same, we can observe that if .α ∈ V ∗, β ∈ V ∗, then . α ⊗ β ∈ V 0,2.

There is an immediate generalization: if .α1 ∈ V ∗, ...,αm ∈ V ∗, then . α1 ⊗ ... ⊗
αm ∈ V 0,m . 

This way the set .
{
pi1 ⊗ pi2 ⊗ ... ⊗ pim

}
1<i1,i2,...,im<n becomes a vector basis of 

.V 0,m , i.e. 
. ω =

E

1<i1,i2,...,im<n

ωi1i2...im · pi1 ⊗ pi2 ⊗ ... ⊗ pim

for some coefficients .ωi1i2...im ∈ R. 
The following natural question occurs: which is the vector basis of ./m (Rn,R)? 
To answer, it is necessary to better understand the properties of the exterior prod-

uct. Using the definition, we observe that 

. (ω1 ∧ ω2) (v1, v2) = ω1 (v1) · ω2 (v2) − ω1 (v2) · ω2 (v1)

for .ω1,ω2 ∈ /1 (Rn,R). 
It results in 

. ω ∧ ω = 0

for all . ω ∈ /1 (Rn,R) .

Proposition 13.2.3 The following equalities hold: 
. (i) (λ1ω1 + λ2ω2) ∧ ω3 = λ1 · ω1 ∧ ω3 + λ2 · ω2 ∧ ω3

for any .ω1,ω2 ∈ /m (Rn,R), .ω3 ∈ /r (Rn,R), . λ1,λ2 ∈ R

. (i i) (ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3)

for any .ω1 ∈ /m (Rn,R) ,ω2 ∈ /r (Rn,R) , . ω3 ∈ /q (Rn,R)

. (i i i) ω1 ∧ ω2 = (−1)m·r · ω2 ∧ ω1

for any .ω1 ∈ /m (Rn,R), .ω2 ∈ /r (Rn,R)
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Proof .(i) and .(i i) are proven by straight computation. 
For .(i i i) we define the permutation . σ : {1, ...,m + r} −→ {1, ...,m + r} ,

. σ (i) =
{
i + m, dacă1 < i < r
i − r, dacăr + 1 < i < m + r

with the following property related to its signature, . ε (σ) = (−1)m·r .

Let us show that 
. ω1 ⊗ ω2 = σ (ω2 ⊗ ω1) .

Successively we have 

. σ (ω2 ⊗ ω1) (v1, ..., vm+r ) = ω2
(
vσ(1), ..., vσ(r)

) · ω1
(
vσ(r+1), ..., vσ(r+m)

) =

. = ω2 (vm+1, ..., vm+r ) · ω1 (v1, ..., vm) = (ω1 ⊗ ω2) (v1, ..., vm+r ) .

Since 
. (σA) (ω1 ⊗ ω2) = ε (σ) · A (ω2 ⊗ ω1) ,

we obtain the desired result 

. ω1 ∧ ω2 = (−1)m·r · ω2 ∧ ω1.

Proposition 13.2.4 For any .ω1 ∈ V 0,1, ...,ωm ∈ V 0,1 we have 

. (ω1 ∧ ... ∧ ωm) (v1, ..., vm) = det
(
ωi

(
v j

))
1<i, j<m .

Proof Directly, 

. (ω1 ∧ ... ∧ ωm) (v1, ..., vm) = A (ω1 ⊗ ... ⊗ ωm) (v1, ..., vm) =

. =
E

σ∈Sm
ε (σ) · ω1

(
vσ(1)

) · ... · ωm
(
vσ(m)

) = det
(
ωi

(
v j

))
1<i, j<m .

[

Corollary 13.2.5 If .ωi = ω j for .i /= j, then .ω1 ∧ ... ∧ ωm = 0. 

This happens because if in a determinant two lines or two columns are identical, 
the determinant is null. We can observe something extra, i.e. ./m (Rn,R) = {0} if 
. m > n.

Proposition 13.2.6 If .ω1, ...,ωm ∈ V 0,1 and .1 < m < n = dimR
n/R, the follow-

ing assertions are equivalent: 
.(i) {ω1, ...,ωm} are linear independent vectors; 
.(i i) ω1 ∧ ... ∧ ωm /= 0.
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Proof . (i) ⇒ (i i)
Since the set .{ω1, ...,ωm} consists of linear independent vectors, it exists 

.{v1, ..., vm} such that . ωi
(
v j

) = δi j .
It results in . (ω1 ∧ ... ∧ ωm) (v1, ..., vm)= det

(
ωi

(
v j

))
1<i, j<m = det δi j = 1,

therefore 

. (ω1 ∧ ... ∧ ωm) /= 0.

. (i i) ⇒ (i)

Ad absurdum, if .ω1 =
mE

i=2

αiωi , it results in 

. ω1 ∧ ... ∧ ωm =
mE

i=2

αiωi ∧ ω2 ∧ ... ∧ ωm = 0,

in contrast with .(i i).
[

Theorem 13.2.7 . (i) The set 

. 
{
pi1 ∧ pi2 ∧ ... ∧ pim | 1 < i1 < i2 < ... < im < n

}

induced by the dual vector basis of .V ∗ is a vector basis for . /m (Rn,R) .

.(i i) dim/m (Rn,R) = Cn
m = n!

m!(n − m)! (combination of . n taken . m). 

Proof Using the previous proposition, it is sufficient to prove the following equality: 

.

⎛

⎝
E

1<i1<i2<...<im<n

αi1...im · pi1 ∧ pi2 ∧ ... ∧ pim

⎞

⎠ (
ei1 , ..., eim

) =

= αi1...im · det (pik
(
eik

)) = αi1...im .

[

Definition 13.2.8 Consider an open set .U ⊂ R
n. A smooth map 

. ω : U −→ /m
(
R

n,R
)

is called a .m-differential form on the set . U . 

The set of .m-differential forms on .U ⊂ R
n is denoted by .Ym (U ) and can be 

endowed with a real vector space structure whose dimension in .Cn
m . 

First, let us observe that .Y0(U ) = F(U), i.e. the .0-differential forms on .U are 
coincident with the smooth maps on . U . 

If .ω ∈ Ym (U ) and .x ∈ U we have
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. ω (x) =
E

1<i1<i2<...<im<n

ωi1...im (x) · pi1 ∧ pi2 ∧ ... ∧ pim ,

where .pi : Rn −→ R, defined by .pi (x) = pi (x1, ..., xn) := xi are the canonical 
projections and the maps .ωi1...im : U −→ R are smooth on the entire domain of 
definition.U ⊂ R

n . Taking into consideration that the canonical projections are linear 
maps, it results . dpi = p'

i = pi .
Some important particular cases are 

.(a) If .ω ∈ Y1 (U ) , then . ω =
nE

i=1

ωi pi .

.(b) If .ω ∈ Y2 (U ) , then . ω =
E

1<i< j<n

ωi j pi ∧ p j .

.(c) If .ω ∈ Yn (U ) , then . ω = f · p1 ∧ p2 ∧ ... ∧ pn.

Definition 13.2.9 The map .d : Ym (U ) −→ Ym+1 (U ) such that 

.(i) . dω := d f =
nE

k=1

∂ f

∂xk
pk if . ω is the .0-differential form. f ∈ Y0 (U ); 

.(i i) .dω :=
E

1<i1<i2<...<im<n

dωi1...im ∧ pi1 ∧ pi2 ∧ ... ∧ pim if . ω is the.m-differential 

form.ω =
E

1<i1<i2<...<im<n

ωi1...im · pi1 ∧ pi2 ∧ ... ∧ pim is called the exterior derivative 

of the differential form. ω.

The definition implies that the exterior derivative is a linear map. 
Let us see some examples: 

.(1) If .U = o
U⊂ R

2 and .ω = ω1 p1 + ω2 p2 ∈ Y1 (U ) , then 

. dω =
(

∂ω2

∂x1
− ∂ω1

∂x2

)
p1 ∧ p2.

Indeed, the previous definition leads to 

. dω = dω1 ∧ p1 + dω2 ∧ p2 =
(

2E

i=1

∂ω1

∂xi
pi

)
∧ p1 +

(
2E

i=1

∂ω2

∂xi
pi

)
∧ p2 =

. = ∂ω1

∂x2
· p2 ∧ p1 + ∂ω2

∂x1
· p1 ∧ p2 =

(
∂ω2

∂x1
− ∂ω1

∂x2

)
p1 ∧ p2.

.(2) The same way  from  .ω = ω1 p1 + ω2 p2 + ω3 p3 ∈ Y1 (U ) , where . U = o
U⊂

R
3. We obtain: 

. dω=
(

∂ω2

∂x1
− ∂ω1

∂x2

)
p1 ∧ p2 +

(
∂ω3

∂x2
− ∂ω2

∂x3

)
p2 ∧ p3 +

(
∂ω3

∂x1
−∂ω1

∂x3

)
p1 ∧ p3.

.(3) If .U = o
U⊂ R

3 and . ω=ω1 · p2 ∧ p3 + ω2 · p3 ∧ p1 + ω3 · p1 ∧ p2 ∈
Y2 (U ) , then
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. dω =
(

3E

i=1

∂ωi

∂xi

)
p1 ∧ p2 ∧ p3.

Again, applying the definition, we have 

. dω = dω1 ∧ p2 ∧ p3 + dω2 ∧ p3 ∧ p1 + dω3 ∧ p1 ∧ p2 =

. =
(

3E

i=1

∂ω1

∂xi
· pi

)
∧ p2 ∧ p3 +

(
3E

i=1

∂ω2

∂xi
· pi

)
∧ p3 ∧ p1 +

(
3E

i=1

∂ω3

∂xi
· pi

)
∧ p1 ∧ p2 =

. = ∂ω1

∂x1
· p1 ∧ p2 ∧ p2 + ∂ω2

∂x2
· p2 ∧ p3 ∧ p1 + ∂ω3

∂x3
· p3 ∧ p1 ∧ p2 =

. =
(

∂ω1

∂x1
+ ∂ω2

∂x2
+ ∂ω3

∂x3

)
· p1 ∧ p2 ∧ p3.

Definition 13.2.10 For .α ∈ Yr (U ) and .β ∈ Ym (U ), we define .α ∧ β by 

. (α ∧ β) (x) := α (x) ∧ β (x) , for any x ∈ U.

Proposition 13.2.11 The following formula holds: 

. d (α ∧ β) = dα ∧ β + (−1)r · α ∧ dβ.

Proof Consider 

. α =
E

1<i1<i2<...<ir<n

αi1...ir · pi1 ∧ pi2 ∧ ... ∧ pir

and 
. β =

E

1< j1< j2<...< jm<n

β j1... jm · p j1 ∧ p j2 ∧ ... ∧ p jm .

To simplify the next long formulas, we cancel the summation indexes. 1 < i1 < i2 <

... < ir < n and .1 < j1 < j2 < ... < jm < n. Since 

. α ∧ β =
E

αi1...ir · β j1... jm · pi1 ∧ pi2 ∧ ... ∧ pir ∧ p j1 ∧ p j2 ∧ ... ∧ p jm ,

it results in 

. d (α ∧ β) =
E

dαi1...ir · β j1... jm ∧ pi1 ∧ pi2 ∧ ... ∧ pir ∧ p j1 ∧ p j2 ∧ ... ∧ p jm +

. +
E

αi1...ir · dβ j1... jm ∧ pi1 ∧ pi2 ∧ ... ∧ pir ∧ p j1 ∧ p j2 ∧ ... ∧ p jm =



436 13 More Than Metric: Geometric Objects for Alternative Pictures of Gravity

. =
E

dαi1...ir ∧ pi1 ∧ pi2 ∧ ... ∧ pir ∧ β j1... jm p j1 ∧ p j2 ∧ ... ∧ p jm +

. +
E

αi1 ...ir pi1 ∧ pi2 ∧ ... ∧ pir ∧ (−1)r dβ j1 ... jm ∧ p j1 ∧ p j2 ∧ ... ∧ p jm = dα ∧ β + (−1)r α ∧ dβ.

[

Proposition 13.2.12 If . f ∈ Y0 (U ) then . d2 f = 0.

Proof From 

. d f =
nE

i=1

∂ f

∂xi
pi

it results in 

.d2 f = d (d f ) =
E

i< j

(
∂2 f

∂x j∂xi
− ∂2 f

∂xi∂x j

)
pi ∧ p j = 0.

[

Theorem 13.2.13 If .ω ∈ Ym (U ) then . d2ω = 0.

Proof Using the linearity of the exterior derivative map . d we can consider . ω in the 
form 

. ω = f · pi1 ∧ ... ∧ pim .

First of all we have 

. dω = d f ∧ pi1 ∧ ... ∧ pim = d f ∧ pi1 ∧ ... ∧ pim ,

therefore 

. d2ω = d (d f ) ∧ pi1 ∧ ... ∧ pim − d f ∧ d
(
1 · pi1 ∧ ... ∧ pim

) =

. = d2 f ∧ pi1 ∧ ... ∧ pim − d f ∧ 0 ∧ pi1 ∧ ... ∧ pim = 0.

[

13.3 Vector Fields and the Structure Equations of . Rn

Let .M be the set of coordinates .(x1, x2, ..., xn) and .U a subset of . M . 

Definition 13.3.1 A smooth map .X : M −→ T M, which assigns to any .p ∈ M a 
vector .X p ∈ TpM is called a vector field on . M .
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In coordinates 

. X p =
nE

i=1

Xi (p)

(
∂

∂xi

)

p

, Xi ∈ F (M,R) .

The previous formula tells us that each vector field is a directional derivative of a 
function . f at . p. 

We denote the set of vector fields on .M by . X (M) .

For any . f ∈ F (M) and .X ∈ X (M) , it makes sense the formula 

. ( f X)p := f (p) X p

which defines the vector field. f X ∈ X (M) . If.X ∈ X (M) and. f ∈ F (M) , another 
formula can be derived, 

. (X f ) (p) := X p f,

which defines a function . X f ∈ F (M) .

For any two vector fields .X,Y ∈ X (M), it can be defined a vector field .[X, Y ], 
called commutator(or the Lie bracket), by the formula 

. [X,Y ]p f := X p (Y f ) − Yp (X f ) .

In coordinates, if .X = Xi ∂

∂xi
, .Y = Y i ∂

∂xi
and . f = xi , we have  

. [X, Y ]p
(
xi

) = X j
p

∂

∂x j

||||
p

(
Y i

) − Y j
p

∂

∂x j

||||
p

(
Xi

)
,

that is, the .i-vector component .[X, Y ]ip is 

. [X, Y ]ip = X j
p

∂Y i

∂x j

||||
p

− Y j
p

∂Xi

∂x j

||||
p

.

Theorem 13.3.2 For any .X, Y, Z ∈ X (M) the following identity holds: 

. [[X,Y ] , Z ] + [[Y, Z ] , X ] + [[Z , X ] ,Y ] = 0.

Proof This identity is called the Jacobi identity. 
To prove it, let first observe that for . f ∈ F (M), we have  

. [[X,Y ] , Z ] ( f ) = [X,Y ] (Z ( f )) − Z ([X,Y ] ( f )) ,

i.e. 

. [[X, Y ] , Z ] ( f ) = X (Y (Z ( f ))) − Y (X (Z ( f ))) − Z (X (Y ( f ))) + Z (Y (X ( f ))) .



438 13 More Than Metric: Geometric Objects for Alternative Pictures of Gravity

The permutations .X → Y, Y → Z , Z → X lead to other two formulas. Summing 
them, we obtain the assertion of the theorem. [

We are ready to present the structure equations of .Rn .. 
For .x = (x1, x2, ..., xn) and .y = (y1, y2, ..., yn) in .R

n , the usual inner product is 

. <x, y> = x1y1 + x2y2 + ... + xn yn.

In fact we can consider at each point .p ∈ R
n the above vectors and we can write 

. <x, y>p = x1y1 + x2y2 + ... + xn yn.

This way we considered at each point.p ∈ R
n the tangent space.TpR

n and the vectors 
. x and. y as.xp, yp ∈ TpR

n . So, the inner product was added to the vector space struc-
ture of .TpR

n . Having all these in mind at each .p ∈ R
n we consider . n differentiable 

vector fields .{e1, e2, ..., en} such that 

. <ei , e j >p = δi j .

This is an orthonormal moving frame of .TRn such that each .ei is a smooth map on 
.R

n to . R. 
Since .(dei )p is also a linear map on .R

n to . R, at each . p and .v ∈ R
n we can write 

. (dei )p(v) =
nE

j=1

(ωi j )p(v)e j .

where .ωi j are .n2 differential 1-forms called the connection forms of .Rn . 
Let us keep in mind this relation in the form 

. dei =
nE

j=1

ωi j e j .

From 
. <ei , e j >p = δi j

it results in 
. <dei , e j >p + <ei , de j >p = ωi j + ω j i = 0,

i.e. the antisymmetry of the connection form, 

. ωi j = −ω j i .

We define at each.p ∈ R
n the dual basis of.{e1, e2, ..., en}, i.e. the.1-differential forms 

.{(ω1)p, (ω2)p, ..., (ωn)p} such that
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. ωi (e j ) = δi j .

Let us observe that any .x ∈ R
n can be thought as an inclusion map on .Rn to .Rn , 

that is to say that the .1-forms .{ωi }i=1,...,n are dual to the moving frame.{ei }i=1,...,n is 
equivalent to saying that 

. dx =
nE

i=1

ωi ei .

Theorem 13.3.3 (Elie Cartan) In the previous notations 

. dωi =
nE

j=1

ω j ∧ ω j i ,

. dωi j =
nE

k=1

ωik ∧ ωk j .

Proof We start from 

. dx =
nE

i=1

ωi ei .

Since .d(dx) = 0 we have 

. 0 = d(dx) =
nE

i=1

dωi ei −
nE

i=1

ωi ∧ dei =
nE

i=1

dωi ei −
nE

i=1

ωi ∧
nE

j=1

ωi j e j =

. =
nE

j=1

(
dω j −

nE

i=1

ω j i ∧ ωi

)
e j .

The second equality is proved in the same way starting from 

.dei =
nE

j=1

ωi j e j .

[

These structure equations above can be applied to the special case of the surfaces 
of the Euclidean space .E

3. 
The immersion .x : Rn → R

n must be replaced by .x : R2 → R
3 which plays the 

role of a surface. 
The inner product at each point .p ∈ R

2 is understood exactly as we saw in the 
case of surfaces, i.e.
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. <v1, v2> := <dxp(v1), dxp(v2)>x(p),

the second inner product being in . E
3.

Of course, the image of the surface . x can be only the image of an open set .U of 
.R

2, therefore we have the same notations as in the case of surfaces except . f , which 
now is denoted by . x . 

For .p ∈ U , we have  .x(p) ∈ x(U ) ⊂ E
3. It is possible to choose in the tangent 

space of .x(U ) two vectors .{e1, e2} and perpendicular to them a vector . e3, such that 
the set .{e1, e2, e3} is a moving frame in the sense discussed above. 

Associated to these vectors there are the.1-differential forms.ω1,ω2,ω3 which are 
the dual basis and nine connection forms.ωi j which satisfy.ωi j = ω j i , i, j ∈ {1, 2, 3}. 

Let us write the structure equations: 

. dω1 = ω2 ∧ ω21 + ω3 ∧ ω31

. dω2 = ω1 ∧ ω12 + ω3 ∧ ω32

. dω3 = ω1 ∧ ω13 + ω2 ∧ ω23

. dω12 = ω13 ∧ ω32

. dω13 = ω12 ∧ ω23

. dω23 = ω21 ∧ ω13

Since .dx depends only on .e1 and . e2, it results that .ω3 = 0. Then 

. dω3 = ω1 ∧ ω13 + ω2 ∧ ω23 = 0,

therefore we obtain 
. ω13 = h11ω1 + h12ω2

and 
. ω23 = h21ω1 + h22ω2

with . h12 = h21.
Let us show that the matrix.(hi j ) is the Weingarten matrix associated to the surface 

. x . 
We observe that our choice related to the moving frame, that is, 

. de3 = ω31e1 + ω32e2,

leads to 

.de3(v) = −
(
h11 h12
h21 h22

)(
a
b

)
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for any vector.v = a1e1 + a2e2. It results that. e3 is the Gauss map. Taking into account 
that the Gaussian curvature.K at each point is the determinant of the previous matrix, 
a simple computation shows that 

. dω12 = ω13 ∧ ω32 = −(h11h22 − h12h21)ω1 ∧ ω2,

therefore 
. dω12 = −Kω1 ∧ ω2.

In conclusion, we have another perspective offered by the differential forms via the 
structure equations for the geometry of surfaces. We can discuss about the structure 
equations in a given Minkowski space or, more generally, in the case of a coordinate 
system endowed with a metric. 

13.4 Affine Connections, Torsion, and Curvature 

Definition 13.4.1 A.R-bilinear map .∇ : X (M) × X (M) −→ X (M) , such that 

. ∇ f XY = f ∇XY

and 
. ∇X f Y = f ∇XY + X ( f ) Y,

for any .X,Y ∈ X (M) , and . f ∈ F (M) is called an affine connection on . M . 

Let us observe that the formula 

. ∇ f XY = f ∇XY

implies 
. ∇( f X+gX ')Y = f ∇XY + g∇X 'Y,

for any . f, g ∈ F (M) , X, X ',Y ∈ X (M), that is the affine connection is .F (M)-
linear in the first variable. The second formula of the definition is the Leibniz rule in 
the second variable. 

The different behaviour of the two variables makes clear why the notation . ∇XY
is preferred instead of the usual notation . ∇ (X,Y ) .

We denote by .C (M) the set of affine connections of . M.

Proposition 13.4.2 If for any.Y ∈ X (M) there are the vector fields. X1, X2, ..., Xn ∈
X (M) such that 

.Y =
nE

i=1

Y i Xi ,
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then the formula 

. ∇XY :=
nE

i=1

X (Y i )Xi

defines an affine connection on . M. 

Proof The .R−bilinearity is obvious. We have both 

. ∇ f XY =
nE

i=1

( f X) (Y i )Xi = f
nE

i=1

X (Y i )Xi = f ∇XY

and 

. ∇X f Y =
nE

i=1

X ( f Y i )Xi = f
nE

i=1

X (Y i )Xi + X ( f )
nE

i=1

Y i Xi = f ∇XY + X ( f ) Y

properties fulfilled, therefore the formula 

. ∇XY :=
nE

i=1

X (Y i )Xi

defines an affine connection on . M . [

Let us observe that, in a system of coordinates of . M , say  .
(
x1, ..., xn

)
, the  set  

.
∂

∂x1
, ...,

∂

∂xn
has the property coming from the previous proposition, i.e. any . Y ∈

X (M) can be written in the form: 

. Y =
nE

i=1

Y i ∂

∂xi
.

Therefore the formula 

. ∇XY :=
nE

i=1

X (Y i )
∂

∂xi

defines an affine connection on . M . 
Consider two affine connections on . M , .∇XY and .∇XY . According to their prop-

erties, the difference 
. S (X,Y ) := ∇XY − ∇XY

is a .F (M)−bilinear map. Therefore we have an infinity of affine connections on. M
because if we add any.S : X (M) × X (M) −→ X (M) , F (M)-bilinear map to the 
affine connection given by the formula
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. ∇XY :=
nE

i=1

X (Y i )
∂

∂xi
,

we obtain a new affine connection. The geometry of .M depends on the properties of 
the connections on . M . And the properties of the connections on .M depend on two 
special maps 

. 
T : X (M) × X (M) −→ X (M) ,

R : X (M) × X (M) × X (M) −→ X (M) ,

defined, respectively, by the formulas 

. 
T (X,Y ) := ∇XY − ∇Y X − [X,Y ] ,

R (X,Y ) Z := ∇X (∇Y Z) − ∇Y (∇X Z) − ∇[X,Y ]Z .

. T is called torsion, while . R is called curvature of the affine connection . ∇.

In what follows, we use the Einstein notation for the sum. 
In coordinates, we denote by .Tk

i j , the components of the affine connection . ∇, 
which appear from 

. ∇ ∂

∂xi

∂

∂x j
:= Tk

i j

∂

∂xk
.

The components of . T and. R are denoted, respectively, by.Ti j and.Ri
jkl . They appear 

from 

. 

T

(
∂

∂xi
,

∂

∂x j

)
:= T k

i j

∂

∂xk

R

(
∂

∂x j
,

∂

∂xk

)
∂

∂xl
:= Ri

l jk

∂

∂xi
.

