
Some Results of Schatten-p Norm

1 Introduction

The affine rank minimization problem arises directly in various areas of science and engineering
including statistics, machine learning, information theory, data mining, medical imaging and com-
puter vision. Some representative applications include:

1. low rank matrix completion (LRMC)

min
X

rank (X) s.t. Xij = Mij , (i, j) ∈ Ω (1)

or
min
X

rank (X) s.t. PΩ (X) = M (2)

2. robust principal component analysis (RPCA)

min
E
‖E‖2F s.t. rank (L) 6 r,X = L+ E (3)

or
min
E
‖E‖1 s.t. rank (L) 6 r,X = L+ E (4)

3. low rank representation (LRR)

min
Z
rank (Z) s.t. X = XZ + E (5)

4. · · ·

Question: Why does low rank structure exist in high dimensional data?

2 Background

Definition 1. The Schatten-p norm (0 < p <∞) of a matrix X ∈ Rm×n (without loss of generality,
we can assume that m ≥ n) is defined as

‖X‖Sp
=

(
n∑
i=1

σpi (X)

) 1
p

(6)

where σi(X) denotes the i-th singular value of X.

By H
..
o lder′s and Minkowski′s inequality, p ≥ 1, |·|p is a norm, for instance, it is nuclear norm

when p = 1, it is Frobenius norm when p = 2 norm, however it is quasi-norm for 0 < p < 1, for
example:



Example 1.

A =

[
1 0

0
1

2

]
, B =

[
2 0

0
1

2

]
(7)

By SVD, we can get the Σs as flowing:

ΣA =

[
1 0
0 1

2

]
,ΣB =

[
2 0
0 1

2

]
, (ΣA + ΣB) =

[
3 0
0 