We have 

. T

(
∂

∂xi
,

∂

∂x j

)
= T k

i j

∂

∂xk
= ∇ ∂

∂xi

∂

∂x j
− ∇ ∂

∂x j

∂

∂xi
= Tk

i j

∂

∂xk
− Tk

ji

∂

∂xk
=

. = (
Tk
i j − Tk

ji

) ∂

∂xk
,

therefore 
. T k
i j = Tk

i j − Tk
ji .

In the same way 

.R

(
∂

∂x j
,

∂

∂xk

)
∂

∂xl
= Ri

l jk

∂

∂xi
= ∇ ∂

∂x j

∇ ∂

∂xk

∂

∂xl
− ∇ ∂

∂xk

∇ ∂

∂x j

∂

∂xl
=
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. = ∇ ∂

∂x j

(
Ts
kl

∂

∂xs

)
− ∇ ∂

∂xk

(
Ts

jl

∂

∂xs

)
=

. = Ts
kl∇ ∂

∂x j

∂

∂xs
+ ∂Ts

kl

∂x j
· ∂

∂xs
− Ts

jl∇ ∂

∂xk

∂

∂xs
− ∂Ts

jl

∂xk
· ∂

∂xs
=

. =
(

∂Ti
kl

∂x j
− ∂Ti

jl

∂xk
+ Ts

klT
i
js − Ts

jlT
i
ks

)
∂

∂xi
,

therefore 

. Ri
l jk = ∂Ti

kl

∂x j
− ∂Ti

jl

∂xk
+ Ts

klT
i
js − Ts

jlT
i
ks .

Let us note that the last formula is the same that we considered when we studied 
surfaces with.Ti

jk = Ti
k j . In this case, it is.Tjk = 0. Such affine connections are called 

torsion-free connections.. They are also called symmetric connections. Therefore an 
affine connection is a symmetric connection if its torsion is null. 

The property .Ti
jk = Ti

k j of the torsion-free connections reminds us a property 
of the Christoffel symbols and the above formula, written for a torsion-free affine 
connection, i.e. 

. Ri
l jk = ∂Ti

lk

∂x j
− ∂Ti

l j

∂xk
+ Ts

lkT
i
s j − Ts

l jT
i
sk

reminds us the Riemann curvature mixed tensor formula. 
Next, we show how the covariant derivative is determined by an affine connection 

.∇ ∈ C (M). Parallel transport and geodesics appear in the same way as we saw in 
the chapter of basic Differential Geometry. 

13.5 Covariant Derivative, Parallel Transport, and 
Geodesics 

Definition 13.5.1 Consider both a vector field.X ∈ X (M) and an affine connection 
.∇ ∈ C (M). The  map  

. ∇X : X (M) −→ X (M) , defined by ∇X (Y ) := ∇XY,

is called a covariant derivative of the vector field . Y along the vector field . X . 

The covariant derivative is a generalization of the directional derivative. In coor-

dinates, if .X = Xi ∂

∂xi
and .Y = Y j ∂

∂x ji
, we obtain successively
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. 

∇XY = ∇
Xi

∂

∂xi

Y j ∂

∂x ji
= Xi∇ ∂

∂xi

Y j ∂

∂x ji
= Xi

⎛

⎜⎝Y j∇ ∂

∂xi

∂

∂x j
+ ∂Y j

∂xi
· ∂

∂x j

⎞

⎟⎠ =

= Xi
(
Y j

(
Tk
i j

∂

∂xk

)
+ ∂Y k

∂xi
· ∂

∂xk

)
=

(
Xi ∂Y

k

∂xi
+ Tk

i j X
i Y j

)
∂

∂xk
.

Therefore the covariant derivative formula is 

. ∇XY = Xi

(
∂Y k

∂xi
+ Tk

i j Y
j

)
∂

∂xk
.

Consider the smooth curve .c : I ⊂ R −→ M described in our coordinate system as 

. c (t) := (
x1 (t) , ..., xn (t)

)
.

The tangent vector.ċ (t) := dc (t)

dt
= (

ẋ1 (t) , ..., ẋ n (t)
)
belongs, at each point of the 

curve, to the corresponding tangent space, i.e..ċ (t) ∈ Tc(t)M. Replacing.Xi by. ẋ i (t)
in the covariant derivative formula, we have 

. ∇ċ(t)Y = ẋ i (t)

(
∂Y k

∂xi
+ Tk

i j Y
j

)
∂

∂xk
.

Definition 13.5.2 The vector field. Y is parallel transported along.c ∈ M if. ∇ċ(t)Y (t)
= 0.

In coordinates 

. 
∂Y k

∂xi
+ Tk

i j Y
j = 0, k = 1, ..., n.

Definition 13.5.3 .c ⊂ M is called a geodesic of .M if . ∇ċ(t)ċ (t) = 0.

This means, in coordinates, 

. ẍ k + Tk
i j ẋ

i ẋ j = 0, for k = 1, ..., n.

Let us observe that the initial conditions.c(0) = p and.ċ(0) = vp determine a unique 
geodesic. 

The formulas obtained in this abstract case both for parallel transport and 
geodesics are similar to the formulas seen above in the chapter on basic Differential 
Geometry. 

The next theorem is important. 

Theorem 13.5.4 For any given affine connection .∇ ∈ C (M) there exists an affine 
connection .∇1 ∈ C (M) with the properties:
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.(i) ∇1 is a torsion-free connection; 

.(i i) ∇1 has the same geodesics as the initial affine connection . ∇.

Proof Consider the affine connection 

. ∇1
XY := ∇XY − 1

2
T∇ (X, Y ) ,

where.T∇ (X,Y ) = ∇XY − ∇Y X − [X, Y ] is the torsion of the initial affine connec-
tion . ∇.

In order to prove the symmetry of the affine connection.∇1, we first construct the 
torsion of it. 

. T∇1 (X, Y ) = ∇1
XY − ∇1

Y X − [X, Y ] .

Then, the computations lead to 

. T∇1 (X, Y ) = ∇XY − 1

2
T (X, Y ) − ∇Y X + 1

2
T (Y, X) − [X, Y ] = ∇XY − 1

2
∇XY +

. + 1

2
∇Y X + 1

2
[X, Y ] + 1

2
[X, Y ] − ∇Y X + 1

2
∇Y X − 1

2
∇XY − 1

2
[Y, X ] − [X, Y ] = 0.

Therefore .∇1 is a torsion-free connection. 
Now, from 

. ∇1
ċ(t)ċ (t) = ∇ċ(t)ċ (t) − 1

2
T (ċ (t) , ċ (t)) = ∇ċ(t)ċ (t)

it results that the two affine connections have the same geodesics. 
This ends the proof. [

13.6 A Geometric Description of Riemann Curvature 
Mixed Tensor via Parallel Transport 

The Riemann symbols, in the case of surfaces, were obtained by considering the 
partial derivative of Gauss formulas. The way we introduced the parallel transport of 
contravariant vectors, without using an extra dimension, allows us to think at a way 
to introduce the Riemann mixed curvature tensor without an extra dimension. 

The key of the geometric description of the curvature of an affine connection is 
the parallel transport of vectors along infinitesimal vectors. 

Suppose the infinitesimal vector is.A = (δx0, δx1, ..., δxn) and let. V be the vector 
we parallel transport along the infinitesimal vector . A. If we act in a Euclidean space 
where .Tk

i j = 0, at the end we have only the vector .A + V of components .Ak + V k . 
But, in general,.Tk

i j /= 0 and the parallel transport highlights the vector of components 
.Ak + V k + δV k , where 

.δV k = −Tk
i j V

jδxi .
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If the components of .V are .dxk , i.e. .V = (dx0, dx1, .., dxn), the previous formula 
becomes 

. δ(dxk) = −Tk
i j dx

jδxi

and each component of the parallel transported vector .V along .A becomes . δxk +
dxk + δ(dxk), that is, 

. δxk + dxk − Tk
i j dx

jδxi .

If we consider the parallel transport of the infinitesimal vector . A along the infinites-
imal vector . V , at the end we have the components .V k + Ak + d Ak , where 

. d Ak = −Tk
i j A

jdxi .

Therefore, at the end of the parallel transport of the vector . A along the vector . V , we  
obtain 

. dxk + δxk − Tk
i jδx

jdxi .

In the Euclidean space, the condition.Ak + V k = V k + Ak, k ∈ {0, 1, .., n}describes 
a parallelogram. Here, the parallelogram is described by the condition 

. Ak + (V k + δV k) = V k + (Ak + d Ak), k ∈ {0, 1, .., n},

that is, 
. ��δxk +��dxk − Tk

i j dx
jδxi = ��dxk +��δxk − Tk

i jδx
jdxi .

This condition may be written in the form 

. Tk
i j dx

jδxi = Tk
jiδx

idx j .

The last equality is true if and only if the connection coefficients symbols are sym-
metric, i.e. .Tk

i j = Tk
ji . Therefore if the torsion of the connection is null. 

Let us take into account the parallelogram considered above and a vector . W =
(W 0,W 1, ..,Wn). We consider the parallel transport of .W along the first two sides. 
Along. Awe first obtain the vector. X of coordinates.Xk := Ak + (Wk + δWk). Then, 
this vector is parallel transported along. V . We obtain the vector of coordinates. V k +
(Xk + dXk). Therefore the parallel transport of .W along the first two sides leads to 
the vector of coordinates 

. T k
1 := V k + [Ak + (Wk + δWk) + d(Ak + (Wk + δWk))] (1)

The parallel transport of .W along .V leads to the vector . Y of coordinates 

.Y k := V k + (Wk + dWk)
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and the parallel transport of . Y along . A leads to the vector of coordinates 

. Ak + (Y k + δY k).

Therefore the parallel transport of .W along the other two sides leads to the vector of 
coordinates 

. T k
2 := Ak + [V k + (Wk + dWk) + δ(V k + (Wk + dWk))] (2)

We continue to work in coordinates. The relation which allows us to consider the 
initial parallelogram is .d Ak = δV k . If we denote by 

. R := T k
2 − T k

1 ,

it results in 
. R = δ(dWk) − d(δWk).

If we compute 

. − δ(dWk) = δ(Tk
i jW

idx j ) = δTk
i jW

idx j + Tk
i j (δW

i )dx j + Tk
i jW

iδ(dx j ),

we obtain 

. − δ(dWk) = ∂Tk
i j

∂xl
δxlW idx j − Tk

i jT
i
abW

aδxbdx j − Tk
i jT

j
abW

idxaδxb.

Arranging the indexes 

. δ(dWk) =
(

−∂Tk
i j

∂xl
+ Tk

s jT
s
il + Tk

siT
s
jl

)
Widx jδxl ,

and in the same way 

. − d(δWk) =
(

∂Tk
il

∂x j
− Tk

slT
s
i j − Tk

siT
s
l j

)
Widx jδxl .

Therefore, after cancelling .Tk
siT

s
l j , one obtains 

. δ(dWk) − d(δWk) =
(

∂Tk
il

∂x j
− ∂Tk

i j

∂xl
+ Tk

s jT
s
il − Tk

slT
s
i j

)
Widx j δxl = Rk

i jlW
i dx j δxl .

The curvature formula of a torsion-free connection in coordinates is recovered. If 
the vector.R = δ(dWk) − d(δWk) is. 0, the two vectors are coincident, it happens in 
the Euclidean Geometry. If not, a curvature of .M appears.
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13.7 The Levi-Civita Connection 

We consider a metric tensor . g in the sense described in the chapter dedicated to the 
basic Differential Geometry. 

Definition 13.7.1 An affine connection .∇ ∈ C (M) which fulfills the relation 

. X (g (Y, Z)) − g (∇XY, Z) − g (∇X Z ,Y ) = 0

for all .X,Y, Z ∈ X (M) , is called a metric connection of . M . 

The previous condition can be written in the simplified form . ∇Xg(Y, Z) = 0.
Therefore 

. ∇Xg(Y, Z) := X (g (Y, Z)) − g (∇XY, Z) − g (∇X Z ,Y )

is in fact an abstract covariant derivative formula of the metric tensor. At the same 
time, this formula is a compatibility condition between the metric and the connection. 

Theorem 13.7.2 For each metric tensor . g, a unique torsion-free metric connection 
.∇ ∈ C (M) exists such that .∇Xg(Y, Z) = 0 for all . X,Y, Z ∈ X (M) .

Proof Let us first look at the uniqueness of the torsion-free metric connection 
asserted by the previous statement. 

The torsion-free condition may be written in the form.∇X Z = ∇Z X + [X, Z ] and 
replaced in the formula above. We obtain 

. X (g (Y, Z)) = g (∇XY, Z) + g (∇Z X,Y ) + g ([X, Z ] ,Y ) .

Consider .X → Y → Z → X and the corresponding relations 

. Y (g (Z , X)) = g (∇Y Z , X) + g (∇XY, Z) + g ([Y, X ] , Z) ;

. Z (g (X,Y )) = g (∇Z X,Y ) + g (∇Y Z , X) + g ([Z ,Y ] , X) .

Adding the first two and subtracting the last it results 

. 2g (∇XY, Z) = X (g (Y, Z)) + Y (g (Z , X)) − Z (g (X,Y )) − g ([X, Z ] ,Y )

+ g ([Z ,Y ] , X) − g ([Y, X ] , Z) .

If, by absurdum, there exist two connections.∇,∇1 which fulfill the previous formula, 
on subtracting, we obtain 

.2g (∇XY, Z) − 2g
(∇1

XY, Z
) = 0, for all X,Y, Z ∈ X (M) ,
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which means that . g is non degenerate and . Z is arbitrary, i.e. . ∇XY = ∇1
XY.

The existence is related to the above formula, 

. 

g (∇XY, Z) := 1

2
[X (g (Y, Z)) + Y (g (Z , X)) − Z (g (X,Y ))]−

−1

2
[g ([X, Z ] ,Y ) − g ([Z , Y ] , X) + g ([Y, X ] , Z)] .

The so-defined .∇ is a torsion-free affine metric connection, and this is shown by 
simple computations. [

The previous torsion-free metric connection is known as the Levi-Civita connec-
tion. 

In coordinates, if 

. X := ∂

∂xi
,Y := ∂

∂x j
, Z := ∂

∂xk
,

. ∇XY = ∇ ∂

∂xi

∂

∂x j
:= Tr

i j

∂

∂xr
,

. gi j := g

(
∂

∂xi
,

∂

∂x j

)
,

then 

. 2g

(
Tr
i j

∂

∂xr
,

∂

∂xk

)
= ∂g jk

∂xi
+ ∂gik

∂x j
− ∂gi j

∂xk
.

We recognize the Christoffel symbol’s definition and it is important to mention that 
Christoffel obtained the same results as Levi-Civita even before. He published them 
in Crelle’s Journal in 1869. The results of Levi-Civita regarding the parallel trans-
port and the covariant derivative were published in 1917 in Rendiconti del Circolo 
Matematico di Palermo. In the context of the Levi-Civita connection, all tensors 
considered in the abstract Differential Geometry can be described via the Christoffel 
symbols seen here. 

13.8 Coordinate Changes for Geometric Objects 
Generated by the Levi-Civita Connection 

We use the same notations as we used in the two Differential Geometry chapters of the 
book. According to the previous subsection, the Levi-Civita connection will produce, 
in coordinates, the first and second kind of Christoffel symbols. The Christoffel 
symbols of the second kind are involved in the description of the second Riemann 
symbols. This can be also seen as the description in coordinates of the curvature of 
an affine connection, while the metric will be again implied to define the Riemann 
symbols of the first kind, the Ricci symbols, the Ricci mixed symbols, and the Ricci
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scalar. After the next theorems we will find out that Christoffel symbols are not 
tensors, while Riemann symbols are. The relation with the two previous chapters of 
Differential Geometry will be fully realized. 

Theorem 13.8.1 A change of coordinates . xr = xr (xh), r ∈ {0, 1, ..., n}, h ∈
{0, 1, ..., n} transforms the Christoffel symbols of first kind under the rule 

. Ti j,k = Trs,p
∂xr

∂xi
∂xs

∂x j

∂x p

∂xk
+ grs

∂2xr

∂xi∂x j

∂xs

∂xk

Proof Let us start from 

. Ti j,k = 1

2

(
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

)

and 

. g jk = grs
∂xr

∂x j

∂xs

∂xk
.

We have 

. 
g jk

∂xi
= grs

∂x p

∂x p

∂xi
∂xr

∂x j

∂xs

∂xk
+ grs

∂2xr

∂xi∂x j

∂xs

∂xk
+ grs

∂xr

∂x j

∂2xs

∂xi∂xk
,

. 
gki

∂x j = grs

∂x p

∂x p

∂x j

∂xr

∂xk
∂xs

∂xi
+ grs

∂2xr

∂x j∂xk
∂xs

∂xi
+ grs

∂xr

∂xk
∂2xs

∂x j∂xi
,

. 
gi j

∂xk
= grs

∂x p

∂x p

∂xk
∂xr

∂xi
∂xs

∂x j + grs
∂2xr

∂xk∂xi
∂xs

∂x j + grs
∂xr

∂xi
∂2xs

∂xk∂x j .

Since 

. r → s → p → r =⇒ grs

∂x p

∂x p

∂xi
∂xr

∂x j

∂xs

∂xk
= gsp

∂xr
∂xr

∂xi
∂x p

∂xk
∂xs

∂x j ,

. r → p → s → r =⇒ grs

∂x p

∂x p

∂x j

∂xr

∂xk
∂xs

∂xi
= gpr

∂xs
∂xr

∂xi
∂x p

∂xk
∂xs

∂x j ,

after we add, considering the first two equalities with plus and the last one with 
minus, we obtain 

.Ti j,k = Trs,p
∂xr

∂xi
∂xs

∂x j

∂x p

∂xk
+ grs

∂2xr

∂xi∂x j

∂xs

∂xk
.

[
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Theorem 13.8.2 A change of coordinates . xr = xr (xh), r ∈ {0, 1, , ..., n}, h ∈
{0, 1, ..., n} transforms the Christoffel symbols of second kind under the rule 

. 
∂2xk

∂xi∂x j = −Tk
rs

∂xr

∂xi
∂xs

∂x j + T
r
i j

∂xk

∂xr
.

Proof We start from the equalities 

. 

⎧
⎨

⎩

gi jg jk = δik

g jk = grs
∂xr

∂x j

∂xs

∂xk
=⇒ gi jgrs

∂xr

∂x j

∂xs

∂xk
= δik

which are multiplied by .g pq ∂xk

∂x p
. It results in 

. gi jgrs
∂xr

∂x j

∂xs

∂xk
g pq ∂xk

∂x p
= δikg

pq ∂xk

∂x p
,

i.e. 

. gi jgrs
∂xr

∂x j g
pq ∂xs

∂x p
= g pq ∂xi

∂x p
.

The left side makes sense only if .s = p, therefore we have 

. gi jg pqgpr
∂xr

∂x j = g pq ∂xi

∂x p
,

that is 

. gi j
∂xq

∂x j = g pq ∂xi

∂x p
.

Multiplying 

. Ti j,k = Trs,p
∂xr

∂xi
∂xs

∂x j

∂x p

∂xk
+ grs

∂2xr

∂xi∂x j

∂xs

∂xk

by .gmk , we obtain 

. T
m
i j = gmkTi j,k = Trs,p

∂xr

∂xi
∂xs

∂x j · gmk ∂x p

∂xk
+ grs

∂2xr

∂xi∂x j · gmk ∂xs

∂xk
,

that is 

. T
m
i j = Trs,pg

pq ∂xm

∂xq
· ∂xr

∂xi
∂xs

∂x j + grs · gsq
∂xm

∂xq
· ∂2xr

∂xi∂x j ,

and finally 

.T
m
i j = Tq

rs

∂xm

∂xq
· ∂xr

∂xi
∂xs

∂x j + ∂xm

∂xr
· ∂2xr

∂xi∂x j .
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After multiplying by .
∂xk

∂xm
, it results in 

. T
m
i j

∂xk

∂xm
= Tq

rs

∂xk

∂xm
∂xm

∂xq
· ∂xr

∂xi
∂xs

∂x j + ∂xm

∂xr
∂xk

∂xm
· ∂2xr

∂xi∂x j ,

which can be arranged in the form 

.
∂2xk

∂xi∂x j = −Tk
rs

∂xr

∂xi
∂xs

∂x j + T
r
i j

∂xk

∂xr
.

[

Theorem 13.8.3 A change of coordinates transforms the Riemann symbols accord-
ing to the formulas 

. 1) R
m
i jl

∂xk

∂xm
= Rk

rsp

∂xr

∂xi
∂xs

∂x j

∂x p

∂xl
.

. 2) Rebgd = Rr jkl
∂xr

∂xe
∂x j

∂xb
∂xk

∂xg

∂xl

∂xd
.

Proof For 1), we consider the partial derivative .
∂

∂ x̄ l
of the expression 

. 
∂2xk

∂xi∂x j = −Tk
rs

∂xr

∂xi
∂xs

∂x j + T
r
i j

∂xk

∂xr
.

It results in 

. 
∂3xk

∂xl∂xi∂x j =

. = −∂Tk
rs

∂x p

∂x p

∂xl
∂xr

∂xi
∂xs

∂x j
− Tk

rs

(
∂2xr

∂xl∂xi
∂xs

∂x j
+ ∂xr

∂xi
∂2xs

∂xl∂x j

)
+ ∂T

r
i j

∂xl
∂xk

∂xr
+ T

r
i j

∂2xk

∂xl∂xr
.

We commute . l and . j indexes in the previous formula 

. 
∂3xk

∂x j∂xi∂xl
=

. = −∂Tk
rs

∂x p

∂x p

∂x j

∂xr

∂xi
∂xs

∂xl
− Tk

rs

(
∂2xr

∂x j∂xi
∂xs

∂xl
+ ∂xr

∂xi
∂2xs

∂x j∂xl

)
+ ∂T

r
il

∂x j

∂xk

∂xr
+ T

r
il

∂2xk

∂x j∂xr
.

Since 

.
∂3xk

∂xl∂xi∂x j = ∂3xk

∂x j∂xi∂xl
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we put the two equalities together and separate the quantities having bar on second 
kind Christoffel symbols by the ones without bar. We also cancel the equal quantities 
and the left member, here denoted as .LM , becomes 

. LM = ∂Tk
rs

∂x p

∂x p

∂x j

∂xr

∂xi
∂xs

∂xl
− ∂Tk

rs

∂x p

∂x p

∂xl
∂xr

∂xi
∂xs

∂x j
+ Tk

rs
∂2xr

∂x j∂xi
∂xs

∂xl
− Tk

rs
∂2xr

∂xl∂xi
∂xs

∂x j
.

We divide the left member .LM in two parts. In the first part, we interchange . p and 
. s. Then 

. 
∂Tk

rs

∂x p

∂x p

∂x j

∂xr

∂xi
∂xs

∂xl
− ∂Tk

rs

∂x p

∂x p

∂xl
∂xr

∂xi
∂xs

∂x j
= ∂Tk

rp

∂xs
∂xs

∂x j

∂xr

∂xi
∂x p

∂xl
− ∂Tk

rs

∂x p

∂x p

∂xl
∂xr

∂xi
∂xs

∂x j
=

. =
(

∂Tk
rp

∂xs
− ∂Tk

rs

∂x p

)
∂xs

∂x j

∂xr

∂xi
∂x p

∂xl
.

In the second part of the left member, we use the formulas which explain how the 
second-type Christoffel symbols are transformed under a change of coordinates: 

. Tk
rs

∂2xr

∂x j∂xi
∂xs

∂xl
− Tk

rs

∂2xr

∂xl∂xi
∂xs

∂x j =

. = Tk
rs

(
−Tr

ab
∂xa

∂x j

∂xb

∂xi
+ T

a
ji

∂xr

∂xa

)
∂xs

∂xl
− Tk

rs

(
−Tr

ab
∂xa

∂xl
∂xb

∂xi
+ T

a
li

∂xr

∂xa

)
∂xs

∂x j
=

. = −Tk
rsT

r
ab

∂xa

∂x j

∂xb

∂xi
∂xs

∂xl
+ Tk

rsT
r
ab

∂xa

∂xl
∂xb

∂xi
∂xs

∂x j
+ Tk

rsT
a
ji

∂xr

∂xa
∂xs

∂xl
− Tk

rsT
a
li

∂xr

∂xa
∂xs

∂x j
.

We rearrange the dummy indexes such that the product of the three ratios becomes 

. 
∂xs

∂x j

∂xr

∂xi
∂x p

∂xl
.

The left member, denoted here by .LM , becomes 

. 

(
∂Tk

rp

∂xs
− ∂Tk

rs

∂x p
+ Tk

asT
a
pr − Tk

apT
a
rs

)
∂xs

∂x j

∂xr

∂xi
∂x p

∂xl
+ Tk

rsT
a
ji

∂xr

∂xa
∂xs

∂xl
− Tk

rsT
a
li

∂xr

∂xa
∂xs

∂x j
.

The final form of the left member is 

. LM = Rk
rsp

∂xs

∂x j

∂xr

∂xi
∂x p

∂xl
+ Tk

rsT
a
ji

∂xr

∂xa
∂xs

∂xl
− Tk

rsT
a
li

∂xr

∂xa
∂xs

∂x j .

In same way, the right member, denoted here by .RM , becomes
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. RM = ∂T
r
il

∂x j

∂xk

∂xr
− ∂T

r
i j

∂xl
∂xk

∂xr
+ T

r
il

∂2xk

∂x j∂xr
− T

r
i j

∂2xk

∂xl∂xr
=

. 

(
∂T

r
il

∂x j
− ∂T

r
i j

∂xl

)
∂xk

∂xr
+ T

r
il

(
−Tk

ab
∂xa

∂x j

∂xb

∂xr
+ T

s
jr

∂xk

∂xs

)
+ T

r
i j

(
−Tk

ab
∂xa

∂xl
∂xb

∂xr
+ T

s
lr

∂xk

∂xs

)

. =
(

∂T
s
il

∂x j
− ∂T

s
i j

∂xl
+ T

r
ilT

s
jr − T

r
i jT

s
lr

)
∂xk

∂xs
− T

r
ilT

k
ab

∂xa

∂x j

∂xb

∂xr
+ T

r
i jT

k
ab

∂xa

∂xl
∂xb

∂xr
=

. = R
s
i jl

∂xk

∂xs
− T

r
ilT

k
ab

∂xa

∂x j

∂xb

∂xr
+ T

r
i jT

k
ab

∂xa

∂xl
∂xb

∂xr
.

Comparing the final forms of the left and right members after reducing the equal 
terms, we obtain the formula 

. Rk
rsp

∂xr

∂xi
∂xs

∂x j

∂x p

∂xl
= R

m
i jl

∂xk

∂xm
.

2) In 1), we multiply the right member by .gri
∂xr

∂ x̄ e
and the left member by the same 

quantity written in the form.gse
∂xs

∂xi
. 

This is possible because the formula .gri
∂xr

∂xe
= gse

∂xs

∂xi
comes from 

. ges = gse = gri
∂xr

∂xe
∂xi

∂xs
,

formula which was proved before. Then 

. gse R
a
bgd

∂xi

∂xa
∂xs

∂xi
= gri R

i
jkl

∂xr

∂xe
∂x j

∂xb
∂xk

∂xg

∂xl

∂xd
.

In the left member, .s := a leads to 

. Rebgd = Rr jkl
∂xr

∂xe
∂x j

∂xb
∂xk

∂xg

∂xl

∂xd
.

We may say that Riemann symbol of second kind is a mixed curvature .(1, 3)-type 
tensor and the Riemann symbol of first kind is a curvature covariant .(0, 4)-type 
tensor. [



456 13 More Than Metric: Geometric Objects for Alternative Pictures of Gravity

13.9 Some Remarks on the Mathematical Language 
of Metric-Affine Gravity 

Before developing the Metric-Affine Theories of Gravity, in particular the Telepar-
allel Gravity, we want to show that the above mathematical tools can be perfectly 
adopted for a formulation more general than the standard metric one. In this section, 
we summarize some useful results and formulas which will be fully developed in the 
next chapter. 

Let us start from the Levi-Civita connection. In coordinates, if 

. X := ∂

∂xi
,Y := ∂

∂x j
, Z := ∂

∂xk
,

. ∇XY = ∇ ∂

∂xi

∂

∂x j
:= Tr

i j

∂

∂xr
,

. gi j := g

(
∂

∂xi
,

∂

∂x j

)
,

then 

. 2g

(
Tr
i j

∂

∂xr
,

∂

∂xk

)
= ∂g jk

∂xi
+ ∂gik

∂x j
− ∂gi j

∂xk
,

that is, the Christoffel symbols emerge. Let us modify this statement in the new 
notation. Instead of 

. X := ∂

∂xi

we write 
. X := ∂i .

Therefore we have: 
if 

. X := ∂i , Y := ∂ j , Z := ∂k,

. ∇XY = ∇∂i ∂ j := Tr
i j∂r ,

. gi j := g
(
∂i , ∂ j

)
,

then 
.2g

(
Tr
i j∂r , ∂k

) = ∂ig jk + ∂ jgik − ∂kgi j .
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Another example is 

. ∇XY = Xi

(
∂Y k

∂xi
+ Tk

i j Y
j

)
∂

∂xk
.

This formula is written in the new form as 

. ∇XY = Xi
(
∂i Y

k + Tk
i j Y

j
)
∂k .

The Riemann curvature tensor formula 

. Ri
l jk = ∂Ti

lk

∂x j
− ∂Ti

l j

∂xk
+ Ts

lkT
i
s j − Ts

l jT
i
sk

is written now in a simpler way 

. Ri
l jk = ∂ jT

i
lk − ∂kT

i
l j + Ts

lkT
i
s j − Ts

l jT
i
sk .

It is 

. Y =
nE

i=1

Y i ∂

∂xi

and 

. ∇XY :=
nE

i=1

X (Y i )
∂

∂xi

are replaced by 

. Y =
nE

i=1

Y i∂i = Y i∂i

and 

. ∇XY :=
nE

i=1

X (Y i )∂i = X (Y i )∂i ,

if we take into consideration Einstein’s summation formula. 

13.9.1 From Latin to Greek Indexes and Vice Versa 

An important remark is in order at this point. In the following chapter, we will 
consider Greek indexes for coordinates and Latin indexes for tetrads. This formalism 
allows us to pass from space-time (holonomic) coordinates to tetradic (anholonomic)
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coordinates. The physical reasons for this change is a wide field of debate which we 
will take into account in the next chapter. For a detailed discussion see [ 9, 45]. 

With this perspective in mind, let us define objects in space-time coordinates with 
Greek indexes. Accordingly, the metric invariant, given by the metric tensor .gμν , is  
written in the form 

. ds2 = gμνdx
μdxν .

The covariant derivative .∇ν acts on contravariant vector fields, denoted here by .Aμ, 
as 

. ∇ν A
μ := ∂ν A

μ + Tμ
ναA

α

and for covariant vector fields, i.e. for differential .1-forms, as 

. ∇ν Aμ := ∂ν Aμ − Tα
νμAα.

Covariant derivative .∇ acts on a .(1, 1) tensor .Aα
β in the following way: 

. ∇μA
α
β := ∂μA

α
β + Tα

μρA
ρ
β − T

ρ
μβ A

α
ρ.

Other covariant derivatives can be written accordingly. 
An important result is related to the commutator of the covariant derivatives. We 

will prove here that this is a way to introduce the curvature tensor, that is, the geo-
metric curvature for our set of coordinates, and also the torsion of the connection. It is 

. [∇ν ,∇μ]V α = ∇ν∇μV
α − ∇μ∇νV

α = ∇ν(∂μV
α + Tα

μβV
β) − ∇μ(∂νV

α + Tα
νβV

β) =

. = ∂ν(∂μV
α + Tα

μβV
β) + Tα

νρ(∂μV
ρ + T

ρ
μβV

β) − Tρ
νμ(∂ρV

α + Tα
ρβV

β) −

. − ∂μ(∂νV
α + Tα

νβV
β) − Tα

μρ(∂νV
ρ + T

ρ
νβV

β) + Tρ
μν(∂ρV

α + Tα
ρβV

β) =

. = Rα
μνβV

β − T ρ
νμ∇ρV

α .

The four terms containing the quantities.Tα
νρ∂μV ρ, Tα

μρ∂νV ρ appear both with alter-
nate sign and then they cancel out. It is: . ∂ν∂μV α − ∂μ∂νV α = 0 .

The formula we obtained is 

. [∇ν,∇μ]V α = Rα
μνβV

β − T ρ
νμ∇ρV

α.

We have an equivalent formula for .1-forms, 

. [∇ν,∇μ]Vα = −Rβ
μναVβ − T ρ

νμ∇ρVα

as it can be easily derived. Here, the curvature tensor is
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. Rα
βγδ = ∂γT

α
βδ − ∂δT

α
βγ + Ts

βδT
α
sγ − Ts

βγT
α
sδ

and a simple computation leads to 

. Rα
βγδ = −Rα

βδγ .

In the same way, we can derive the Bianchi identities. In case of symmetric connec-
tion, we have the first Bianchi identity: 

. Rα
βγδ + Rα

γδβ + Rα
δβγ = 0 ,

and the second Bianchi identity: 

. ∇αR
μ
νβγ + ∇βR

μ
νγα + ∇γR

μ
ναβ = 0 ,

as presented in the Differential Geometry chapter. Clearly, in presence of torsion, 
the right-hand side of the second Bianchi identity is not zero but it results in a 
combination of Riemann and torsion tensors. It is 

. ∇λR
α
βμν + ∇μR

α
βνλ + ∇νR

α
βλμ = −T ρ

μλR
α
βρν − T ρ

νλR
α
βρμ − T ρ

νμR
α
βρλ ,

as it can be derived with some algebra. This exercise is left to the reader and will be 
reconsidered in the next chapter. 

We can rise and lower indexes using the metric tensor. From.Aα
β , we get the. (2, 0)

tensor .Aγα by the rule 
. Aγα = gγλAα

λ,

or the .(0, 2) tensor .Aγα by the rule 

. Aγα = gγλA
λ
α.

The case of objects as .Aαβγ is more interesting. We can rise each index but we have 
to take care of its position. Let us see some examples. 

. Aμ
βγ := gμαAαβγ,

while in the case of the second index, we have 

. Aμ
α γ := gμβ Aαβγ .

The same, in the case of the third index, 

. Aμ
αβ := gμγ Aαβγ .

Therefore an expression like
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. Aμ
α γ − Aμ

αγ

is not necessary . 0 in the case when the initial .Aαβγ has supplementary properties as 
we will see below. 

We can proceed in the same way for the commutator of covariant derivatives. We 
obtain 

. [∇μ,∇ν]Vα = RαβμνV
β − T β

μν∇βVα

and 
. [∇μ,∇ν]Vα = −RβαμνV

β − T β
μν∇βVα,

so we can deduce 
. Rαβμν = −Rβαμν .

Since the antisymmetry is relevant in presence of torsion, this property can play a 
very important role in Metric-Affine Theories of Gravity, as we will see in the next 
chapter. 

In these theories, the components of the Levi-Civita connection are denoted by 

. 

{
ρ
μν

}
:= 1

2
gρλ(∂μgλν + ∂νgμλ − ∂λgμν).

Let us remember that, if the connection is Levi-Civita, we have 

. ∇μgνρ = 0.

This property is the isometry already discussed above in another framework. Isometry 
is related, in this way, to the Equivalence Principle. If isometry does not hold, that 
is if the connection.∇ is arbitrary and not compatible with the metric, we can define 
the non-metricity tensor 

. Qμνρ := ∇μgνρ = ∂μgνρ − Tλ
νμgλρ − Tλ

ρμgνλ.

We can adopt the notation: 
. A(μν) = Aμν + Aνμ

for symmetric objects and 
. A[μν] = Aμν − Aνμ

for anti-symmetric objects. Using the first formula, we can write the non-metricity 
tensor as 

. Qμνρ := ∇μgνρ ≡ ∂μgνρ − Tλ
(ν|μgρ)λ.

Using the second formula, one can write the torsion tensor .T α
βγ = Tα

βγ − Tα
γβ in the 

form
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. T α
βγ = Tα

[βγ].

An important remark is in order at this point. If torsion and non-metricity are different 
from zero, the Levi-Civita connection is just a part of a more general connection 
which is 

. Tα
μν = 1

2
gαβ(∂μgνβ + ∂νgμβ − ∂βgμν) + 1

2
(T α

μ ν + T α
ν μ − T α

μν) − 1

2
(Qρ

μν − Q ρ
μ ν − Q ρ

ν μ).

In the next chapter, we will discuss in detail this extension. 
Another important notion we are going to discuss is that of the tetrad fields 

or the vierbein, that is, the “four-legs” [ 9]. They are the fundamental variables of 
Teleparallel Gravity. 

We can suppose that, at each point of the tangent space of a given.4-manifold, there 
are four vector fields.(eμ

a ),with.μ, a ∈ {0, 1, 2, 3}, that is,.{eμ
0 , e

μ
1 , e

μ
2 , e

μ
3 }which form 

an orthonormal basis with respect to the metric tensor.gμν . This means the following 
relation is fulfilled: 

. gμνe
μ
a e

ν
b = ηab.

Here.ηαβ = ηαβ = diag(−1, 1, 1, 1) are the components of the flat Minkowski metric 
of signature .(− + ++). If we define by .(eaμ), the inverse of the vector .(e

μ
a ), we can 

compute the metric components by the formulas 

. gμν = eaμe
b
νηab, gμν = eμ

a e
ν
bη

ab.

Consider a Lorentz rotation. Therefore consider a matrix who keeps invariant the 
Minkowski metric written in the form 

. ds2 = −dt2 + dx2 + dy2 + dz2.

This Lorentz rotation transforms the tetrad field according to the rule 

. eaμ → /a
be

b
μ

because this is the only way we can preserve the orthonormal basis. This suggests 
that, if we have a matrix with two kinds of indexes, Latin (anholonomic) and Greek 
(holonomic), the tetrad field helps us to construct tensor quantities with the same 
kind of indexes. An example is 

. Aa1a2...an
b1b2...bn

= ea1α1
ea2α2

...eanαn
Aα1α2...αn

β1β2...βn
eβ1
b1
eβ2
b2

...eβn
bn

.

These arguments will be reconsidered in detail in the forthcoming chapter. 
Finally, we can introduce new coefficients .ωa

μb to extend the parallel transport to 
more general quantities. We adopt the following notation. For Greek indexes, we
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use. T coefficients and for Latin indexes, we use. ω coefficients. We define. ω the spin 
connection. An example is the following: 

. ∇μA
aν = ∂μA

aν + Tν
μρA

aρ + ωa
μb A

bν .

Tetrad field can change the index type. If we want to commute with respect to the 
covariant derivative of a tensor, we get the condition: 

. ∂μe
a
ν + ωa

μbe
b
ν − Tρ

μνe
a
ρ = 0,

which means the vanishing of the new covariant derivative of the tetrad. 
In other words, we can define the Lorentz covariant derivative with respect to the 

Latin indexes only, denoted by .Dμ. It is  

. Tρ
μν = eρ

a(∂μe
a
ν + ωa

μbe
b
ν) ≡ eρ

aDμ.

The spin connection can be defined directly by the formula 

. ωa
μb = eρ

aT
ρ
μνe

ν
b − eν

b∂μe
a
ν .

We have now two curvatures tensors, one related to . T and one related to . ω: 

. Rα
βγδ = ∂γT

α
βδ − ∂δT

α
βγ + Ts

βδT
α
sγ − Ts

βγT
α
sδ,

. Rα
βγδ(ω) = ∂γω

α
βδ − ∂δω

α
βγ + ωs

βδω
α
sγ − ωs

βγω
α
sδ .

They are related to each other by 

. Rα
βγδ(T) = eα

a R
a
bγδ(ω)ebβ .

In particular, if one finds the spin connection .ω corresponding to the Levi-Civita 
connection .T(G) of a given metric . g, a tetrad description of General Relativity is 
obtained. 

To conclude, we have now all the ingredients to deal with Metric-Affine Theories 
of Gravity which we will discuss in detail in the next chapter.



Chapter 14 
Metric-Affine Theories of Gravity 

The development of Physics, like the development of any 
science, is a continuous one. 

Owen Chamberlain 

General Relativity is not the end of the story. Several issues, ranging from Quantum 
Gravity to the Dark Side of the Universe need to be addressed in a self-consistent 
theory. Here we want to summarize some of these approaches. In particular, we want 
to show that the same theory, General Relativity, can be represented in different 
ways. This fact is questioning the basic foundations of the theory like the Equiva-
lence Principle, the Lorentz Invariance, and so on. According to this picture, new 
possibilities can be taken into account in view of further theoretical and experimental 
developments. Topics of this chapter are more advanced with respect to the rest of 
the book and could be considered for some short advanced lectures. 

14.1 A Survey on Theories of Gravity 

In the nineteenth century, Newtonian mechanics was considered as the best theory 
to describe gravity, since it was successfully exploited in everyday life and capable 
of describing the motion of planets and stars. However, in this period, there was a 
great cultural ferment around non-Euclidean geometries starting from fundamen-
tal works by Gauss, Lobachevsky, Bolyai, Riemann, Bianchi, Ricci-Curbastro, and 
several others [ 29]. The Euclidean framework, the arena for classical Physics, was 
overtaken by the formulation of elliptical and hyperbolic geometries, stemming out 
from a rigorous axiomatic reformulation of the geometry foundations. Indeed, two 
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approaches were more and more emerging from these studies: .(i) affine geometry, 
introduced by Euler in 1748, deriving from the Latin word affinis, meaning related, 
and after promoted by Möbius, Klein, and Weyl. It essentially focuses on the study 
of parallel lines, based on the validity or redefinition of the fifth Euclid postulate, 
and on the affine transformations [ 24]; .(i i) metric geometry, introduced by Fréchet 
and Hausdorff, relies on a metric function defining the concept of distance between 
any two points, members of a non-empty set [ 43]. 

Einstein, inspired by this line of nonconformist ideas, arrived, in 1915, to the for-
mulation of General Relativity (GR) [ 91]. This new vision of gravitational interaction, 
ruled by the space–time curvature, took time to be comprehended and accepted by 
the scientific community owed to the outcoming effects, retained to be too small to 
be measured and observed at that time. The well-known subsequent astronomical 
confirmations constituted the success of GR [195]. 

Although GR was not yet validated, some authors were however eager to advance 
proposals to extend it with the aim to fulfil more general purposes. In 1918, Weyl 
started to study the question on how to connect gravity and electromagnetism in a 
single and coherent geometric theory. To achieve this objective, he took into account 
an additional gauge field, which singles out a unique length connection, whose four 
additional degrees of freedom (DoFs) are associated to the electromagnetic poten-
tials. In the Weyl geometry, besides the GR connection, there is also an additional 
length connection, which is symmetric, metric incompatible, and gauge invariant. 
The consequence is that, during a parallel transport, both direction and length of 
vectors vary [192, 193]. However, Weyl’s theory revealed to be in conflict not only 
with some experiences (for example, the frequency of spectral lines of atomic clocks 
depends on the location and past histories of the atoms), but even in a more fun-
damental way with Quantum Mechanics (e.g. masses of particles rest on their past 
histories). 

In 1930, along the same line of thinking, Einstein himself proposed some modifi-
cations to his theory. Fascinated by teleparallelism and tetrad formalism, he initiated 
a prolific and extensive correspondence mainly with Cartan, Weitzenböck, and Lanc-
zos [109, 110, 188]. Indeed, since the tetrad fields posses sixteen independent com-
ponents, he associated ten of them to the metric tensor, whereas the other six were 
believed to be linked to a separate connection, entrusted to model electromagnetic 
potentials. Unfortunately, he failed in his attempt, but his studies shed new light on 
the importance of additional DoFs, which theoretically belong to the Lorentz group 
and physically are a consequence of the local Lorentz invariance. 

In 1922, Cartan concentrated on a different direction, since he considered a natural 
extension of GR constituted not only by the Levi-Civita connection but also by the 
torsion tensor (essentially the antisymmetric part of a metric compatible affine con-
nection). Given these premises, he developed all the ensuing geometric formulation 
[ 74], where he suggested that the torsion can be physically related to the intrinsic 
(quantum) angular momentum of matter and it vanishes as soon as vacuum regions 
are considered [ 69– 73].
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Around 1960, Kibble and Sciama revisited the theory formulating it within the 
gauge theory of the Poincaré group [119, 123, 170]. This approach can be extended 
to the more general affine group, leading thus to the metric-affine gauge gravity 
[115]. 

There have been other proposals and experiments to probe the fundamental nature 
of gravitation, in particular, to establish its geometric structure. In this vein, it was 
growing the awareness that affinity and metricity could be considered as two different 
and independent concepts, where the affine connection could not respect a priori the 
metric postulate. This perspective is considered into the so-called Palatini approach, 
where GR is constituted by a metric tensor and an affine connection, considered as two 
different geometric structures. Varying the Einstein–Hilbert action with respect to the 
metric, the Einstein field equations are recovered; whereas, varying it with respect 
to the affine connection, the metric compatibility condition is naturally obtained and 
the Levi-Civita connection is restored [157]. This shows that GR structure entails 
metric compatibility, and the affine connection can be considered as a true dynamical 
field. As it is well known, this coincidence does not work for extensions of GR as 
. f (R) [ 10]. 

These considerations led to the development of theories of gravity beyond the 
Einstein picture, where the field equations, besides the scalar curvature, can be for-
mulated in terms of other geometric invariants. Furthermore, the affine connections 
were not considered anymore with an ancillary role with respect to the metric ten-
sor, but, contrarily, they assumed a dynamical fundamental role. These approaches 
gave rise to the current variegated realm of the Extended and Alternative Theories 
of Gravity (see e.g. [ 45, 51, 55, 61, 78, 147, 148, 150, 172]). 

In any case, GR revealed to be extraordinarily successful because passed several 
astrophysical and cosmological observational tests like the Solar System tests [ 85, 
146, 195], the direct detection of gravitational waves [ 2– 4, 19, 168], the recent black 
hole imaging [ 6, 94– 99, 156], and other robust confirmations [ 76, 111, 128, 174]. 

Despite these achievements, the theory exhibits various pathological issues, still 
matter of debate, suggesting that approaches beyond Einstein gravity should be pur-
sued [ 55]. For example, from galaxies to cosmic evolution, the infrared behaviour 
of gravitational field presents several shortcomings mainly related to the Dark Mat-
ter [ 15, 48, 65, 139] and Dark Energy problems [ 51, 68, 80], and the tensions in 
cosmological parameters like .H0 [ 11, 87]. At ultraviolet scales, the lack of renor-
malizability and unitarity of gravitational field points out that a final, self-consistent 
theory of Quantum Gravity is not at hand [ 63, 106, 107, 153, 164, 180, 181]. 

In general, the formulation of a new theory of gravity to solve the above issues 
is not a simple task. There are principles, constraints, mathematical consistencies, 
and the agreement with observations that any novel approach must necessarily fulfill 
before being accepted as a self-consistent picture. This is one of the thorny theoretical 
challenges of modern physics. 

In this perspective, we want to focus our attention on GR and its dynamically 
equivalent formulations, in view to put in evidence similarities and differences 
towards a unified view of gravitational interaction.
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This chapter is organized as follows: in Sect. 14.2, we describe the general frame-
work, represented by the metric-affine theories of gravity, in which the so-called 
Geometric Trinity of Gravity [ 23] can be formulated (Sect. 14.3). In Sect. 14.4, we  
provide the mathematical tools necessary for the formulation of any theory of gravity. 
In Sect. 14.5, we discuss the Geometric Trinity of Gravity in terms of their Lagrangian 
equivalence. Section 14.6 is devoted to the field equations derived from the second 
Bianchi identity. In Sect. 14.7, we analyse the spherically symmetric solutions in the 
three equivalent formulations, recovering, in all of them, the Schwarzschild metric 
and the Birkhoff theorem. Finally, Sect. 14.8 is devoted to the conclusions and to 
the discussion of some crucial issues necessary for any self-consistent formulation 
of gravity. 

Notations. We adopt the metric signature .(−,+,+,+). Greek indexes take val-
ues .0, 1, 2, 3, while the lowercase Latin ones .1, 2, 3. Capital Latin letters indicate 
tetrad indexes The flat metric is indicated by .ηαβ = ηαβ = diag(−1, 1, 1, 1). The  
determinant of the metric .gμν is denoted by . g. Round (square) brackets around 
a pair of indexes stand for symmetrization (antisymmetrization) procedure, i.e. 
.A(i j) = Ai j + A ji (.A[i j] = Ai j − A ji ). 

In this chapter, we will number the formulas to avoid to report them several times 
along the discussion. 

14.2 Metric-Affine Theories of Gravity 

A first extension of Einstein gravity starts by generalizing the affine connections 
which cannot be strictly Levi-Civita. A metric-affine theory is defined by the follow-
ing triplet .{M, gμν, ┌

ρ
μν}, where .M is a four-dimensional space–time manifold, . gμν

is a rank-two symmetric tensor (with 10 independent components), and .┌ρ
μν is the 

affine connection (endowed with 64 independent components). A priori  there is no 
relation between the metric and the affine connection, where the former is responsible 
to describe the casual structure, whereas the latter deals with the geodesic structure. 
As it is well known, the structures coincide if the Equivalence Principle is the basic 
foundation of the theory [ 55, 195]. 

Let us consider now a system of coordinates.{x0, x1, x2, x3} defined on. M, where 
.x0 labels the time and.{x1, x2, x3} the space. The metric .gμν defines the line element 
.ds2 = gμνdxμdxν . The notion of covariant derivative. ∇ acts on a generic.(1, 1) tensor 
in the following way [190]: 

.∇μA
α
β := ∂μA

α
β − ┌

ρ
βμA

α
ρ + ┌α

ρμA
ρ
β . (14.1) 

The components of the general affine connection .┌ρ
μν can be uniquely decomposed 

as follows [ 18]: 

.┌ρ
μν :=

{
ρ
μν

}
+ K ρ

μν + Lρ
μν, (14.2)
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where .

{
ρ
μν

}
is the Levi-Civita connection, .K ρ

μν is the contortion tensor, and . Lρ
μν

is the disformation tensor, whose explicit expressions are [ 18] 

.

{
ρ
μν

}
:= 1

2
gρλ(∂μgλν + ∂νgμλ − ∂λgμν), (14.3a) 

.K ρ
μν :=

1

2
(T ρ

μ ν + T ρ
ν μ − T ρ

μν), (14.3b) 

.Lρ
μν :=

1

2
(Qρ

μν − Q ρ
μ ν − Q ρ

ν μ). (14.3c) 

Notice that, while the Levi-Civita part is non-tensorial, the contortion and disfor-
mation terms are tensors under changes of coordinates. The three main geometric 
objects (related to the dynamics) are the curvature tensor .Rμ

ναβ , the  torsion tensor 
.T ρ

μν , and the non-metricity tensor .Qρμν . Their explicit expressions in terms of metric 
and connections are [ 18] 

.Rμ
νρσ := ∂ρ┌

μ
νσ − ∂σ┌μ

νρ + ┌μ
τρ┌

τ
νσ − ┌μ

τσ┌
τ
νρ, (14.4a) 

.T μ
νρ := ┌

μ
[ρν] ≡ ┌μ

ρν − ┌μ
νρ, (14.4b) 

.Qμνρ := ∇μgνρ ≡ ∂μgνρ − ┌λ
(ν|μgρ)λ = ∂μgνρ − ┌λ

νμgλρ − ┌λ
ρμgνλ /= 0. (14.4c) 

These tensors show the following symmetries: 

.Rμ
νρσ = −Rμ

νσρ, (14.5a) 

.T μ
νρ = −T μ

ρν, (14.5b) 

.Qμνρ = Qμρν . (14.5c) 

The above geometric quantities, differently affect the parallel transport of a vector 
on a manifold. We have that: 

• curvature manifests its presence when a vector is parallel transported along a 
closed curve on a non-flat background and comes back to its starting point forming 
a non-null angle with its initial position; 

• torsion entails a rotational geometry, where the parallel transport of two vectors is 
antisymmetric by exchanging the transported vectors and the direction of transport. 
This property results in the non-closure of parallelograms; 

• non-metricity is responsible to alter the length of the vectors along the transport. 

In a generic metric-affine theory, all these effects can work together and could have 
also further meanings corresponding to physical quantities (e.g. the torsion tensor is 
linked to the spin in the Einstein–Cartan theory [119]).
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Fig. 14.1 A possible classification of theories emerging from metric-affine gravity 

In general, the following Bianchi identities hold [ 18]: 

.Rμ
[νρσ] = ∇[νT

μ
ρσ] + T μ

α[νT
α
ρσ], (14.6a) 

.∇[αR
μ
|ν|ρσ] = −Rμ

ντ [αT
τ
ρσ], (14.6b) 

which involve only curvature and torsion tensors. 
Metric-affine theories are a broad class of theories whose dynamics can be related 

to the tensors .Rμ
νρσ , .T

μ
νρ, and .Qμνρ which can be grossly classified as in Fig. 14.1. 

(1) The Riemann–Cartan geometry is expressed in terms of metric compatible cur-
vature and torsion tensors. It is also known in the literature as .U4 or Einstein– 
Cartan–Sciama–Kibble theory, where the role of the torsion is deputed to model 
the quantum spin effects present in the matter [116–119]. 

(2) The Weyl geometry is constructed by vanishing the torsion, where curvature 
and non-metricity are the only surviving geometric objects. This theory has 
interesting implications and, moreover, it represents also the origin of the . U (1)
gauge theory [194]. 

(3) Teleparallel geometries are curvatureless and are based on the concept of Fer-
nparallelismus or parallelism at distance, because two vectors can be immedi-
ately seen whether they are parallel or not, since the parallel transport of vectors 
becomes independent of the path [ 9]. They admit two special subclasses, repre-
sented by
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(3.1) metric teleparallel theories expressed only in terms of the torsion tensor; 
(3.2) symmetric teleparallel theories described only by the non-metricity tensor. 

(4) The Riemannian geometry represents the first arena within which Einstein 
framed his theory, constructed only upon the curvature tensor [140, 162]. 

(5) The Minkowski geometry is obtained by setting curvature, torsion, and non-
metricity to zero, where the flat metric .ημν , as well as zero affine connections, 
are adopted. This is the arena of Special Relativity [140, 162]. 

14.3 The Geometric Trinity of Gravity 

Among the possible metric-affine gravity theories, Riemannian and teleparallel mod-
els are particularly interesting. GR is an example of Riemannian geometry, whereas 
the so-called metric teleparallel equivalent of GR (TEGR) and symmetric teleparallel 
equivalent of GR (STEGR) are examples of teleparallel geometries. See Fig. 14.2. 
These three theories constitute the so-called Geometric Trinity of Gravity. 

A fundamental property of TEGR is that torsion replaces curvature for dynam-
ics and it is able to provide the same descriptions of the gravitational interaction 
under a different perspective. In GR, the geometric curvature is entrusted to model 
the gravitational force, whereas geodesics coincide with the free-falling test parti-
cle’s trajectories. On the other hand, in TEGR, the gravitational interaction emerges 
through the torsion tensor and acts as a (gauge) force. This is the reason why, in 
the teleparallel framework, the concept of geodesics is replaced by force equations, 
analogously to what happens in electrodynamics where the Lorentz force is present. 
STEGR shares several similar properties with TEGR. In this theory, one requires 
that curvature and torsion are both zero, and gravitational dynamics is attributed to 
the non-metricity tensor. 

GR is described in terms of the metric .gμν ; TEGR in terms of the tetrads . eAμ
(accounting for the dynamical description of gravity) and spin connection.ωA

Bμ (flat 

Fig. 14.2 The Geometric Trinity of Gravity framework and the dynamical role of tensor invariants. 
Curvature rules how the tangent space rolls a curve on a manifold; torsion how the tangent space 
twists around a curve when we parallel transport two vectors along each other; non-metricity encodes 
the variation of vectors’ length when they moved along a curve [ 18]
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connection outlining inertial effects); STEGR embodies the Palatini idea where met-
ric.gμν and affine connection.┌

μ
αβ are two separated dynamical structures. Like other 

fundamental interactions in Nature, gravitation can be reformulated as a gauge the-
ory through TEGR and STEGR. The most peculiar property of gravitation seems to 
be its universal character that all objects, regardless of their internal structure, feel 
this force, which is encoded in the Equivalence Principle of GR. In the teleparallel 
formulations, the Equivalence Principle is sometimes claimed to be not valid in the 
literature, instead, we will underline how it can be recovered in such theories, also 
if it does not lie at their foundation. This fact is extremely relevant because, if the 
Equivalence Principle were shown to be violated at some fundamental level, the final 
theory of gravitation could be non-metric. 

In these equivalent pictures, we can define alternative ways of representing the 
gravitational field, accounting for the same DoFs, related to specific geometric invari-
ants: the Ricci curvature scalar . R, the torsion scalar . T , and the non-metricity scalar 
. Q. In this sense, GR, TEGR, and STEGR give rise to the Geometric Trinity of 
Gravity. 

Similarly to GR where we can extend to . f (R) gravity, . f (T ) and . f (Q) gravity 
are the extensions of TEGR and STEGR, respectively. It is worth noticing that, in 
general, the equivalence among the three representations is not valid anymore among 
the extensions, because they give rise to dynamics with different DoFs (see Fig. 14.3). 
In particular, in. f (R) gravity to fourth-order field equations, in metric representation, 
whereas . f (T ) and. f (Q) still remains of second-order [ 45, 55, 160]. In addition, in 
. f (T ) and. f (Q), we cannot choose, in general, a gauge to simplify the calculations, 
as in the cases of TEGR and STEGR. On the contrary, we have to consider field 
equations for the spin connection in . f (T ) and affine field equations for . f (Q) [ 45, 
83, 160]. In the following, we shall develop these points in detail. 

Fig. 14.3 The Geometric Trinity of Gravity and related extensions. The equivalence holds only 
for theories linear in the scalar invariants. Extensions can involve further degrees of freedom which 
lead to the breaking of equivalence among different representations of gravity. It can be restored 
identifying correct boundary terms
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14.4 Tetrads and Spin Connection 

Before going into details of Trinity Gravity, some considerations on the mathematical 
structure are in order. To define a theory of gravity, we need to fix the underlying 
geometry, the transformation properties, and the set of observables. GR is based on 
the metric tensor from which we can construct the Levi-Civita connection, and finally 
the curvature, which encodes the gravitational dynamics. The possibility to relate the 
metric and the geodesic structure, which essentially coincide, relies on the validity 
of the Equivalence Principle [ 55]. However, GR can be reformulated also in terms 
of tetrad [ 9, 144, 160] and spin connection formalisms [ 9, 129], giving rise to the 
teleparallel equivalent GR. In Sect. 14.4.1, we describe in detail the tetrad formalism, 
whereas, in Sect. 14.4.2, we introduce the spin connection. 

14.4.1 The Tetrad Formalism 

The geometric setting of any theory of gravity occurs in the tangent bundle, a natural 
construction always present in any smooth space–time. In fact, at each point of the 
space–time, it is possible to construct the tangent space attached to it, which is a 
vector (fibre bundle) space. On the respective domains of definition, any vector or 
covector can be expressed in terms of a general linear orthonormal frame called 
tetrads. 

A tetrad field is a geometric construction, which permits to easily carry out the 
calculations on the tangent space. Physically, they represent the standard laboratory 
apparatus of the observer for carrying out the measurements in space and time. Using 
a tetrad field means to adopt a Lagrangian point of view, which entails to follow an 
individual fluid parcel as it moves through space and time. A tetrad field establishes a 
relationship between the manifold and its tangent spaces. This geometric structure is 
always present, independently of any prior gravity-model assumption. The theoretical 
framework intervenes to characterize the gravitational effects occurring in this frame. 

We first introduce the definition and properties of the tetrads (see Sect. 14.4.1), and 
then we present their anhonolonomy structure (see Sect. 14.4.1) and its importance 
in the first Cartan structure equation (see Sect. 14.4.1). Finally, we describe preferred 
frames represented by the inertial class and trivial tetrads (see Sect. 14.4.1). 

Tetrads: Definition and Properties 

Let us assign a general metric space–time (.M, gμν), being .M a four-dimensional 
differential manifold of class.C∞, whose tangent spaces.TpM, at each point.p ∈ M, 
are Minkowski space–times with metric.ηAB , and.gμν the symmetric metric tensor. In 
these hypotheses, there exists a compatible atlas of charts . A, being an open covering
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of . M. Therefore, for each .p ∈ M, there exists a chart .(U,ϕ) of domain . U, being an 
open neighbourhood of. p, and a coordinate map.ϕ : U → ϕ(U) ⊆ R

4 (being a home-
omorphism). In addition, for all.(U,ϕ), (V,ψ) ∈ A, the  map. ψ ◦ ϕ−1 : ϕ(U ∩ V) →
ψ(U ∩ V) is a .C∞-diffeomorphism called coordinate transformation. Therefore, to 
each point.p ∈ M, we can associate its coordinates by. (x0, x1, x2, x3) := ϕ(p) ∈ R

4

[162]. Defined the coordinate .xμ-axes in .R4, it is possible to construct the related 
coordinate curves.γxμ on.M via the use of the charts. Therefore, all the parallel curves 
to coordinate axes in.R

4 forms the related grid on. M, which permits to uniquely iden-
tify the space–time location of all points. 

A natural differentiable basis or holonomic basis of each tangent bundle .TpM is 
given by a sets of vectors tangent to the coordinate lines at each point . p, i.e. 

.∂μ :=
(

∂

∂xμ

)
p

, (14.7) 

as well as for covector fields defined on the cotangent bundle .T ∗
pM (set of all linear 

maps.α : TpM → R) we have the following basis.{dxμ} applied to the point.p ∈ M, 
which satisfies the orthonormality condition 

.dxμ∂ν = δμ
ν . (14.8) 

The tangent .TpM and cotangent .T ∗
pM bundles in .p ∈ M are related through the 

metrics .gμν and .ηAB . 
Every vector or covector applied to a point.p ∈ M can be expressed in terms of the 

natural basis. Therefore, we can define a set of orthonormal vectors and covectors, 
which can be related to the natural basis through [ 9] 

.eA := e μ
A ∂μ, eA := eAμdx

μ, (14.9) 

where the set of coefficients .
{
e μ
A

}
are called tetrads and belong to the linear group 

of all real .4× 4 invertible matrices .GL(4,R). The tetrads act as a soldering agent 
between the general manifold (Greek indexes) and the Minkowski space–time (cap-
ital Latin indexes 1) as follows: 

.gμν = ηABe
A
μe

B
ν, ηAB = gμνe

μ
A e

ν
B . (14.10) 

Therefore, a tetrad field is a linear frame gluing together the coordinate charts on. M

to the preferred orthonormal basis.eA on the tangent space, where calculations can be 
carried out in a considerably simplified manner. As.gμν varies from point to point on 
the manifold. M, the vierbein.e μ

A do the same. Calculating the determinant of (14.10), 
we obtain .−g = e2, where . e denotes the determinant of .e μ

A and it is negative owed

1 Sometimes, capital Latin indexes, referring to local coordinate indexes, are also indicated by an 
over hat on the Greek indexes, i.e. .eAμ = eν̂

μ. 
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Fig. 14.4 Two-dimensional picture to explain the tetrad formalism. Tetrads.eAμ solder the coordinate 
chart.(U, ϕ) on the manifold.M to the orthonormal basis.

{
ex , ey

}
in the tangent bundle.TpM. They  

represent also the coefficients in the natural (holonomic) basis .
{
∂x , ∂y

}
. The coordinate map . ϕ

assign at each point.p ∈ U ⊆ M the coordinates.ϕ(p) = (x, y) ∈ ϕ(U) ⊆ R
4. Passing from. TpM

to the cotangent bundle .T ∗
pM through.gμν and.ηAB , the natural basis .{dx, dy} is transformed into 

the orthonormal basis.{ex , ey} through the use of tetrads. e μ
A

to the signature of .ηAB . Generally speaking, we note that the vierbein represents the 
square root of the metric. In Fig. 14.4, the tetrads together with their properties are 
displayed. 

Anholonomy of Tetrad Frames 

Let us now analyse one of the consequences in using of the tetrad fields. A general 
tetrad basis .{eA} (cf. Eq. (14.9)) satisfies the commutation relation [ 9, 129] 

. [eA, eB] := eAeB − eBeA
= (e μ

A ∂μ)(e
ν
B ∂ν)− (e ν

B ∂ν)(e
μ
A ∂μ)

= [
e μ
A e

C
ν(∂μe

ν
B )− e ν

B e
C
μ(∂νe

μ
B )
]
eC

= e μ
A e

ν
B

[
∂νe

C
μ − ∂μe

C
ν

]
eC

= f CABeC , (14.11)
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where we have set 
. f CAB := e μ

A e
ν
B

[
∂νe

C
μ − ∂μe

C
ν

]
, (14.12) 

which are known as structure constants or coefficients of anholonomy related to the 
frame .{eA}. They quantify the failure of the parallelogram closure generated by the 
vectors.eA and.eB . In general, when. f CAB /= 0, the tetrad basis is anholonomic or non-
trivial, and the coefficients of anholonomy specify how much they depart from being 
holonomic. This approach reveals important properties of the underlying geometric 
framework on which we are working. In GR, they have been used in the Bianchi 
classification, which leads to 11 possible different space–times, useful to develop 
cosmological models [130, 166, 177]. 

The First Cartan Structure Equation 

Given a 1-form .ω and defined .dω as the exterior derivative, it can be written in 
components as 

.dω = ∂μωνdx
μ ∧ dxν, (14.13) 

where . ∧ is the external product defined as 

.dxμ ∧ dxν = dxμ ⊗ dxν − dxν ⊗ dxμ, (14.14) 

with .⊗ the tensorial product. Due to the antisymmetry of the exterior product and 
the Schwarz theorem, we have .d2ω = 0 thanks to the Poincaré lemma [144]. 

We consider the 2-form .dω applied to two vectors .u = uμ∂μ, v = vν∂ν , which 
can be written as [ 86] 

.dω(u, v) = uω(v) − vω(u) − ω([u, v]L), (14.15) 

where 

.dω(u, v) := ∂μων(u
μvν − uνvμ), (14.16a) 

.uω(v) := uμvν∂μων + uμων∂μv
ν, (14.16b) 

.ω([u, v]L) := ων(u
μ∂μv

ν − vμ∂μu
ν), (14.16c) 

with.ω = ωμdxμ and.[u, v]L ≡ (Luv) := (uμ∂μv
ν − vμ∂μuν)∂ν . It is the Lie bracket 

or the Lie derivative of the vector field . v with respect to the vector field . u. It is  
important to note that .dω(u, v) produces a scalar. 

If we consider the tetrad basis .{eA} and take .ω = eA, then we have the following 
relation [ 86]:
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. 
{
deC (eA, eB)

}
eC = {

eA[eC(eB)] − eB[eC(eA)]
−eC ([eA, eB]L)

}
eC

= −eC ([eA, eB]LLeL)eC
= −[eA, eB]L. (14.17) 

Assigned a general metric-compatible affine connection .┌λ
αβ , and the associated 

covariant derivative . ∇, we have  

.∇eAeB = γC
ABeC , (14.18) 

where .γC
AB are the Ricci rotation coefficients, which measure the rotation of all 

frame tetrads when moved in various directions, encoding thus gravitational and 
non-inertial effects [ 86, 144]. When we use the natural basis, they reduce to the 
affine connection .┌C

AB . It is important to note that such coefficients arise also in a 
flat space–time when, generally, non-linear coordinates are exploited, since they give 
rise to non-inertial effects. In particular, in the considered tetrad basis, they assume 
the following expression and symmetries [144]: 

. γλνμ := eAμe
B
λ∇A(eν)B

= −eAμ(eν)B∇Ae
B
λ

= −eAμ e
B
ν∇A(eλ)B = −γνλμ, (14.19) 

where we have used the compatibility condition in the last equality..γC
AB can be seen 

as the action of the connection 1-forms .ωC
B on the tetrad basis .eA, i.e. [ 86] 

.γC
AB = ωC

B(eA) ⇔ ωC
B = γC

ABe
A. (14.20) 

Since we know that.∇μ∂ν = ┌λ
μν∂λ, if we consider the commutator of.∇μ and. ∂ν , 

we obtain 

. [∇μ, ∂ν] = ∇μ∂ν −∇ν∂μ

= (
┌λ

μν − ┌λ
νμ

)
∂λ

= T λ
μν∂λ, (14.21) 

where.T λ
μν is the torsion tensor measuring the antisymmetry of the affine connections. 

In a coordinate-independent approach, the torsion .T (associated to the covariant 
derivative . ∇) is a  .(1, 2)-type tensor, which acts on pairs of vectors .(v, u) to give 
another vector according to the following relation [ 86, 140]: 

.T (v, u) := ∇vu −∇uv − [v, u]L. (14.22)
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Applying Eq. (14.22) to  .{eA}, exploiting Eq. (14.17), and considering . ωC
B(eA) =

(ωC
D ⊗ eD)(eA, eB), we obtain 

. T (eA, eB) = ∇eAeB − ∇eB eA − [eA, eB]L
= [

ωC
B(eA) − ωC

A(eB) + deC (eA, eB)
]
eC

= [
(ωC

D ∧ eD + deC)(eA, eB)
]
eC . (14.23) 

Defined .ΩC := ωC
D ∧ eD + deC as the torsion differential 2-form, Eq.  (14.23) can 

be written as [ 86, 144] 
.T = ΩC ⊗ eC , (14.24) 

which is the first Cartan structure equation. In the case of Riemann geometry, namely 
when the torsion vanishes, Eq. (14.24) becomes [ 9, 129] 

. deC := −ωC
A ∧ eA

= −1

2

(
γC

AB − γC
BA

)
eA ∧ eB

= −1

2
e μ
A e

ν
B (∂νe

C
μ − ∂μe

C
ν)e

A ∧ eB

= −1

2
f CABe

A ∧ eB, (14.25) 

where the anhonolonomy coefficients emerge as an antisymmetric combination of 
the Ricci rotation coefficients. They are also related to the curls of the tetrad vector 
derivatives, as occur to the components of a differential 2-form [140, 144]. 

Inertial Frames and Trivial Tetrads 

Among the different frames, a special class is represented by the inertial frames, 
which can be denoted by .

{
e,A
}
, whose coefficients of anhonolonomy . f ,CAB locally 

satisfy the condition . f ,CAB = 0. For  Eq. (14.25) we have  .de,A = 0, which is locally 
exact and can be written as .e,A = dx ,A and therefore it is holonomic. Therefore, 
all coordinate bases belong to this family. It is worth noting that this is not a local 
property, but it holds everywhere for all frames being part of this inertial class [ 9]. 

In absence of gravitation, the anholonomy is only caused by inertial forces present 
in these frames. The metric.gμν reduces to the Minkowski metric.ημν . In all coordinate 
systems,.ημν is a function of the space–time point, and independently of whether. {eA}
is holonomic (inertial) or not. In this case, tetrads always relate the tangent Minkowski 
space to a Minkowski space–time 

.ηAB = ημνe
μ
A e

ν
B . (14.26)
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Fig. 14.5 This figure shows how tetrads behave in terms of inertial and gravitational effects. When 
no gravity is present, and we consider inertial effects only (i.e. we move along geodesics), we obtain 
trivial (holonomic) tetrads, whereas, when non-inertial contributions take place (i.e. following non-
geodesic orbits), the tetrads become anholomic. The situation is analogue when gravitation is 
switched on. Along geodesic, we obtain inertial frames, whereas along non-geodesic trajectories 
we have the most general anholomic frames 

These are the frames appearing in Special Relativity, which are usually called trivial 
frames or trivial tetrads. They are very useful when we deal with spaces involving 
torsion [129]. Of course, in the absence of inertial forces, the class of inertial frames 
is, consequently, represented by vanishing structure coefficients. These concepts are 
sketched in Fig. 14.5. 

14.4.2 The Spin Connection 

The spin connection plays a fundamental role when we deal with tetrads, because it 
encodes the inertial effects occurring in the considered frame. Let us briefly recall 
the fundamental properties of the Lorentz group (see Sect. 14.4.2), then we discuss 
the associated Lorentz algebra as well as its properties (see Sect. 14.4.2). Lorentz 
connections will be first introduced under a mathematical point of view (see Sect. 
14.4.2) together with the fundamental tetrad postulate (see Sect. 14.4.2), and then 
the same subject will be considered under a physical perspective (see Sect. 14.4.2).
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The Lorentz Group 

Electromagnetism is framed under the standard of Special Relativity by postulating 
[162]: 

(1) the optical isotropy principle: all inertial frames are optically isotropic, i.e. the 
light propagates in these frames with velocity .c = 1/

√
∈0μ0 in any direction; 

(2) the principle of relativity: the laws of physics assume the same form in all inertial 
reference frames. 

Given two inertial frames and assuming that one is moving with respect to the other 
with uniform velocity.v := (v1, v2, v3), the  Lorentz transformation is a linear (affine) 
map relating the temporal and spatial coordinates of the two inertial observers [162] 

.Ʌμ
ν : xμ −→ x ,μ = Ʌμ

ν(x)x
ν, (14.27) 

which leaves invariant the following quadratic form: 

.ημνx
μxν = −t2 + x2 + y2 + z2. (14.28) 

A general Lorentz transformation is given by [191] 

.Ʌα
β = G ·

[
γ −γRi

j
v j

c

−γRi
j
v j

c Ri
j

(
δij + (γ − 1) viv j

v2

)
]

, (14.29) 

where .v := √   
(v1)2 + (v2)2 + (v3)2 is the modulus of the spatial velocity . v, . γ :=

(1− v2

c2 )
−1/2 is the Lorentz factor, .Ri

j is a rotation matrix, and .G is one of the 
following operators 

. 1 := diag(1, 1, 1, 1), P := diag(1,−1,−1,−1), T := diag(−1, 1, 1, 1), P · T .

They are the unitary, parity, and time reversal operators, respectively. The expression 
of .Ʌα

β shows that a Lorentz transformation is defined in terms of six parameters: 
three related to the rotation angles and the other three to the components of the spatial 
velocity . v. 

The set of all Lorentz transformations of Minkowski space–time forms the (homo-
geneous) Lorentz orthogonal group .O(1, 3). The requirement (14.28), together with 
(14.27), entails, in matrix notation, that .η = ɅT ηɅ. This gives rise to .det2Ʌ = 1, 
namely proper (.detɅ = 1) and improper (.detɅ = −1) Lorentz transformations, 
which can be further subdivided (cf. Eq. (14.29)) in orthochronous (.Ʌ0

0 ≥ 1) and 
non-orthochronous (.Ʌ0

0 ≤ −1) [134, 191]. The proper orthochronous Lorentz trans-
formations form the restricted Lorentz special orthogonal group .SO+(1, 3). There-
fore, the Lorentz group is a six-dimensional, non-compact, non-Abelian, and real 
Lie group endowed with four connected components [134, 191]. The Lorentz group 
is closely involved in all known fundamental laws of Nature describing the related
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symmetries of space and time. In particular, in GR, we consider the local Lorentz 
invariance, because in every small enough region of space–time, thanks to the Equiv-
alence Principle, the gravitational effects can be neglected, i.e. this occurs in the local 
inertial frame (LIF), which permits to recover the Special Relativity physics. 

At each point of a Riemannian space–time, the metric .gμν determines a tetrad up 
to the local Lorentz transformations in the tangent space. In other words, a tetrad 
vector (covector) base.{eA} (.

{
eA
}
) is not unique, because it is always possible to find 

another base .{ēA} (.
{
ēA
}
) by performing a local Lorentz transformation, namely 

.ēAμ = ɅA
Be

B
μ, (14.30) 

such that 
.gμν = ηABē

A
μē

B
ν ηAB = gμν ē

μ
A ē

ν
B . (14.31) 

The Lorentz Algebra 

Another important feature of the Lorentz group is that it admits a Lorentz algebra . L

[134, 191]. If we consider an infinitesimal transformation in .SO+(1, 3), we have  

.Ʌα
β = δα

β + ωα
β + O[(ωα

β)2]. (14.32) 

Applying.η = ɅT ηɅ, at linear order in .ωα
β , .ωμν = −ωνμ is an antisymmetric . 4× 4

matrix with six independent indexes. Therefore, we can associate six generators to 
the Lorentz algebra labelled by .JAB , with .JAB = −JBA [134], where each of them 
can be expressed in the 4-vector representation by a .4× 4 matrix as follows: 

. (JAB)CD := 2iη[B|DδCA] = i(ηBDδCA − ηADδCB ). (14.33) 

Each element of the Lorentz group can be written as [134] 

.Ʌ = e
i
2 ωAB J AB

. (14.34) 

The Derivation of Lorentz Connection 

Some geometric objects with an established behaviour may lose the covariant char-
acter under point-dependent transformations, e.g. ordinary derivative of covariant 
objects. In order to supply for this defective behaviour, it is fundamental to introduce 
connections .ωμ fulfilling the following properties:.(i) they behave like vectors in the 
space–time indexes; .(i i) they act as non-tensor in the algebraic indexes to compen-
sate this effect and to reestablish the correct tensorial trend. The linear connections 
fulfilling these requirements belong to the subgroup .SO+(1, 3) of .GL(4,R), and
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they are dubbed Lorentz connections. It is worth noticing that all Lorentz connections 
exhibit the presence of torsion (see Ref. [ 9], and discussions therein). 

A Lorentz connection, also known as spin connection, .ωμ is a 1-form acting in 
the Lorentz algebra, namely 

.ωμ : JAB ∈ L −→ ωμ := 1

2
ωAB

μ JAB, (14.35) 

where .ωAB
μ are the spin connection coefficients, which are antisymmetric in the 

.AB indexes owed to the antisymmetry of .JAB , i.e. .ωAB
μ = −ωBA

μ. This permits to 
introduce the Fock–Ivanenko covariant derivative [ 9, 60] 

.Dμ := ∂μ − ωμ = ∂μ − i

2
ωAB

μ JAB . (14.36) 

where .JAB is the generator in the appropriate representation of the Lorentz group. 
The right member of Eq. (14.36) acts only on tangent (algebraic) space indexes. If 
we apply Eq. (14.33) to the field .eC , we obtain 

. Dμe
C = ∂μe

C − i

2
ωAB

μ

[
i(ηBDδCA − ηADδCB )

]
eD

= ∂μe
C + 1

2

[
ωA

Dμδ
C
A + ωB

Dμδ
C
B

]
eD

= ∂μe
C + ωC

Dμe
D. (14.37) 

Considering Eq. (14.37) and splitting .eA by Eq. (14.9), we obtain the following 
expressions : 

. Dμ(e
C
λdx

λ) = Dμ(e
C
λ)dx

λ + eCλDμ(dx
λ)

= Dμ(e
C
λ)dx

λ + eCλ(δ
λ
μ + e λ

E e
D
μω

E
Dρdx

ρ)

= Dμ(e
C
λ)dx

λ + eCμ, (14.38a) 

. Dμ(e
C
λdx

λ) = ∂μ(e
C
λdx

λ)+ ωC
Dμe

D
λdx

λ

= ∂μ(e
C
λ)dx

λ + eCμ + ωC
Dμe

D
λdx

λ. (14.38b) 

Equating Eq. (14.38a) with (14.38b), we obtain 

.Dμ(e
C
λ) = ∂μ(e

C
λ)+ ωC

Dμe
D
λ. (14.39) 

The Tetrad Postulate 

In non-coordinate bases .{eA}, the covariant derivative .∇̃ of an algebraic (1,1) tensor 
.X A

B can be written in terms of the spin connection as
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.∇̃μX
A
B := ∂μ + ωA

CμX
C
B − ωC

BμX
A
C . (14.40) 

Instead, the covariant derivative of a vector . V , considered in the coordinate bases 
.
{
∂μ

}
, is  

. ∇V = (∇μV
ν)dxμ ⊗ ∂ν

= (∂μV + ┌ν
μλV

λ)dxμ ⊗ ∂ν . (14.41) 

If we consider now the same vector. V written in a mixed basis, tetrad and coordinate 
basis, gives 

. ∇̃V = (∇̃μV
A)dxμ ⊗ eA

= (∂μV
A + ωA

BμV
B)dxμ ⊗ eA

= [∂μ(e
A
λV

λ) + ωA
Bμe

B
λV

λ]dxμ ⊗ (e ν
A ∂ν)

= [∂μV
ν + (e ν

A ∂μe
A
λ + ωA

Bμe
ν
A e

B
λ)V

λ]dxμ ⊗ ∂ν

= [∂μV
ν + (e ν

A Dμe
A
λ)V

λ]dxμ ⊗ ∂ν . (14.42) 

This is a crucial point, because the operations (14.41) and (14.42) are in principle 
distinct. However, it is reasonable to assume .∇ ≡ ∇̃, because the same covariant 
derivative of a vector cannot change in terms of which type of basis one chooses. 
This is the so-called tetrad postulate, which is valid for any affine connection, defined 
on a smooth manifold . M, and no metric is involved. 

Therefore, it implies (cf. Eqs. (14.41) and (14.42)) 

.┌λ
μν ≡ e λ

A Dμe
A
ν . (14.43) 

This identity entails several significant implications on the spin connections:.(i) since 
it does not possess a tensorial character, it acquires a non-homogeneous term under 
the Fock–Ivanenko covariant derivative owed to the affine connection [ 9];.(i i) a spin  
connection is naturally induced by the affine connection;.(i i i) it can be also regarded 
as the gauge field generated by local Lorentz transformations; .(iv) inverting Eq. 
(14.43) with respect to the spin connection, we obtain [ 9] 

.ωA
Bμ = eAλe

ν
B ┌λ

μν + eAσ∂μe
σ
B ≡ eAν∇μe

ν
B ; (14.44) 

.(v) according to Eq. (14.44), the connection 1-form .ωC
B (cf. Eqs. (14.20), (14.19)) 

can be written as 
.ωAB = ωAB

μdx
μ, (14.45) 

and the Ricci rotation coefficients are the space–time indexes of the spin connection 
components; .(vi) the covariant derivative of the tetrad, expressed in terms of the 
affine and spin connections, vanishes identically (cf. Eq. (14.44)), namely
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.∇μe
A
ν = ∂μe

A
ν − ┌λ

μνe
A
λ + ωA

Bμe
B
ν = 0; (14.46) 

.(vi i) we note that .∇μ is the covariant derivative linked to the connection .┌λ
μν when 

acts on external indexes and can be defined for tensorial fields, whereas the Fock– 
Ivanenko derivative .Dμ acts on internal indexes and can be defined for all tensorial 
and spinorial fields [ 9]; .(vi i i) from the metric compatibility condition, we obtain a 
sort of consistency check given by (cf. Eqs. (14.39) and (14.43)) 

. 0 = ∇λgμν = ∂λgμν − ┌σ
λμgσν − ┌σ

λνgμσ

= ∂λ(e
A
μe

B
νηAB) − e σ

A gσνDλe
A
μ − e σ

A gμσDλe
A
ν

= −eAνe
D
μ(ωADλ − ωDAλ), (14.47) 

which implies.ωABμ = −ωBAμ, i.e..ωABμ is Lorentzian. If the metric postulate (14.47) 
is not valid, the corresponding spin connection cannot assume values in the Lorentz 
algebra, because it is not a Lorentz connection [ 9]. Therefore, we have this equiva-
lence: metric compatibility holds if and only if we choose a Lorentz connection. 

Physical Considerations on the Lorentz Connection 

We have seen how the tetrads transform under local (point-dependent) Lorentz trans-
formations .ɅA

B(x) (cf. Eq. (14.30)), and now let us apply the same transformations 
to the spin connections. Let us first consider the inertial frames (see Sect. 14.4.1) 
.
{
e,Aμ

}
, which, in general coordinates .

{
x ,μ
}
, can be written in the holonomic form 

.e,Aμ = ∂μx ,A, where.x ,A = x ,A(xμ) is a point-dependent vector. Under a local trans-
formation .x A = ɅA

B(x)x ,B , we have  .eAμ = ɅA
B(x)e,Bμ by transforming the vectors 

.x A and .x ,A in the coordinate base .
{
∂μ

}
. 

Let us evaluate .∂μx ,A, which gives (.∂,
A ≡ ∂/∂x ,A). It is 

. ∂μx
,A = ∂μ(Ʌ

A
B(x)x B)

= (∂μx
B)ɅA

B(x) + x B(∂μɅ
A
B(x)), (14.48) 

.∂μx
,A = e,Cμ∂

,
C x

,A = e,Aμ = eCμɅ
A
C(x). (14.49) 

Therefore, gathering together the above results, we have (using Eq. (14.37) and 
.Dμx A = eAμ) 

.eAμ = ∂μx
A + ω

A
Bμx

B ≡ Dμx
A, (14.50) 

where 
.ω

A
Bμ := ɅA

C(x)∂μɅ
C
B(x) (14.51) 

is defined as a purely inertial spin connection, because it physically manifests the 
inertial effects occurring in the Lorentz rotated frame .eAμ. From Eq.  (14.51), we
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Fig. 14.6 Two-dimensional picture displaying the role of the spin connection .ωA
Bμ. It translates 

the inertial effects present in the tetrad anhonolomic frame.
{
ex , ey

}
. When we pass from.p ∈ M to 

.p, ∈ M, the related tetrads in.TpM and.Tp,M exhibit a rotation, modelled by the spin connection. 
Instead, the inertial holonomic frame .

{
∂x , ∂y

}
does not undergo any rotation, because it admits 

vanishing spin connection 

learn that the Lorentz connections physically represent the inertial effects present in 
a given frame. In the inertial frames (i.e. .e,Aμ = ∂μx ,A), these effects are absent since 
the Lorentz connections vanish, .ω,AB

μ = 0 for Eq. (14.50) [129]. 
To better understand these results, let us consider the transformation of the spin 

connection under local Lorentz transformations, which leads to [ 9, 129] 

.ωA
Bμ = ɅA

C(x)ω,C
DμɅ

D
C~ ~~ ~

non inertial

+ɅA
C∂μɅ

C
B(x)~ ~~ ~

inertial

. (14.52) 

When we pass from a frame to another one, there are two distinct contributions: 
(1) non-inertial effects connected with the new frame; and (2) inertial contributions 
due to the rotation of the new frame with respect to the previous one. Therefore, 
starting from inertial frames (.ω,AB

μ = 0), it is possible to obtain a class of non-inertial 
frames (cf. Eq. (14.52)) via local Lorentz transformations. It is important to note 
that all these infinite frames are related through global (point-independent) Lorentz 
transformations .ɅA

B = const [129]. In Fig. 14.6, we display the spin connection 
mechanism.
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From Eqs. (14.44) and (14.51), the coefficients of anholonomy (14.11) can be 

written as (.ω
A
BC = ω

A
Bμe

μ
C ) [  9, 129] 

. f CAB = ω
C
BA − ω

C
AB . (14.53) 

From this relation, we can define the spin connection in terms of the structure con-
stants as 

.ω
A
BC = 1

2
( fB

A
C + fC

A
B − f ABC). (14.54) 

Let us show now other two important implications of the purely inertial connection. 
Inserting its expression (14.51) into the definitions of curvature and torsion tensors 
(cf. Eqs. (14.4a) and (14.4b)), we obtain the following relations [ 9, 129]: 

. RA
Bμν = ∂νω

A
Bμ − ∂μω

A
Bν + ω

A
Eνω

E
Bμ

− ω
A
Eμω

E
Bν ≡ 0, (14.55a) 

.T A
νμ = ∂νe

A
μ − ∂μe

A
ν + ω

A
Eνe

E
μ − ω

A
Eμe

E
ν . (14.55b) 

To prove that Eq. (14.55a) is identically vanishing, we have used the property 
.ɅE

C∂μɅ
C
E = −ɅC

E∂μɅ
E
C . This result physically tells that inertial effects cannot 

generate curvature effects, but it is possible to produce only non-null torsional 
effects, see Eq. (14.55b). However, if we consider trivial tetrads (i.e. . eAμ = ∂μxa

and .ω
A
Bμ = 0), we can further nullify also the torsion tensor. 

14.5 Equivalent Representations of Gravity: The 
Lagrangian Level 

Let us consider now the Geometric Trinity of Gravity, taking into account its mathe-
matical and physical aspects [ 49]. We discuss first the formulation of gravity accord-
ing to GR in Sect. 14.5.1. Gravity under the standard of gauge description is consid-
ered in Sect. 14.5.2). In Sect. 14.5.3, the basic concepts of GR, TEGR, and STEGR 
are compared and discussed. 

The notations we are going to use are the following: over-circles refer to quantities 
built up on the Levi-Civita connection (i.e..

◦
Aμ

ν), over-hats denote quantities related to 

the teleparallel connection (i.e..
∧
Aμ

ν), and over-diamonds denote quantities involving 

non-metricity (i.e. .
 
Aμ

ν).
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14.5.1 Metric Formulation of Gravity: The Case of General 
Relativity 

The GR is the first geometric formulation of gravity in curved space–times. We first 
recall its basic principles (Sect. 14.5.1), and implications related to the geodesic 
equations (see Sect. 14.5.1). The fundamental geometric object is the metric tensor, 
which allows to define uniquely the Levi-Civita connection, which, in turn, deter-
mines the Riemann curvature tensor (Sect. 14.5.1, for the description of its properties 
and symmetries). Then, Lagrangian and field equations of GR are presented in Sect. 
14.5.1. Finally, we discuss the tetrad formalism in GR (see Sect. 14.5.1). 

Principles of General Relativity 

Einstein theory is essentially based on the following pillar ideas, which can be stated 
as follows [ 55, 140, 162]: 

(1) Relativity Principle: there are no preferred inertial frames, i.e. all frames are 
good for Physics; 

(2) General Covariance Principle: the basic laws of Physics can be formulated 
in tensor form in any smooth four-dimensional manifold . M. This means that 
field equations must be “covariant” in form, i.e. they must be invariant under the 
action of space–time diffeomorphisms; 

(3) Equivalence Principle: in any smooth four-dimensional manifold . M, it is pos-
sible to consider a small space–time region.Wwhere spatial and temporal gravi-
tational changes are negligible. Therefore, there always exists a LIF where grav-
itational effects can be nullified. In other words, inertial effects are locally indis-
tinguishable from gravitational effects (which means the equivalence between 
the inertial and the gravitational masses). 

(4) Causality Principle: each point of space–time has to admit a universally valid 
notion of past, present, and future. 

The first two principles are strictly related. They configure the extension of Rel-
ativity Principle of Special Relativity to any reference frame independently of the 
acceleration state. In other words, they figure out a sort of democracy principle for 
all observers, i.e. all observers have the same right to describe the physical reality 
[162]. 

Regarding the third principle, it permits to locally recover the Physics of Special 
Relativity. Geometrically, it translates in determining the tangent plane in every 
point of a smooth manifold. Furthermore, gravity is the only interaction that cannot 
be switched off in absolute, as instead it occurs for electromagnetic and other fields. 
Therefore, the gravitational field can be defined as what remains when we have 
deactivated the other interactions in an absolute way and independently from the 
observer. It can be only locally nullified in the LIFs, physically coinciding with local
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free-falling frames. Due to the underlying Riemannian geometric description, LIF 
is defined by the Riemann theorem for every .p ∈ M in a local chart .(U,ϕ) of . p as 
[162] 

.gμν(ϕ(p)) = ημν, ∂λgμν(ϕ(p)) = 0. (14.56) 

This holds if we assume that inertial and gravitational mass coincide (see Refs. [162], 
for more details). This is the (weak) equivalence principle or also known as university 
of free fall, stating that the trajectory of a point mass in a gravitational field depends 
only on its initial position and velocity and it is independent of its composition and 
structure. Therefore, the inertial effects may be globally eliminated by an appropriate 
choice of the reference frame (see Sect. 14.4.2), whereas the gravitational field can 
be only locally disregarded not eliminated [162]. 

The fourth principle is needed to ensure the uniqueness of the time notion despite 
of space–time deformations and singularities. As it is well known, several issues of 
modern physics are questioning the Causality Principle but we will not go into this 
discussion again here. 

Geodesic Equations 

Starting from the universality of free fall postulate in LIF via the coordinates .{ξμ}, a  
test particle will draw a straight line, whose equation of motion is given by 

.
d2ξα

ds2
= 0, (14.57) 

where.ds2 = ηαβdξαdξβ is the line element. Since in such a frame it is not possible to 
experience the existence of gravitational effects, we perform a change of coordinates 
.ξα = ξα(xμ), with .{xμ} the new coordinates. Applying this transformation to Eq. 
(14.57), we obtain 

.
d2xλ

ds2
+ ◦

┌λ
μν

dxμ

ds

dxν

ds
= 0, (14.58) 

where .
◦
┌λ

μν is the affine connection responsive of the geodesic space–time struc-
ture, which arises from the gravitational force acting on the test particle and being 
responsible for the departure from the straight trend. Its expression is now given by 

.
◦
┌λ

μν :=
∂xλ

∂ξσ

∂2ξσ

∂xμ∂xν
, (14.59) 

which explicitly shows that it is not a tensor. Physically they are the apparent forces 
acting on the body due to the curved geometric background induced by gravity. 

Therefore, assigned the metric tensor .ds2 = gμνdxμdxν , in a generic coordinate 
system.{xμ}, the  geodesic equation is described by Eq. (14.58). In a metric compatible
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and torsion-free space–time, we have that the unique affine symmetric connection is 
the Levi-Civita one via the Levi-Civita theorem [140, 162]. The condition. 

◦∇λgμν = 0

gives .
◦
┌λ

μν ≡
{

λ
μν

}
(see Eq. (14.3a)). 

The Riemann Curvature Tensor 

We have seen the effect of geometric curvature in the geodesic equation, but to 
quantify it as a field we have to introduce the Riemann curvature tensor .

◦
Rα

βμν (see 

Eq. (14.4a) with.┌λ
μν =

◦
┌λ

μν) arising from the commutation of covariant derivatives 
on a generic vector .vα,that is 

.[ ◦∇μ,
◦∇ν]vα = ◦

Rα
βμνv

β . (14.60) 

The above equation is telling us that the Schwarz theorem, applied to covariant 
derivatives, does not hold; otherwise, we have a flat space–time (i.e..

◦
Rα

βμν = 0). The 
gravitational field is fully encoded in this tensor. 

The Riemann tensor maintains the symmetry (14.5a) in a generic metric-affine 
theory. However in GR (due to the symmetries of the Levi-Civita connection) it 
acquires the following further symmetries [140]: 

.
◦
Rμναβ = − ◦

Rνμαβ, (14.61a) 

.
◦
Rμναβ = ◦

Rαβμν . (14.61b) 

The two Bianchi identities (14.6) have both the right members equal to zero, since 
GR is torsion-free. Due to the symmetries (14.61a), we can define the symmetric 
Ricci tesor .

◦
Rαβ = ◦

Rμ
αμβ and the scalar curvature .

◦
R = ◦

Rα
α. 

Let us consider now a one-parameter family of geodesics.γs(t), where. t is the affine 
parameter along the geodesic, and.s ∈ [a, b] ⊂ R labels the curves. We assume that 
the collection of these curves defines a smooth two-dimensional surface . xμ(t, s)
embedded in . M. Provided that this family of geodesics forms a congruence, the 
parameters . t and . s are the coordinates on this surface. 

A natural vector basis adapted to the coordinate system is given by .{T μ, Sμ}, 
whose expressions are [162] 

.T μ = ∂xμ

∂t
, Sμ = ∂xμ

∂s
. (14.62) 

Then, we define the relative velocity .V μ and acceleration.Aμ along the geodesics as 
follows:
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.V μ = T ν
◦∇νT

μ, (14.63a) 

.Aμ = T ν
◦∇νV

μ. (14.63b) 

We then obtain the geodesic deviation equation [162] 

.Aμ = ◦
Rμ

λαβT
λT αSβ, (14.64) 

where the relative acceleration between two close geodesics is proportional to the 
Riemann curvature tensor, which characterizes the behaviour of a one-parameter 
family of neighbouring geodesics. 

Lagrangian Formalism and Field Equations 

The GR dynamics is derived from the Hilbert–Einstein action, whose expression is 
given by [ 81] 

.SGR := c4

16πG

{
d4x

√−g (LGR +Lm) , (14.65) 

where .LGR := ◦
R(g) is the Einstein–Hilbert Lagrangian, coinciding with the Ricci 

curvature scalar, and .Lm is the matter Lagrangian. In this case, the fundamental 
object is the metric, as underlined in the curvature scalar .

◦
R(g). The total DoFs are 

represented by the ten independent components of the metric tensor, from which we 
must subtract the four-parameter diffeomorphisms underlying the invariance (gauge 
symmetries’ freedom) and other four by a suitable choice of the coordinates (gauge 
fixing) [140, 197]. Therefore, the gravitational dynamical DoFs becomes two, cor-
responding thus to the graviton, massless spin-2 particle, related to the .X and . +
polarizations of gravitational waves [ 55]. 

Applying the principle of least action to Eq. (14.65), we derive the GR field 
equations in the presence of matter 

.
◦
Gμν :=

◦
Rμν − 1

2
gμν

◦
R = 8πG

c4
Tμν, (14.66) 

where .
◦
Gμν is the Einstein tensor and 

.T μν = − 1

2
√−g

δLm

δgμν
(14.67) 

is the (second-order) energy–momentum tensor which is symmetric with respect 
to the conservation equations .

◦∇μT μν = 0, and physically represents the source of 
gravitational field. 

Particular consideration has to be devoted to matter fields and gravity, because 
some subtleties can arise. For example, (1) ambiguity in the matter coupling; (2)
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treatment of bosonic and fermionic fields. In GR, it is clear that a point particle 
follows the geodesic equations according to the Levi-Civita part of the connection. 
More problematic issues are linked to bosons (coupling only to the metric) and 
fermions (coupling with metric and connection). Therefore, when matter fields are 
taken into account, one must either consider minimally coupled fields or formulate 
consistent theories in metric-affine formalism. For example in GR, the presence of 
fermions requires the introduction of tetrads and spin connection. 

Tetrad Formalism in General Relativity 

GR conceives the gravitational interaction as a change in the geometry of space–time 
itself, where we pass from the Minkowski .ημν to the Riemannian metric .gμν , and 
from partial. ∂ to covariant derivatives. ∇. The metric plays the role of the fundamental 
field, which is defined everywhere. In order to study how gravitation couples with 
other fields, we have to introduce the tetrads to deal with spinors in curved space– 
times. In addition, tetrads encode the Equivalence Principle since they are locally 
defined, as gravitation is locally equivalent to an accelerated frame. Therefore, to 
obtain the effects of gravitation on general sources (particles or fields), we need to: 
.(i)write all the related equations in the Minkowski space–time in general coordinates, 
represented by trivial tetrads;.(i i) replace the holonomic tetrads with the anholonomic 
tetrads, keeping the same formulae. The resulting equations hold in GR. Einstein’s 
vierbein theory becomes thus a gauge field theory for gravity. 

Once we assign a general (anhonolomic) tetrad.
{
eAμ
}
, we can rewrite the Riemann 

tensor according to the Cartan structure equations (see Sect. 14.4.1) as [  86] 

.deC + ◦
ωA

B ∧ eB = 0, (14.68a) 

.
◦
ωAB + ◦

ωBA = dgAB, (14.68b) 

.d ◦
ωA

B + ◦
ωA

C ∧ ◦
ωC

B = 1

2
◦
r ABCDe

C ∧ eD, (14.68c) 

where .
◦
r ABCD is the Riemann curvature tensor in the tetrad frame, with 

.
◦
ωA

Bμ := eAν
◦∇μe

ν
B , (14.69a) 

.
◦
f ABC := ◦

γA
BC − ◦

γA
CB, (14.69b) 

.dgAB = ∂C gABe
C , (14.69c) 

. 
◦
γA

BC = 1

2
(

◦
f ABC − gCLg

AM ◦
f LBM − gBLg

AM ◦
f LCM)

+ ◦
┌A

BC . (14.69d) 

It is important to note that we can uniquely associate the Lorentz connection to the 
Levi-Civita connection via Eq. (14.44). In addition, if we consider the natural basis,
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then we have. ◦ωA
BC = 0 and therefore. ◦γA

BC ≡ ◦
┌A

BC . Using the above-cited equations, 
it is possible to extract the components of .

◦
r ABCD , which are [ 86] 

. 
◦
r ABCD = ∂D

◦
γA

BC − ∂C
◦
γA

BD + ◦
γA

CM
◦
γM

DB

− ◦
γA

DM
◦
γM

CB − ◦
γA

MB
◦
γM

CD. (14.70) 

Also in this case, in the natural basis, we re-obtain the standard definition of the 
Riemann curvature tensor (14.60). 

14.5.2 Gauge Formulation of Gravity: The Case of 
Teleparallel Gravity 

A gauge formulation of gravity is possible in the teleparallel gravity theory. We 
first show that this general theory can be seen as a translation gauge theory (see 
Sect. 14.5.2), then we analyse the concepts of geodesics and autoparallel curves 
in this new framework (see Sect. 14.5.2). We finally concentrate on two important 
teleparallel subtheories: the metric teleparallel gravity, (in Sect. 14.5.2) and the sym-
metric teleparallel gravity, (see Sect. 14.5.2). Two important realizations of these 
approaches are the Teleparallel Equivalent General Relativity (TEGR) and the Sym-
metric Teleparallel Equivalent General Relativity (STEGR) respectively. 

Translation Gauge Theory 

In a modern vision of physics, it is very important to settle theories in a gauge 
framework [ 26]. In Sect. 14.5.1, we have seen that also GR can be converted in a 
gauge theory. Let us now sketch how GR can be formulated as a gauge theory of 
translations [ 9, 26]. 

This picture of GR can be achieved by both invoking the Nöther theorem and 
recalling that the source of the gravitational field is given by the energy and momen-
tum. Indeed, provided that gravitational Lagrangian is invariant under space–time 
translations, the energy–momentum current is covariantly conserved. We will see 
that a metric teleparallel theory is more suitable to express gravity in this context, 
because it entails more benefits, and the introduction of tetrads reveals to be more 
natural. 

This approach was first proposed by Lasenby, Doran, and Gull in 1998 [131]. Its 
geometric setting is the tangent bundle, where the gauge transformations take place. 
Let us first introduce.{xμ} and.

{
x A
}
as the coordinates on.M and.TpM, respectively. 

Now, let us consider the following infinitesimal local translation 

.x A −→ x̄ A = x A + εA(xμ), (14.71)
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where.εA(xμ) are the infinitesimal parameters of the transformation. The set of trans-
lations forms the translation Lie group .O(1, 3), whose generators are 

.PA := ∂A. (14.72) 

They generate the Abelian translation algebra, because they satisfy the following 
trivial commutation rules: 

.[PA, PB] ≡ [∂A, ∂B] = 0. (14.73) 

The infinitesimal transformation, written in terms of the generators, has the following 
expression: 

.δx̄ A = ε(xμ)B∂Bx
A = ε(xμ)A. (14.74) 

A general source field.Ψ = Ψ(x̄ A(xμ)) transforms under the map (14.71) as follows  
[ 9, 129]: 

.δεΨ = ∈A(xμ)∂AΨ. (14.75) 

Let .εA = constant be a global translation, then the ordinary derivative .∂μΨ trans-
forms covariantly, because 

.∂ε(∂μΨ) = εA∂A(∂μΨ). (14.76) 

For a local translational transformation.εA(xμ), .∂μΨ does not transform covariantly, 
because [ 9, 129] 

.∂ε(∂μΨ) = εA(xμ)∂A(∂μΨ)~ ~~ ~
correct

+ (∂με
A(xμ))∂AΨ~ ~~ ~
spurious

, (14.77) 

where the spurious term spoils the translational gauge covariance. However, in order 
to save this gauge covariance, we follow the praxis exploited in all other gauge 
theories [134]. Like in the electromagnetic case, where we include the gauge potential 
field .Aμ to guarantee the covariance of the theory, also here we have to set forth the 
translational gauge potential 1-form .Bμ, assuming values in the Lie algebra of the 
translation group, to guarantee the covariance of the gravity theory. Therefore, we 
introduce the following gauge covariant derivative (see Sect. 14.4.1): 

.e,μΨ ≡ ∂μΨ = ∂μ + BA
μ∂AΨ, (14.78) 

which holds in the class of Lorentz inertial frames (see Sect. 14.4.1). To recover the 
gauge covariance, we require that the gauge potential .Bμ transforms according to 

.δεB
A
μ = −∂με

A(xμ). (14.79)
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Indeed, now.eμΨ transforms covariantly 

.∂ε(e
,
μΨ) = εA(xμ)∂A(∂μΨ)~ ~~ ~

correct

, (14.80) 

since the potential (14.79) equals the spurious term in Eq. (14.76), cancelling it out. 
The above construction is based on trivial tetrads. However, for a general non-trivial 
tetrad field, it has the following expression: 

.eμ = Ψ = eAμ∂AΨ, eAμ = ∂μx
A + BA

μ, (14.81) 

where .BA
μ /= −∂με

A(xμ) and .e,Aμ /= ∂μx A. Now let us consider a Lorentz transfor-
mation (14.27), and let us assume that the gauge potential.BA

μ transforms as a Lorentz 
vector in the algebraic index, namely it satisfies 

.BA
μ −→ ɅA

B(x)BB
μ. (14.82) 

Therefore, the generalization of Eq. (14.78) becomes 

.eμΨ = ∂μ + ω
A
Bμx

B∂AΨ + BA
μ∂AΨ, (14.83) 

where 
.eAμ = ∂μx

A + ω
A
Bμx

B + BA
μ = Dμx

A + BA
μ. (14.84) 

For general non-trivial tetrads, we need to upgrade the gauge potential (14.79) as  
follows: 

.δεB
A
μ = −Dμε

A(xμ). (14.85) 

In the context of teleparallel gravity, we have applied the following translation cou-
pling prescription 

.e,Aμ −→ eAμ, (14.86) 

from which, the gravitational coupling prescription, assumed in GR, naturally 
emerges 

.ημν −→ gμν . (14.87) 

It is important to stress that the local Lorentz invariance is a fundamental symmetry 
respected by all physical laws in Nature, therefore, we must impose that our new the-
ory be locally Lorentz invariant. Such a requirement requires the additional Lorentz 
gravitational coupling prescription, which is a direct consequence of the strong 
Equivalence Principle [ 9, 129]. Indeed, this prescription is based on the General 
Covariance Principle, which can be seen as an active version of the strong Equiva-
lence Principle, namely given an equation valid in the presence of gravitation, the
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corresponding special relativistic equation is locally recovered (at a point or along a 
trajectory), i.e. 

. ∂μΨ →D,
μΨ = ∂μΨ

+ 1

2
e,Aμ

(
f ,B

C
A + f ,A

C
B − f ,CBA

)
SB

CΨ. (14.88) 

where .Ψ is a general field, and .SB
C are the generators of the Lorentz group in the 

same representation to which .Ψ belongs. However, in the presence of gravitation, 
we obtain 

. ∂μΨ →DμΨ = ∂μΨ

+ 1

2
eAμ
(
fB

C
A + f A

C
B − f CBA

)
SB

CΨ, (14.89) 

which represents the full (Lorentz plus translational) gravitational coupling pre-
scription in teleparallel gravity. We have therefore the following scheme: 

.

{
e,Aμ −→ eAμ
∂μ −→ Dμ

}
~ ~~ ~

grav. coupling prescription in TG

⇔ ημν −→ gμν~ ~~ ~
grav. coupling prescription in GR

. (14.90) 

Autoparallels and Geodesics 

Let us consider the equation of motion of a free test particle first described in the 
inertial frames .e,Aμ , i.e. [129] 

.
du,A

dσ
= 0, (14.91) 

where.u,A is the anholonomic 4-velocity of the test particle and.dσ is the Minkowskian 
line element .dσ2 = ημνdxμdxν . We note that Eq. (14.91) is written in a particular 
class of reference frames, and under a local Lorentz transformation (14.27), it is 
non-covariant since 

.
du,A

dσ
= ɅA

B(x)
duB

dσ~ ~~ ~
correct

+ dɅA
B(x)

dσ
uB

~ ~~ ~
spurious

. (14.92) 

This is an apparent failure of the covariance, because if we consider the anhonolomic 
frame .eAμ, associated to .e

,A
μ through local Lorentz transformation (cf. Eq.(14.30)), 

we immediately recover the covariance, because
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.
du,A

dσ
= 0 −→ duB

dσ
+ ω

A
Bμu

Buμ = 0. (14.93) 

In Sect. 14.5.1, we have defined the geodesic equation (14.58) in GR. This notion 
must be revised in the parallel framework. Let us consider a chart .(U,ϕ) on the 
manifold .M and let .γμ(τ ) be the parametric equation of a curve . γ contained in . U, 
where . τ is the affine parameter along . γ. The tangent vector . γ̇ to . γ, in the natural 
basis .

{
∂μ

}
along . γ, is given by the following expression [162]: 

.γ̇(τ ) := dγμ

dτ
∂μ. (14.94) 

A vector.Y μ(τ ) is defined to be parallel transported along . γ if it fulfils the following 
request: 

.
dY μ

dτ
:= ∇γY

μ ≡ dY μ

dτ
+ ┌

μ
αβY

α dγ
β

dτ
= 0, (14.95) 

where, for the moment, we do not specify .┌μ
αβ . Eq.  (14.95) represents a system 

of first-order differential equations in the unknown .Y μ(τ ), which admits a unique 
solution once the initial condition .Y μ

0 := Y μ(τ0) has been provided. It is important 
to note that .Y μ(γ(τ )) depends on the curve . γ. Therefore, a curve .γ(τ ) is said to be 
autoparallel if its tangent vector .γ̇(τ ) satisfies [162] 

.∇γγ̇ ≡ d2xμ

dτ 2
+ ┌

μ
αβ

dxα

dτ

dxβ

dτ
= 0, (14.96) 

or, in other words, if it remains parallel to itself along.γ(τ ), where.xμ are the coordi-
nates of.γ(τ ) in the chart.(U,ϕ). Eq.  (14.96) is a system of second-order differential 
equations, which admit a unique solution once initial position and velocity have 
been assigned. It is worth noticing that, in GR, autoparallels and geodesic equations 
coincide, whereas, in teleparallel gravity, they give rise to two different structures, 
because the autoparallels are related to the affine connection, whereas the geodesic 
to the concept of metric, since it measures the minimal lengths between two or more 
points. In the teleparallel framework, Eq. (14.96) becomes (cf. Eq. (14.2)) 

.
d2xμ

dτ 2
+ ◦

┌
μ
αβ

dxα

dτ

dxβ

dτ
= −K μ

αβ

dxα

dτ

dxβ

dτ
, (14.97a) 

.
d2xμ

dτ 2
+ ◦

┌
μ
αβ

dxα

dτ

dxβ

dτ
= −Lμ

αβ

dxα

dτ

dxβ

dτ
. (14.97b) 

Therefore, Eqs. (14.97) recover a new aspect of GR, seen not anymore geometrically 
as a minimal distance path, but in the gauge paradigm as a sort of Lorentz force-like 
interaction for the contortion tensor and kinetic energy-like interaction regarding the 
disformation tensor, acting on the test particle [ 18].
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Another fundamental implication of autoparallels in teleparallel gravity is that they 
are sensitive to parameter changes, because it is possible to obtain another curve, 
although we do not alter the locus of its points. Therefore, if .γ(λ) is autoparallel, 
then .μ(τ ) ≡ γ(λ(τ )) might be not autoparallel. This change of parameterization 
.λ = λ(τ ) entails that Eq. (14.96) becomes [162] 

.
d2xμ

dτ 2
+ ┌

μ
αβ

dxα

dτ

dxβ

dτ
= −

(
dλ

dτ

)2 d2τ

dλ2

dγμ

dτ
. (14.98) 

We immediately see that the autoparallel character of the curve .γ(λ) is conserved 
under the parameter change.λ = λ(τ ) if and only if.τ = aλ + b, with.a, b being real 
arbitrary constants. Here .λ,μ are called canonical parameters. 

Metric Teleparallel Gravity 

Metric (or torsional) teleparallel gravity (TG), known also as simply teleparallel 
gravity, is obtained by assuming the metric compatibility. The theory is geometrically 
described only by the torsion tensor. In Sect. 14.5.2, we have already seen that tetrads 
.eAμ and spin connection .ωA

Bμ play a fundamental role in describing gravity. Indeed, 
GR can be recast as a translational gauge theory, where the related gravitational field 
strength arises from the commutation relation of the covariant derivatives, see Eqs. 
(14.21) and (14.83), namely 2

.[eμ, eν] =
∧
T A

νμ∂A, (14.99) 

where the torsion (antisymmetric in the indexes .μν) 

.
∧
T A

μν = ∂νB
A
μ − ∂μB

A
ν + ω

A
BνB

B
μ − ω

A
BμB

B
ν (14.100) 

represents the field strength. Adding the vanishing term 

.Dμ(Dνx
A) −Dν(Dμx

A) ≡ 0 (14.101) 

to Eq. (14.100), it becomes 

.
∧
T A

μν = ∂νe
A
μ − ∂μe

A
ν + ω

A
Bνe

B
μ − ω

A
Bμe

B
ν . (14.102)

2 We define the torsion tensor as minus of that defined in Eq. (14.23), for having the signs in 
agreement when compared to those of GR. 
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Exploiting Eqs. (14.43) and (14.102), we have that 

.
∧
T λ

μν = e λ
A

∧
T λ

μν := ┌λ
νμ − ┌λ

μν . (14.103) 

The spin connection is linked to the inertial effects present in the tetrad frame, it is 
covariant under both diffeomorphisms and local Lorentz transformations (see Sect. 
14.4.2), assuring the same properties also for the torsion tensor. It is important to 
associate at each tetrad the related spin connection; therefore, in TG, we have always 

to provide the couple .{eAμ,ωA
Bμ} [129]. There exist frames in TG where the related 

spin connection vanishes, which are called proper frames .{eAμ, 0}. This definition 
leads to the Weitzenböck gauge, which produces the Weitzenböck connection . 

∧
┌λ

νμ =
e λ
A ∂μeAν , being the distant parallelism condition from where TG takes its name. 
A natural question spontaneously arises: given a tetrad frame, how do we oper-

atively associate the related spin connection? The simplest solution is tho choose 
proper frames, but, a priori, we do not know which are the related tetrads. Therefore, 
we have to find a strategy to answer this question. As one can verify, determining 
them from the field equations is, in general, not a simple task (see Ref. [129], for 
details). The method we propose relies on first determining the inertial effects in the 
trivial tetrad frame and then associating the related spin connection (see Ref. [120], 
for another method). In this approach, let us first introduce the concept of reference 
tetrad .eA(r)¯, in which gravity is switched off, that it 

.eA(r)¯ := lim
G→0

eAμ. (14.104) 

Through this process, we are basically exploiting the Equivalence Principle or the 
inverse translational coupling prescription (14.86). This has the effect to consider a 
trivial tetrad, where the anhonomaly coefficients are zero (see Sect. (14.4.1)), and 
therefore the torsion tensor vanishes. In formulae, this can be written as (cf. Eq. 
(14.53)) 

.
∧
T A

BC(eAμ,ω
A
Bμ) = ω

A
BC − ω

A
BC − f ABC(e(r)) = 0, (14.105) 

from which we have 

.ω
A
BC = 1

2
eC(r)¯

[
fB

A
C(e(r)) + fC

A
B(e(r)) − f ABC(e(r))

]
. (14.106) 

Since they differ only by the gravitational content, they represent the gravitational 
effects inside the tetrad frame. This approach can be schematized as follows:
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.

general tetrad~~~~
eAμ

reference tetrad~~~~
eA(r)¯

e,Aμ~~~~
trivial tetrad

gravity off

reduce
toω

A

Bμ

(14.107) 

The coefficients of anhonolonomy (14.12), in the presence of torsion, read as (cf. 
Eq. (14.23)) 

.ω
C
AB − ω

C
BA = f CAB + TC

AB . (14.108) 

This expression can be recombined as follows: 

.
1

2

(
fB

C
A + f A

C
B − f CBA

) = ω
C
BA −

∧
KC

BA, (14.109) 

where the contortion tensor 

.
∧
KC

BA =
1

2

( ∧
TB

C
A +

∧
TA

C
B −

∧
TC

BA

)
, (14.110) 

has been introduced. Eq. (14.109) is a further development of Eq. (14.89). Using 
the fundamental identity of the theory of Lorentz connections, we obtain (cf. Eq. 
(14.69a)) [125, 129] 3

.ω
C
Bμ −

∧
KC

Bμ = ◦
ω
C

Bμ, (14.111) 

which joins together GR and TG in a single compact expression. We remark that this 
combined coupling prescription has been obtained from the General Covariance Prin-
ciple, and it is thus consistent with the strong Equivalence Principle. In Eq. (14.111), 

there is .
◦
ω
C

Bμ in GR, enclosing both gravitation and inertial effects in an indistinct 

form, whereas in TG, .ω
C
Bμ describes the inertial effects and .

∧
KC

Bμ represents only 
the gravitation. This is a new and elegant perspective to see the strong Equivalence 
Principle in TG. Therefore, in a local frame where the GR spin connection vanishes, 
we obtain the identity .ωC

Bμ =
∧
KC

Bμ, where inertial effects compensate gravitation 
[129], resembling the free-falling cabin’ situation.

3 Equation (14.111) is very important, but its derivation is also not trivial at all. Here, we provide 
an intuitive proof, although a more rigorous demonstration can be found in Sect. II.6 of Ref. [125]. 
Let us suppose to have the tetrads.

◦
eAμ in GR and.

∧
eAμ in TG such that they have the same coefficients 

of anholonomy.
◦
f ABC = ∧

f ABC , guaranteed by the fact that there exists an isomorphism assuring this 

property. This implies.
◦
Dμ = ∧

Dμ, which then gives Eq. (14.111). 
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Another fundamental ingredient of TG theory is represented by the superpotential, 
whose expression is [ 50] 

.
∧
S μν
A := ∧

K μν
A − e ν

A

∧
T μ + e μ

A

∧
T ν, (14.112) 

where .
∧
T αμ

α := ∧
T μ is dubbed torsion vector. This permits then to introduce the 

torsion scalar 

. 
∧
T := 1

2

∧
S μν
A

∧
T A

μν

= 1

4

∧
T ρ

μν

∧
T μν

ρ + 1

2

∧
T ρ

μν

∧
T νμ

ρ −
∧
Tμ

∧
T μ, (14.113) 

which is quadratic in all the possible torsion tensor combinations. In particular, in the 
last equality, the first term resembles that of the usual Lagrangian of internal gauge 
theories, whereas the other two stem out from the tetrad soldered character allowing 
thus to set at the same level internal and external indexes [129]. 

Since TG is curvatureless we have that 

.
∧
R = ◦

R + ∧
T + 2

e
∂μ

(
e

∧
T μ
)
= 0, (14.114) 

from which we immediately derive 

.
◦
R = − ∧

T − 2

e
∂μ (eT μ)~ ~~ ~

boundary term

. (14.115) 

In Sect. 14.6, the above calculations will be derived in details. Therefore, a particular 
TG Lagrangian is 

.STEGR = − c4

16πG

{
d4x eLTEGR~ ~~ ~

−∧
T

+
{

d4xe Lm, (14.116) 

up to a boundary term, which gives no contributions, because at infinity the space– 
time is asymptotically flat and therefore the tetrads reduce to the trivial tetrads and the 
torsion is null. Eq.(14.114) is dynamically equivalent to that of GR (cf. Eq.(14.65)), 
namely .STEGR = SGR. This specific TG theory is called TEGR. 

The related field equations are [ 9] 

.
∧
Gμν := 1

e
∂λ(e

∧
Sμν

λ)− 4πG

c4
μν = 4πG

c4
Tμν, (14.117) 

where .
∧
Gμν is the TG Einstein tensor and
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.μν = c4

4πG

∧
Sλν

ρ┌λ
ρμ − gμν

c4

16πG

∧
T (14.118) 

is the energy–momentum (pseudo) tensor of the gravitational field. This equation 
shows that Eq. (14.112) is linked to the gauge representation of the gravitational 
energy–momentum tensor, namely [ 9] 

.
∧
SA

μν = −8πG

c4e

∂LTEGR

∂(∂νeAμ)
. (14.119) 

The field equations (14.117) can be also equivalently written in a more explicit form 
as [ 50] 

. 
∧
Gμν := 1

e
eAμgνρ∂σ(e

∧
S ρσ
A )− ∧

S σ
B ν

∧
T B

σμ

+ 1

2

∧
T gμν − eAμω

B
Aσ

∧
SBν

σ = 8πG

c4
Tμν . (14.120) 

In Sect. 14.6, we will explicitly show that these field equations coincide with those 
of GR. An important issue is related to the matter couplings, because the presence of 
torsion introduces some difficulties when dealing with fermions and bosons. Indeed, 
they are very sensitive to the appearance of distortions in the connections, and the 
unique resolution of this problem consists in resorting to the Weitzenböck gauge (see 
Refs. [ 9, 152], for more details). 

Looking at the torsion scalar expression (14.113), we see that it is possible to 
obtain new theories by considering the following general definition of torsion scalar: 

.
∧
Tgen := −c1

4

∧
Tαμν

∧
T αμν − c2

2

∧
Tαμν

∧
T μαν + c3

∧
Tα

∧
T α, (14.121) 

where .c1, c2, c3 are some free real constants, whose explicit values characterize the 
gravity model known under the name of three-parameter Hayashi–Shirafuji theory 
[114]. The general torsion scalar (14.121) is invariant under both general coordinates 
and local Lorentz transformations, independently of the numerical values of the 
coefficients, because it relies only on the properties of the torsion tensor. On the 
contrary, the equivalence with GR, and then TEGR, is achieved only for . c1 = c2 =
c3 = 1, which is naturally obtained within the TG gauge paradigm, without resorting 
to hypotheses related to GR [ 9, 129]. This crucial aspect makes TG a self-consistent 
theory. 

The Nöther energy–momentum pseudotensor . ρμ entails .∂μ
ρ

μ = 0 [134]. In addi-
tion, considering the .∂μ derivative of Eq.(14.117), we obtain .∂μT μν = 0, which 
shows that the energy–momentum tensor is conserved under ordinary derivative, 
which implies that the space–time charges.Qμ := {

ed3xT 0μ are conserved. In addi-
tion, being the TG field equations symmetric, it is thus very easy to be compared with 
the GR ones [ 9, 129]. Therefore, the antisymmetric part of the energy–momentum 
tensor (14.67) is vanishing, namely
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.
∧
T[μν] = eA[μgν]ρ

∧
T ρ
A = 0. (14.122) 

Another way to see this identity is through the invariance of the action under local 
Lorentz transformations [ 9, 129]. In TEGR, the covariance eliminates six of the 
sixteen equations, which means that we are able to determine the tetrads up to a local 
Lorentz transformation, which is equivalent to determine the metric tensor. 

The role of spin connection is not dynamical in TEGR and we will show that it 
trivially satisfies the field equations. The same result is also confirmed by exploiting 
the constrained variational principle via the Lagrange multipliers (see Ref. [129] and 
references therein, for details). 

Let us consider the following TG Lagrangians 

.LTEGR(eAμ, 0), LTEGR(eAμ,ω
A
Bμ), (14.123) 

which are both dynamically equivalent to the Hilbert–Einsten action. Therefore, the 
following identity holds 

. LTEGR(eAμ,ω
A
Bμ) + ∂μ

[
ec4

8πG

∧
T μ(eAμ,ω

A
Bμ)

]

= LTEGR(eAμ, 0) + ∂μ

[
ec4

8πG

∧
T μ(eAμ, 0)

]
, (14.124) 

which explicitly reads as [129] 

.
∧
T μ(eAμ,ω

A
Bμ) =

∧
T μ(eAμ, 0) − ω

μ
. (14.125) 

Therefore, we arrive to the conclusion that 

.LTEGR(eAμ,ω
A
Bμ) = LTEGR(eAμ, 0) + ∂μ

[
ec4

8πG
ω

μ
]

. (14.126) 

This proves that the spin connection enters the Lagrangian as a total derivative, 
justifying also the possibility to reduce the calculations in TEGR by adopting the 
Weitzenböck gauge in any case. In addition, if we vary the Lagrangian in Eq. (14.126) 
with respect to the spin connection, we obtain an identically vanishing equation. 
Therefore, the spin connection does not contribute to the TG field equations, rep-
resenting non-dynamical DoFs. This fact shows also that TEGR can be considered 
as a pure tetrad teleparallel gravity [136], which assumes that for whatever tetrad 
one chooses, the spin connection is zero, treating these two objects as independent 
structures (see Ref. [129], for details and for its implications). 

We have understood that the spin connection is not relevant, if we are interested in 
searching for the solutions of TEGR field equations. However, formally, its presence 
fulfils a paramount role, because:.(i) it guarantees the covariance of the action under 
local Lorentz transformations and diffeomorphisms; .(i i) it is endowed with a regu-
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larizing power, because it removes the divergent inertial effects from the Lagrangian, 
dubbed thus renormalized action (see Ref. [129], for details);.(i i i) it permits to obtain 
a regular field theory and naturally produces, in its action, a Gibbons–Hawking–York 
term, which permits to be coherently related to the formulation of a quantum gravity 
theory (see Refs. [ 7, 8, 155], for details). 

Finally, analysing the DoFs of TEGR, we start from the vierbein .eAμ with 16 
components. We have to subtract 6 DoFs related to the inertial effects due to the spin 
connection and other 8 non-dynamical DoFs due to diffeomorphisms (the same as 
in GR). The result is 2 DoFs as in the case of GR. Also for this feature, TEGR is 
dynamically equivalent to GR. 

Symmetric Teleparallel Gravity 

Symmetric teleparallel gravity (STG) is a formulation of gravitational interaction 
described only in terms of non-metricity (14.4c). While TG theories have been exten-
sively discussed, STG patterns have only recently received a growing attention, and 
there are still some crucial points to be disclosed and better understood. This theory 
can be either formulated in terms of metric tensors or tetrads, although the former 
is the most common presentation followed in the literature [145]. In STG, the sym-
metric affine connection (cf. Eq. (14.2)) assumes a fundamental dynamical role and 
represents an independent structure. This hypothesis is not trivial at all, because it 
requires considerable efforts in determining all the affine components already in the 
simplest cases both at astrophysical and cosmological levels (see e.g. Refs. [ 54, 83, 
121], for more details). 

The presence of non-metricity entails particular geometric effects, which gives 
rise to counterintuitive implications from those analysed in the previous theories. 
They can be summarized in the following points: 

• raising up or lowering down indexes of vectors or tensors under the covariant 
derivative . 

 ∇, is not straightforward like in metric case, namely given a vector . vμ, 
we have 

.gνλ

 ∇μv
λ =  ∇μvν − vλ

 
Qμνλ; (14.127) 

• non-metricity does not preserve the length of vectors; indeed given two vectors 
.v = vμ∂μ and .w = wμ∂μ parallel along a curve . γ, their tangent vectors are . T =
T μ∂μ with.T μ ≡ γ̇μ, namely.T λ

 ∇λv
μ = 0 and.T λ

 ∇λw
μ = 0. Let us calculate the 

evolution of the scalar product of the vectors 

.T λ
 ∇λv · w = T λvμwν

 
Qλμν, (14.128) 

where .v · w := gμνv
μwν , which is not conserved, as well as the norm of a vector 

.|v| := √
v · v, and therefore it is not possible to normalize it. It follows also that 

the angles, between two vectors, do not in general conserve, namely
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.T λ
 ∇λ

(
v · w
|v||w|

)
/= 0. (14.129) 

STG is, in general, not a conformal theory, but it is possible to reduce it to a confor-
mal one (see Ref. [104], for details). The above results imply also the impossibility 
to define a proper time along a curve as in GR; 

• Given a 4-velocity .uμ, we define 

.aμ := uλ
 ∇λu

μ, (14.130a) 

.ãμ := uλ
 ∇λuμ = aμ +

 
Qλνμu

λuν, (14.130b) 

where.aμ is the acceleration, whereas.ãμ is the anomalous acceleration. In particu-
lar, this implies that the 4-velocity is not anymore orthogonal to the 4-acceleration, 
because 

. uμa
μ = uμu

λ
 ∇λu

μ

= uλ
 ∇λ(uμu

μ) − uμuλ
 ∇λuμ

=  
Qλμνu

λuμuν + 2uμa
μ − ãμu

μ, (14.131) 

from which we obtain 

.aμuμ = ãμu
μ −  

Qλμνu
λuμuν . (14.132) 

From Eq. (14.130b), we get 

.
(
ãμ − aμ

)
uμ =  

Qλμνu
λuμuν . (14.133) 

Therefore, the non-metricity tensor expresses how much the anomalous acceler-
ation deviates from the standard acceleration, and it is also responsible to depart 
the acceleration from the spatial hypersurface orthogonal to the 4-velocity; 

• the acceleration of autoparallels (cf. Eq. (14.95)) in STG becomes 

.aμ = 0, ãμ =
 
Qλνμu

λuν; (14.134) 

• in order to recover the length conservation (cf. Eq. (14.128)) and the autoparallel 
definition (cf. Eq. (14.134)), we have to impose 

.
 
Q(λμν) = 0,

 
Q(λμ)ν = 0, (14.135) 

but these two conditions are too strict constraints. These issues can be solved by 
resorting to the Weyl conformal transformations (see Ref. [194], for details).
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Let us consider now the STG action, constituted by the most general quadratic 
Lagrangian [ 83]: 

.SSTEGR :=
{

d4x
√−g

⎡
⎢⎢⎣ c4

16πG
LSTEGR~ ~~ ~

 
Q

+Lm

⎤
⎥⎥⎦ , (14.136) 

where.
 
Q is the so-called non-metricity scalar, whose expression is given by [ 50, 83] 

. 
 
Q := gμν

(  
Lα

βμ

 
Lβ

να −
 
Lα

βα

 
Lβ

μν

)

= 1

4

(  
Qα

 
Qα −  

Qαβγ

 
Qαβγ

)

+ 1

2

(
 
Qαβγ

 
Qβαγ −  

Qα

♦
Q̄α

)
, (14.137) 

where .
 
Qα :=  

Qαλ
λ and .

♦
Q̄α :=  

Qλ
λα represent two independent and non-vanishing 

traces of the non-metricity tensor. This gives rise to the STEGR theory, where it is 
possible to show the validity of the following formula (see Sect. 14.6.3) [  83]: 

.
 
Q = ◦

R + ◦∇μ(
 
Qμ −

♦
Q̄μ), (14.138) 

and using the following GR identity [140] 

.
◦∇μ(

 
Qμ −

♦
Q̄μ) ≡ 1√−g

∂μ

[√−g(
 
Qμ −

♦
Q̄μ)

]
, (14.139) 

we see that the STEGR action is dynamically equivalent to GR up to a boundary term, 
which is vanishing because at infinity the metric is flat. Since the STEGR Lagrangian 
is quadratic in terms of the non-metricity tensor, the most general STG Lagrangian 
is [ 22] 

.

 
Qgen := c1

 
Qαβγ

 
Qαβγ + c2

 
Qαβγ

 
Qβαγ + c3

 
Qα

 
Qα

+ c4
♦
Q̄α

♦
Q̄α + c5

 
Qα

♦
Q̄α.

(14.140) 

where .c1, c2, c3, c4, c5 are real free constant parameters, and this gives rise to the 
five-parameter family of quadratic theories or the so-called New GR (see Ref. [ 27] 
and references therein). 

We can introduce a superpotential or the non-metricity conjugate as [ 50, 83, 104]
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. 
 
Pα

μν :=
1

2
√−g

∂(
√−g

 
Q)

∂
 
Q μν

α

= 1

4

 
Qα

μν −
1

4

 
Q(μ

α
ν) −

1

4
gμν

 
Qαβ

β

+ 1

4

[  
Q βα

β gμν + 1

2
δα
(μ

 
Qν)

β
β

]
. (14.141) 

Through this definition, we can describe the non-metricity scalar (14.137) equiva-
lently as 

.
 
Q :=  

Qαμν

 
Pαμν . (14.142) 

We can introduce also the further quantity [ 50, 104] 

. 
1√−g

 
qμν := 1√−g

∂(
√−g

 
Q)

∂gμν
− 1

2

 
Qgμν

= 1

4

(
2

 
Qαβμ

 
Qαβ

ν −
 
Qμαβ

 
Q αβ

ν

)

− 1

4

(
2

 
Q β

α β

 
Qα

μν −
 
Q β

μ β

 
Q β

ν β

)

− 1

2

(  
Qαβμ

 
Qβα

ν −
 
Q β

β α

 
Qα

μν

)
. (14.143) 

We have now all the elements to write the STEGR field equations (obtained varying 
the STEGR action with respect to the metric tensor), which reads as [ 50, 83] 

. 
 
Gμν := −2∇α

(√−g
 
Pα

μν

)

+  
qμν −

√−g
 
Q

2
gμν = 8πG

c4
Tμν, (14.144) 

where.
 
Gμν is the STEGR Einstein tensor. The variation of STEGR action with respect 

to the connection produces the connection field equations [ 50, 83] 

.∇μ∇ν

(√−g
 
P μν

α

)
= 0, (14.145) 

representing a set of first-order differential equations for the affine connection. 
Using the general results of Sect. 14.4.2, it is possible to recast the STEGR connec-

tion via the tetrads.eα
β ∈ GL(4,R) and the curvatureless hypothesis in the following 

form (cf. Eq. (14.43)) 4

4 In Eq. (14.146), we have used a different notation with respect to those employed previously. 
Here, it is important to underline the inverse tetrad matrix for the implication in (14.149).
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.┌α
μν := (e−1)αβ∂μe

β
ν . (14.146) 

Since STEGR is torsionless, we have (cf. Eq. (14.102)) 

.T α
μν := (e−1)αβ∂[νe

β
μ] = 0, (14.147) 

which implies 
.∂μe

β
ν = ∂νe

β
μ ⇔ eα

β ≡ e,αβ := ∂βξα, (14.148) 

where the tetrad is holonomic and, in addition, it can be parameterized by . ξα =
ξα(xμ). Therefore, Eq. (14.146) becomes [ 50, 83] 

.┌α
μν =

∂xα

∂ξλ
∂μ∂νξ

λ. (14.149) 

This connection can be set globally to zero, by considering the following affine 
(gauge) roto-translational transformation of coordinates [ 83] 

.ξα := Mα
βx

β + ξα
0 , (14.150) 

where.Mα
β ∈ O(1, 3) is an orthogonal matrix and.ξα

0 is a constant translational vector, 
which permits to have.┌α

μν = 0, which is the so-called coincident gauge. Physically, 
this means that the origin of the tangent space (expressed by . ξα) is coincident with 
the space–time origin (given by .xμ). This gauge is defined up to a linear affine 
transformation .axμ + b with .a, b real constant values. 

It is important to note that this residual global symmetry does not vanish at infin-
ity, ensuing significant properties at the infrared structure of the theory. In addition, 
recalling that the strong Equivalence Principle states that gravitation is indistinguish-
able from acceleration, its effects can be locally neglected via a diffeomorphic change 
of coordinates (i.e. LIFs). From this perspective, we understand that the affine con-
nection is an integrable translation. Therefore, the coincident gauge embodies and 
saves the strong Equivalence Principle of GR [126]. 

It is worth noticing that the STEGR affine connection is purely inertial and it does 
not contain any information about gravitation. Another important implication of the 
coincident gauge is the explicit breaking of diffeomorphism invariance due to the 
particular choice of coordinates, which does not occur in other frames [121]. The 
use or not of the coincident gauge affects only the boundary term (14.138), which 
has no influence on the ensuing dynamics and therefore neither on the evolution of 
the metric tensor. 

This particular gauge form permits to considerably simplify the calculations. In 
addition, the affine field equations (14.145) are trivially satisfied. In TG, the local 
Lorentz transformations are gauged through the spin connection and the calculations 
are simplified via the Weitzenböck choice, whereas, in STG, the diffeomorphism of 
coordinates become the new gauge and the calculations are easily carried out through 
the coincident gauge. This concept is summarized in the following scheme
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.

loc. Lorentz trans. Weitzenböck

gauge

diff. of coord. coincident

TEGR

STEGR

(14.151) 

There are also other two beneficial effects considering Eq. (14.2). It is 

.
 ∇μ = ∂μ,

 
Lλ

μν = − ◦
┌λ

μν . (14.152) 

It is worth noticing that, in generic STG theories, it is not possible to require that 
the coincident gauge holds a priori. More specifically, it is not possible, in general, 
to use a coordinate system which simultaneously simplifies metric and connection. 
When this can be achieved, it holds for a restricted set of geometries or it reduces 
the class of solutions (see Refs. [ 83], for further details). 

In STEGR, we have that the total DoFs are encoded in the metric tensor, having 
10 components from which we have to subtract 8 diffeomorphisms as in GR, having 
therefore again 2 DoFs as in GR. Here we have that the four diffeomorphisms of 
coordinates become the gauge diffeomorphism symmetries. While, in TEGR, metric 
and connection are related and, in STEGR, the connection becomes essentially a pure 
gauge and all the dynamics are enclosed in the metric, which is trivially connected. 
It is possible to introduce a close analogy between the fields . ξα, parameterizing 
the connection, and the Stückelberg fields, related to the invariance of coordinates’ 
transformation, and also between the coincident gauge and the unitary gauge (see 
Ref. [165] for details). 

14.5.3 A Discussion on Trinity Gravity at Lagrangian Level 

GR, TEGR, and STEGR constitute the so-called Geometric Trinity of Gravity, but, 
from the above discussion, it is clear that they are nothing else but particular cases 
of wide classes of theories. According to their formulation, they are three non-
communicating theories, because they start from different hypotheses and different 
dynamical-geometric objects. GR is usually conceived as the geometric formulation 
of gravity, whereas TEGR and STEGR as the gauge approaches to gravity, albeit 
also GR can be formulated in a gauge way via the use of tetrads and spin connection. 

Covariance and (strong) Equivalence Principles are at the foundations of GR. The 
former postulate has a more general character, which can be easily recognized also 
in TEGR and STEGR, whereas the latter hides some subtleties, which are sources 
of confusion in literature. For example, some papers state that such a principle does 
not hold in TG. More properly, it is not strictly required at the foundation of TG but 
it must hold to provide mathematical and physical coherence for TEGR and STEGR
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theories. Basically, Equivalence Principle guarantees the equivalence among GR, 
TEGR, and STEGR. This last point can be summarized as follows: 

.

foundation

strong EP ω
C
Bμ −

∧
KC

Bμ = ◦
ω
C

Bμ

coincident gauge

GR

TEGR

STEGR

(14.153) 

Up to now, we underlined only the equivalence among the three theories at 
Lagrangian level, pointing out the difference for a boundary term, namely 

.

◦
R~~~~

LGR

LTEGR~ ~~ ~
−∧
T− 2

e ∂μ

(
e
∧
T μ
)

LSTEGR~ ~~ ~
 
Q− ◦∇μ(

 
Qμ−

♦
Q̄μ)

(14.154) 

As stated above, the equivalence does not for extensions like . f (R), . f (T ), and 
. f (Q) because, in general, these extended theories differ for the DoFs (see [ 20] for  a  
straightforward example). However, equivalence can be restored also in extensions 
considering appropriate boundary terms. For example,. f (R),. f (T, B), and. f (Q, B)

can be compared as fourth-order theories when an appropriate boundary term .B is 
defined in each gravity framework. In . f (T, B), this equivalence has been explicitly 
proved considering the boundary term as in Eq.(14.115) (see e.g. [  16, 17, 47]). An 
analogue procedure shows that also . f (Q, B) theory can be dynamically reduced to 
. f (R) defining a suitable boundary term as in Eq.(14.138). 

14.6 Field Equations in Trinity Gravity 

In the above discussion, equivalent representations of gravity have been compared at 
the level of actions and Lagrangians. Here we want to develop the same comparison 
at the level of field equations. 

Let us start with the Bianchi identities, having the pivotal role to link the field 
equations of a theory with the conservation laws of the gravity tensor invariants and
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with the energy–momentum tensor [140]. We start from the second Bianchi identity 
(14.6), whose more explicit expression is [ 18] 

.

∇λR
α
βμν +∇μR

α
βνλ +∇νR

α
βλμ

= T ρ
μλR

α
βνρ + T ρ

νλR
α
βμρ + T ρ

νμR
α
βλρ,

(14.155) 

and we prove the equivalence among GR (see Sect. 14.6.1), TEGR (see Sect. 14.6.2), 
and STEGR (see Sect. 14.6.3) in terms of their field equations, which we show to be 
equal to those already presented in Sect. 14.5. 

14.6.1 GR Field Equations 

Since in GR we have.Rα
βμν =

◦
Rα

βμν and.T α
βγ = Qαβγ = 0, the second Bianchi iden-

tity (14.155) reduces to 

.
◦∇λ

◦
Rα

βμν +
◦∇μ

◦
Rα

βνλ +
◦∇ν

◦
Rα

βλμ = 0. (14.156) 

To simplify the calculations, thanks to the Covariance Principle, we can exploit the 
LIF’s coordinates (cf. Eq. (14.56)), where second derivatives of the metric are not 
null. Contracting . α and . λ, Eq.  (14.156) becomes 

.∂λ

◦
Rλ

βμν + ∂μ

◦
Rλ

βνλ + ∂ν

◦
Rλ

βλμ = 0. (14.157) 

Using the antisymmetry in the last two indexes of the Riemann tensor (cf. Eq. (14.5a)), 
we obtain 

.∂λ

◦
Rλ

βμν − ∂μ

◦
Rλ

βλν + ∂ν

◦
Rλ

βλμ = 0. (14.158) 

Applying the metric to first raise up the index . β and then contracting . β and . μ, we  
have 

. − ∂λ

◦
Rλ

ν − ∂β

◦
Rβ

ν + ∂ν

◦
R = 0, (14.159) 

from which we immediately obtain 

.∂μ

◦
Rμ

ν −
1

2
∂ν

◦
R = 0. (14.160) 

Using again the metric tensor, Eq. (14.160) becomes 

.∂μ(
◦
Rμν − 1

2
gμν R̂) = 0 ⇒ ◦∇μ(

◦
Rμν − 1

2
gμν R̂) = 0, (14.161) 

where the partial derivative is in general replaced by the covariant one. This rela-
tion leads to the Einstein field equations in vacuum (cf. Eq. (14.66)). The Einstein
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tensor .
◦
Gμν is divergenceless: this fact also implies the conservation of the energy– 

momentum tensor [140], namely 

.
◦∇μ

◦
Gμν = 0, ⇔ ◦∇μT

μν = 0. (14.162) 

14.6.2 TEGR Field Equations 

Since in TEGR curvature and non-metricity vanish, Eq. (14.155) can be further 
simplified via the Weitzenböck gauge (see Sect. 14.5.2) as follows 

.
∧∇λR

α
βμν +

∧∇νR
α
βλμ +

∧∇μR
α
βνλ = 0, (14.163) 

where .Rα
βμν ≡

◦
Rα

βμν +
∧
Kα

βμν = 0 with 

. 
∧
Kα

βμν :=
◦∇μ

∧
K α

βν −
◦∇ν

◦
K α

βμ

+ ∧
K α

σμ

∧
K σ

βν −
∧
K α

σν

∧
K σ

βμ, (14.164) 

including all torsion tensor contributions and having also the following symmetry 
properties (cf. Eq. (14.110)): 

.
∧
Kα

βμν = − ∧
Kβ

α
μν,

∧
Kα

βμν = − ∧
Kα

βνμ. (14.165) 

Contracting . α and . λ, Eq.  (14.163) becomes 

. 
∧∇λ

◦
Rλ

βμν +
∧∇μ

◦
Rλ

βνλ +
∧∇ν

◦
Rλ

βλμ

+ ∧∇λ

∧
Kλ

βμν +
∧∇μ

∧
Kλ

βνλ +
∧∇ν

∧
Kλ

βλμ = 0. (14.166) 

Applying the same strategy of GR (see Sect. 14.6.1) and using the metric compati-
bility of TEGR, we obtain 

.
∧∇μ(

◦
Rμ

ν +
∧
Kμ

ν) −
1

2

∧∇ν(
◦
R + ∧

K) = 0, (14.167) 

where .
∧
Kμν :=

∧
Kλ

μλν and .
∧
K := ∧

Kν
ν , having a formally similar definition of Ricci 

tensor and scalar curvature of GR. Equation (14.167) entails twofold implications 

.
◦
Rμν − 1

2
gμν

◦
R = − ∧

Kμν + 1

2
gμν

∧
K, (14.168a) 

.
∧
Kμν − 1

2
gμν

∧
K = 0, (14.168b)
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where the former tells that TEGR field equations are equivalent to those of GR, 
whereas the latter, derived using the GR vacuum field equations, gives the TEGR 
field equations, which are divergenceless in terms of . 

∧∇. 
Now, we prove that Eq. (14.168b) reproduces exactly Eq. (14.120). To this end, 

we first analyse .
∧
Kμν , which gives 

. 
∧
Kμν =

◦∇α

∧
K α

μν −
◦∇ν

∧
K α

μα +
∧
K σ

μν

∧
K α

σα −
∧
K σ

μα

∧
K α

σν

= ◦∇α

∧
K α

μν +
◦∇ν

∧
Tμ −

∧
Kσμν

∧
T σ − ∧

K σ
μα

∧
K α

σν

= ◦∇α

∧
Sν

α
μ +

◦∇α

∧
T αgμν −

∧
K α

σν

∧
Sα

σ
μ, (14.169) 

where we have used (cf. Eqs. (14.110) and (14.112)) 

.
∧
K α

μα = − ∧
Tμ, (14.170a) 

.
∧
K α

αμ = 0, (14.170b) 

.
∧
K μ

νλ =
∧
Sλ

μν + δν
λ

∧
T μ − δ

μ
λ

∧
T ν . (14.170c) 

Now, we can analyse . 
∧
K, which gives (cf. Eq. (14.115)) 

.
∧
K = 2

◦∇λ

∧
T λ + ∧

T = 2

e
∂λ(eT̂

λ) + T̂ . (14.171) 

Substituting Eqs. (14.169) and (14.171) into Eq. (14.168b), we have 

.
◦∇α

∧
Sνμ

α + ∧
K α

σν

∧
Sα

σ
μ +

1

2
gμν

∧
T = 0, (14.172) 

which can be shown to be equal to Eq. (14.120) by exploiting metric compatibility, 
and tetrad postulate. 

14.6.3 STEGR Field Equations 

Since STEGR is curvatureless and torsionless, Eq. (14.155) can be further simplified 
via the coincident gauge (see Sect. 14.5.2), leading to the following expression: 

.∂λR
α
βμν + ∂νR

α
βλμ + ∂μR

α
βνλ = 0, (14.173) 

where, in this case,.Rα
βμν ≡

◦
Rα

βμν +
 
Lα

βμν = 0..
 
Lα

βμν is a function of the disforma-
tion tensor, namely 

.
◦
Lα

βμν =
◦∇μ

 
Lα

βν −
◦∇ν

 
Lα

βμ +
 
Lα

σμ

 
Lσ

βν −
 
Lα

σν

 
Lσ

βμ, (14.174)
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endowed with the following symmetry properties: 

.
 
Lα

βμν = − 
Lβ

αμν,
 
Lα

βμν = − 
Lα

βνμ, (14.175a) 

where we have used Eqs. (14.4c) and (14.5c). 
Contracting. α and. λ and giving the explicit expression of the Riemann tensor, Eq. 

(14.173) becomes 

. ∂λ

◦
Rλ

βμν + ∂μ

◦
Rλ

βνλ + ∂ν

◦
Rλ

βλμ

+ ∂λ

 
Lλ

βμν + ∂μ

 
Lλ

βνλ + ∂ν

 
Lλ

βλμ = 0. (14.176) 

Following the same strategy adopted in GR (see Sect. 14.6.1), we finally obtain (cf. 
Eqs. (14.168)) 

.
◦
Rμν − 1

2
gμν

◦
R = − 

Lμν + 1

2
gμν

 
L, (14.177a) 

.
 
Lμν − 1

2
gμν

 
L = 0, (14.177b) 

where .
 
Lμν :=

 
Lα

μαν and .
 
L :=  

Lμ
μ, resembling formally the expression of Ricci 

tensor and scalar curvature, respectively. Let us note that, in the coincident gauge, 

.
 
Lα

μν = − ◦
┌α

μν , which soon reveals that Eq. (14.177b) is equivalent to the GR field 
equations. Equation (14.177a) proves the equivalence between GR and STEGR field 
equations, whereas Eq. (14.177b) represents the STEGR field equations, which we 

will demonstrate to be equal to Eq. (14.144). Let us first analyse .
 
Lμν , which yields 

. 
 
Lμν =

◦∇α

 
Lα

μν −
◦∇ν

 
Lα

μα +
 
Lσ

μν

 
Lα

σα −
 
Lσ

μαL
α

σν

= ◦∇α

 
Lα

μν + 1

2

◦∇ν

 
Qμ − 1

2

 
Qα

 
Lα

μν

− 1

4

[  
Qμ

σ
α

 
Qν

α
σ + 2

 
Qα

σν(
 
Qσ

αμ −
 
Qα

σ
μ)
]
, (14.178) 

where we have used 

.
 
Lα

μα = −1

2

 
Qμ, (14.179a) 

. 
 
Lα

μν = 2
 
Pα

μν +
1

2
gμν(

 
Qα −

♦
Q̄α)

− 1

4
(δα

μ

 
Qν + δα

ν

 
Qμ). (14.179b)
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Therefore, the scalar . 
 
L is expressed by 

. 
 
L = ◦∇α(

 
Qα −

♦
Q̄α) + 1

4

 
Qαβγ

 
Qαβγ − 1

2

 
Qαβγ

 
Qγβα

− 1

4

 
Qα

 
Qα + 1

2

 
Qα

♦
Q̄α

= ◦∇α(
 
Qα −

♦
Q̄α) −  

Q. (14.180) 

Gathering together Eqs. (14.178) and (14.180), using the following identity (cf. Eq. 
(14.179a)) 

.∂α

 
Qα = ◦∇α

 
Qα +  

Lα
σα

 
Qσ = ◦∇α

 
Qα − 1

2

 
Qα

 
Qα, (14.181) 

we then obtain 

. 2∂αP
α

μν + 1

2

 
Qαμν(

 
Qα −

♦
Q̃α) + 1

2
gμν∂α(

 
Qα −

♦
Q̃α)

+ 1

2

 
Lσ

μν

 
Qσ + 1

4

 
Qμ

α
σ

 
Qν

σ
α + 1

2

 
Qα

σμ(
 
Qσ

να − Qα
σ

ν)

− 1

2
gμν

◦∇α(
 
Qα −

♦
Q̃α) + 1

2
gμν

 
Q = 0, (14.182) 

which is equal to Eq. (14.144) in an empty space–time, i.e. 

.
2√−g

∂α(
√−g

 
Pα

μν) −
1√−g

 
qμν + 1

2
gμν

 
Q = 0. (14.183) 

An important remark is in order at this point. As already discussed above in the 
case of Lagrangians, the equivalence holds only for the theories stemming out from 
the scalar invariants . R, . T , and . Q. In these specific cases, we obtain second-order 
equations. This is not true for extensions implying non-linear functions of these 
invariants. This fact points out again that GR, and its equivalent representations, are 
very peculiar cases among the theories of gravity. 

14.7 Solutions in Trinity Gravity 

Clearly, the equivalence of GR, TEGR, and STEGR has to be proven also at the 
solution level. In Sect. 14.6, the same field equations have been obtained, and then 
the same exact solutions, under the same symmetries and boundary conditions, have 
to be achieved.
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In this perspective, performing the calculations to settle the solutions in the three 
gravity scenarios is useful also in view of extensions of the theories. Recently, it 
has been proposed a 3+1 splitting formalism in the geometric trinity of gravity [ 50] 
entailing the following advantages: (1) simplicity in carrying out numerical analyses; 
(2) solving some theoretical issues existing in the various formulations of GR at the 
fundamental level (e.g. canonical quantization); (3) broadening this methodology 
also in extended and alternative gravity frameworks. 

Here, we focus the attention on one of the simplest GR solutions, represented by 
the Schwarazschild space–time. Soon after the publication of GR theory by Einstein, 
Schwarzschild determined the solution, describing the space–time metric outside 
a spherically symmetric mass–energy distribution. This result is perfect agreement 
with the weak field approximation [ 90]. 

Jebsen, in 1921, and Birkhoff, in 1923, independently proved that the 
Schwarzschild solution holds outside a spherically symmetric mass distribution, even 
if this varies over time. This is now known as the (Jebsen) Birkhoff theorem, and it 
can be stated as follows [ 25, 122]: any spherically symmetric solution of the GR 
field equations in vacuum has to be static and asymptotically flat. In addition, the 
Schwarzschild solution is the unique solution satisfying these hypotheses. 

This claim entails several significant implications: (1) the uniqueness of the 
Schwarzschild solution in GR by imposing the spherical symmetry as starting hypoth-
esis; (2) no emission of gravitational waves, which can be interpreted, similarly as 
in electromagnetism, that there exists no monopole (spherically symmetric) radia-
tion; (3) the outcome of the Birkhoff theorem in GR gravity theory can be compared 
with the Gauss theorem implications in electromagnetism and in classical Newtonian 
gravity. 

Let us start our considerations taking into account a generic spherically symmet-
ric metric, whose line element, written in spherical coordinates .{t, r, θ,ϕ}, in the  
equatorial plane .θ = π/2, and in geometric units (.G = c = 1), reads as [140, 162] 

.ds2 = −eν(t,r)dt2 + eλ(t,r)dr2 + r2dϕ2, (14.184) 

where .ν(t, r),λ(t, r) are the two unknown functions to be determined. We supple-
ment this general metric with the well-known weak field limit on the metric time 
component 

. − eν(t,r) ≈ −1+ 2M

r
, (14.185) 

where .M is the compact object mass, being the origin of the gravitational field, and 
.
2M
r is the Newtonian gravitational potential. 
We want now to solve the field equations in vacuum (.Tμν = 0, namely outside 

the gravitational source) in GR (Sect. 14.7.1), TEGR (Sect. 14.7.2), and STEGR 
(Sect. 14.7.3). We will observe how the Birkhoff theorem emerges also in TEGR 
and STEGR. Finally, we will recover the Schwarzschild metric in all three gravity 
theories, namely [140, 162]
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.ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dϕ2, (14.186) 

admitting.rS := 2M as event horizon (coordinate singularity) and.r = 0 as essential 
(physical) singularity. 

Given a function . f (t, r), we use the following notations 

. ḟ (t, r) := d f (t, r)

dt
, f ,(t, r) := d f (t, r)

dr
. (14.187) 

14.7.1 Spherically Symmetric Solutions in GR 

The vacuum field Eqs. (14.66) can be recast also as 

.
◦
Gμν ≡

◦
Rμν = 0, (14.188) 

where .
◦
R = 0. Analysing .

◦
Gtr we obtain 

.
◦
Gtr ≡ λ̇(t, r)

r
= 0, ⇒ λ = λ(r). (14.189) 

The other independent field equations are 

.
◦
Grr ≡ −eλ(r) + rν ,(t, r)+ 1 = 0, (14.190a) 

.
◦
Gtt ≡ e−λ(r)

(
rλ,(r)− 1

)+ 1 = 0. (14.190b) 

From Eq. (14.190a), we conclude that .ν = ν(r). All the metric components are 
independent of the coordinate time . t , and this proves that the metric is static. 

From Eq. (14.190b), we obtain 

.
[
e−λ(r)r

], = 1 ⇒ e−λ(r) = 1− C1

r
, (14.191) 

where.C1 is an integration constant. Multiplying Eq. (14.190b) by.eλ(r) and summing 
it to Eq. (14.190a), we obtain 

.λ,(r)+ ν ,(r) = 0, ⇒ λ(r)+ ν(r) = C2, (14.192) 

where the integration constant.C2 has to be.C2 = 0 to achieve the asymptotic flatness. 
From the weak field limit consideration (14.185), we obtain 

. − eν(r) = 1− 2M

r
, eλ(r) = 1

1− 2M
r

. (14.193)
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14.7.2 Spherically Symmetric Solutions in TEGR 

For solving the TEGR field equations, we adopt the tetrad formalism. We know that 
each tetrad field must be associated to the related spin connection (see, for example, 
Ref. [129]). However, in TEGR, we can drastically simplify the calculations resorting 
to the Weitzenböck gauge. Therefore, we can choose the diagonal tetrad 

.eAμ =

⎛
⎜⎜⎝

√−eν(r) 0 0 0
0

√
eλ(r) 0 0

0 0 r 0
0 0 0 r sin θ

⎞
⎟⎟⎠ . (14.194) 

Let us recall that this tetrad is related to the off-diagonal tetrad (where the spin con-
nection is naturally vanishing [129]) through a local Lorentz transformation.ɅA

B(x). 
However, they both describe the same metric. 

The non-zero torsion tensor components are 

.
∧
T t

tr = −1

2
ν ,(r) = −M

r2

(
1− 2M

r

)−1

, (14.195a) 

.
∧
T ϕ

rϕ = 1

r
. (14.195b) 

It is worth noticing that, physically,.
∧
T t

tr represents the redshifted radial gravitational 

force, because it is calculated with respect to the coordinate time . t ; whereas .
∧
T ϕ

rϕ is 
the classical centrifugal force occurring in the tetrad frame. 

Another important object is the contortion tensor, whose non-zero components 
read as 

.
∧
Kttr = 1

2
eν(r)ν ,(r) = M

r2
, (14.196a) 

.
∧
Kϕrϕ = r, (14.196b) 

whose interpretation is closely related to that already provided for the torsion tensor 
(cf. Eq. (14.97a)). 

The superpotential components read as 

.
∧
S tr
t̂ = 2e−λ(r)

√
e−ν(r)

r
= 2

r

/
1− 2M

r
, (14.197a) 

.
∧
S rϕ

ϕ̂ = −e−λ(r)
(
rν ,(r)+ 2

)
2r2

= M − r

r3
. (14.197b)
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Finally, the torsion scalar is 

.
∧
T = −2e−λ(r)

(
rν ,(r)+ 1

)
r2

= − 2

r2
, (14.198) 

which represents the dynamically active part of the scalar curvature, whereas the 
remaining part is included in the dynamically passive boundary term. 

Combining these elements, it is easy to prove that .
∧
Gμν ≡

◦
Gμν (cf. Eq. (14.172)). 

Then applying the same procedure of GR (see Sect. 14.7.1), the Birkhoff theorem 
holds also in TEGR. 

14.7.3 Spherically Symmetric Solutions in STEGR 

Regarding the STEGR field equations, we adopt the coincident gauge to ease the 

calculations, where .
 ∇ = ∂μ and .

◦
┌

μ
αβ = −  

Lμ
αβ . In this case, it is immediate to 

get .
◦
Gμν ≡

 
Gμν . However let us calculate the fundamental terms occurring in Eq. 

(14.177b) for extracting the physical information. 
The non-metricity tensor has the following expression: 

. 
 
Qrμν =

⎛
⎝−eν(r)ν ,(r) 0 0

0 eλ(r)λ,(r) 0
0 0 2r

⎞
⎠

=
⎛
⎜⎝
− 2M

r2 0 0
0 − 2M

r2(1− 2M
r )

2 0

0 0 2r

⎞
⎟⎠ , (14.199) 

where the derivative of gravitational potential represents the gravitational force act-
ing on the observer and producing the disformations. For a comparison, we have that 
TEGR gravitational force makes the tetrad frame rotating (see Sect. 14.7.2), whereas 
STEGR gravitational force causes expansions and contractions of the observer lab-
oratory. Instead, the conjugate potential reads as 

.
 
Pt

tr =
rλ,(r)− rν ,(r)+ 4

8r
= 1

8

(
λ,(r)+ ν ,(r)

)
, (14.200a) 

.
 
Pr

rr =
eν(r)−λ(r)

r
= 1

r

(
1− 2M

r

)2

, (14.200b) 

.
 
Pr

ϕϕ = −1

4
re−λ(r)

(
rν ,(r)+ 2

) = M − r

2
, (14.200c) 

.
 
Pϕ

rϕ = 1

8

(
λ,(r)+ ν ,(r)

) = 0, (14.200d)
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while the other components are null. The last quantity, represented by the above.qμν , 
reads as 

. 

 
qμν√−g

=
⎛
⎜⎝

2eν(r)−λ(r)ν ,(r)
r 0 0
0 2rν ,(r)+2

r2 0
0 0 − rν ,(r)+2

eλ(r)

⎞
⎟⎠

=
⎛
⎜⎝

4M
r3
(
1− 2M

r

)
0 0

0 2
r2(1− 2M

r )
0

0 0 2M
r − 2

⎞
⎟⎠ . (14.201) 

Substituting the above expressions in Eq. (14.177b), we recover the same differential 
equations of GR (cf. Eq. (14.190)). Also, in this case, we obtain the Schwazrschild 
solution and the validity of the Birkhoff theorem. 

It is worth stressing that, also at this level, we cannot expect the same solutions 
for . f (R), . f (T ), and . f (Q) extensions. 

14.8 Discussion and Perspectives 

We have gathered together basic concepts of Geometric Trinity of Gravity and derived 
the related dynamics pointing out analogies and differences between metric, affine, 
and non-metric approaches. We tried to give a self-consistent picture of the three 
representations of gravitational field. The main statement is that equivalence is strictly 
achieved for GR, TEGR, and STEGR and not for any extension of these theories. 

Firstly, we introduced the geometric arena of metric-affine gravity, where metric 
tensor and affine connection are two separate and independent structures. After, we 
provided the fundamental geometric objects, that is tetrads and spin connection. 
The former represents the observer laboratory, which solders the tangent space to the 
space–time manifold. This procedure gives rise to anholonomic frames. These frames 
become holonomic when we are dealing with inertial frames, where a particular role 
is fulfilled by trivial tetrads of Special Relativity (see Sect. 14.4.1). The latter are 
intimately related with general tetrads, because they represent the inertial effects and 
they are generated by local Lorentz transformations. They form the Lorentz group, 
which, in turn, can be proved to give rise to a Lorentz algebra. This is a crucial 
aspect for defining the Fock–Ivanenko covariant derivative, useful to characterize 
the spin connection in terms of tetrads and to introduce the tetrad postulate (i.e. 
.∇μeAν = 0). This theoretical treatment can be interpreted from a physical point of 
view as discussed in Sect. 14.4.2. 

These mathematical tools allow to describe the Geometric Trinity of Gravity. 
Specifically, a metric formulation (encoded in the Riemannian geometry), and a 
gauge approach (encoded in teleparallel gravity) are possible. GR, TEGR, and 
STEGR are dynamically equivalent from the variation of their Lagrangians up to
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a boundary term. Furthermore, starting from the second Bianchi identity, it is pos-
sible to infer the field equations, which are identical in the three representations. 
Finally, we analysed spherically symmetric solutions in the three theories deriving 
the Schwarzschild space–time and the Birkhoff theorem also in TEGR and STEGR. 
The approaches can be summarized as follows: 

.

Lagrangian

EQUIVALENCE Field equations

Solutions

variation

Bianchi Ids.

symmetries

(14.202) 

However, as pointed out above, also if mathematical results are equivalent, the 
physical interpretation can be different depending on the considered variables and 
observables. This fact opens several questions. Some of them can be listed as follows: 

• Are there other equivalent formulations of gravity, outside of the Geometric Trin-
ity? In other words, we can ask for the existence of other representations of gravity 
equivalent to GR within the metric-affine arena or, more in general, identifying 
other fundamental variables. The question implies also considering extended the-
ories of gravity which can be “reduced” to GR (see, for example, [ 61, 124] for  a  
discussion). 

• From an observational point of view, what does it mean that these three theories 
are dynamically equivalent? This issue translates in extracting observables from 
each gravity theory and then interpreting them, from a physical viewpoint, finding 
out suitable transformation laws which make equivalent the set of variables of each 
theory. 

• How can we construct observational apparatuses to test different theories dynam-
ically equivalent to GR? This point is a direct consequence of the previous one. 
The question can be posed also in another way: Is it possible, if any, to discrim-
inate different sets of observables for equivalent descriptions of gravity from an 
experimental point of view? 

• STG theories are the less analysed among the three approaches. A general tetrad 
formulation is necessary in view of physical implications. In particular, the inter-
pretation of gravity as a gauge theory could be particularly relevant to consider 
gravity under the same standard of other fundamental theories.
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• The Equivalence Principle (in its strong and weak formulations) is a fundamental 
aspect of GR [183]. It can be recovered in TEGR and STEGR also if it is not at 
the foundation of these theories. If it were violated at some level (e.g. at quantum 
level), would it be possible to state that TEGR and STEGR are more fundamental 
theories than GR because they do not require it as a basic principle? 

The above ones are some of the open issues related to equivalent representations 
of gravity and, in particular, to Gravity Trinity. Besides the mathematical aspects, it 
emerges that systematic experimental and observational protocols are necessary to 
establish the set of fundamental variables. For example, questions if metric or con-
nection are the “true” gravitational variables are still open. Non-metricity could have 
a main role in this discussion due to the fact that the stringent requirement of asking 
for Equivalence Principle could be relaxed. Forthcoming precision experiments [ 88], 
gravitational wave astronomy [ 5], and precision cosmology observations [ 45] could 
be the tools to answer these questions.



Chapter 15 
Conclusions 

This book is an “experiment” to demonstrate that, starting from simple arguments of 
Euclidean geometry, it is possible to arrive at the geometric formulation of physical 
theories: in the specific case, Special and General Relativity and, consequently, up to 
Relativistic Cosmology. Our attempt was aimed, above all, at undergraduate students, 
in particular those of our university courses, to demonstrate that, by a rigorous and 
extended mathematical development, theories deemed “difficult”, such as General 
Relativity, can be understood and operationally used. We turned to students, and not 
to colleagues, to avoid falling into unnecessary technicalities that would have made 
the text unsuitable for a truly “basic” reading of Special and General Relativity. 
During the discussion, however, we introduced some advanced topics with the aim 
of stimulating the reader to further deepen and personal research. Our hope is not to 
have bored the reader but to have contributed something useful to the vast literature 
on the subject. Ours was a humble attempt, with no claim to completeness. We hope 
that our efforts have proved useful to someone eager to understand the wonderful 
book of Nature with the beautiful language of Mathematics which, as said by Leibniz, 
is “the honor of the human spirit”. 

We are all in the gutter but some of us are looking at the stars. 

Oscar Wilde 
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Non-Euclidean Geometry, 27
Non-metricity, 460
Non-orthochronous Lorentz transforma-

tions, 478
Non-Riemannian metric, 125
Non-secant lines, 17, 156
N-point, 64
N-triangle, 64
Null cone, 36
Null vectors, 35

O
Observer, 221
Obtuse angle, 19
Optical isotropy principle, 478
Orbital period of a planet, 196
Orbit of a planet in Schwarzschild metric,

285
Orbit’s equation solution in Schwarzschild

metric, 289
Oriented hyperbolic angle, 36
Orthochronous Lorentz transformations,

478
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P
Palatini’s formula, 274
Parallel line, 26
Parallel transport of a vector field along a

curve, 99
Past-pointing space-like vector, 36
Past-pointing time-like vector, 36
Pencils of lines, 47
Perihelion, 195
Period corresponding to a given frequency

of light, 246
Permutation, 430
Perspective map, 53
Perspective pencils of lines, 56
Photon energy, 239
Photon frequency, 239
Photon wavelength, 239
Physical coordinates, 226
Planck constant, 239
Poincaré distance of the disk, 63, 170
Poincaré metric of the disk, 172
Point at infinity of a line, 46
Points, 2
Poisson’s equation for gravity, 187
Postulates of Special Relativity, 221
Potential, 199
Potential energy, 200
Precedes, 7
Prejective map on a line, 50
Principle of covariance, 345
Principle of relativity, 478
Projective map between two lines, 50
Projective map of a circle, 50
Projective pencils of lines, 54
Proper time in General Relativity, 287
Proper time in Special Relativity, 237
Pseudo-Riemannian metric, 125
Pseudo-singularity, 305
Pseudosphere, 76, 95
Ptolemy’s Theorem, 44
Purely inertial spin connection, 482
Pythagoras’ Theorem, 33

R
Radius of the observable Universe, 336
Rate of separation of the geodesics, 147
Ray, 7
Reference frame, 221
Relativistic counterparts, 349
Relativistic Doppler’s effect, 245
Relativistic field equations in vacuum, 345
Relativistic mass, 233

Relativistic momentum, 232
Relativistic velocities addition, 226
Relativity principle, 485
Rest energy, 239
Ricci curvature, 98
Ricci rotation coefficients, 475
Ricci’s equations, 92
Ricci symbols , 97
Ricci tensor, 127
Riemannian curvature tensor, covariant, 127

Riemannian curvature tensor, mixed, 127
Riemannian metric, 125
Riemann symbols, first kind, 92
Riemann symbols, second kind, 92
Right angle, 16
Rindler’s metric, 304

S
Scalar curvature, 98
Schwarzschild metric, 284
Schwarzschild radius, 287
Schwarzschild’s solution, 282
Secant, 4
Segment, 5
Self-homologous point, 53
Semi-Riemannian metric, 125
Sides, 5
Signature of a metric, 125
Simultaneity, 227
Simultaneous, 227
Slope, 34
Slow particle, 352
Space, 2
Space-like vectors, 35
Space-time, 222
Space-time without matter and time, 369
Speed of light in a gravitational field, 293
Spin connection, 462, 480
Starobinsky’s inflation, 278
Stationary point of the functional, 204, 211
Steiner’s Theorem, 54
Stereographic projection, 116
Strong equivalence principle, 263, 505
Structure constants, 474
Structure equations, 436
Superpotential, 498
Surface, 68
Swarm of particles, 346
Symmetric connection, 444
Symmetric geometric inversion, 40
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T
Tachyon, 334
Tangent plane, 72
Tangent space, 126
Teleparallel gravity, 426, 456, 461
Tensor, 122, 428
Tensor (k,p), 123
Tensor contravariant of rank.k and covariant

of rank.p, 123
Tensor product, 430
Tetrad, 472
Tetrad field, 461
Tetrad formalism, 473
Tetrad postulate, 480
Thales Theorem, 33
The Einstein theorem, 97
The structure equations of.Rn , 438
Theorema Egregium, 93, 95
Theorem ASA, 13
Theorem SAS, 13
Theorem SSS, 14
Tidal acceleration, 188
Tidal acceleration equations, 145
Tidal acceleration equations in Fermi’s coor-

dinates, 343
Tidal effect, 188
Tidal vector, 145
Time dilation, 231
Time-like vectors, 35
Torsion differential 2-form, 476
Torsion-free connection, 444
Torsion of an affine connection, 443

Total deflection, 297
Total energy, 201
Tractrix, 76
Translation coupling prescription, 492
Transversal theorem, 9
Triangle inequality, 19
Trivial tetrads, 477
Twins paradox, 231
Tzitzeica surface, 405

V
Vector field, 436
Vector field along the curve, 98
Vector parallel transported along a curve,

133
Vertexes, 5
Vierbein, 461
Violation of speed of light limit, 293
Volume of the observable Universe, 337

W
Weak Equivalence Principle, 262
Weak gravitational field, 350
Wedge product, 431
Weingarten’s formulas, 85
Weitzenböck connection, 496
Weitzenböck gauge, 496
World line, 222
Wormhole, 378
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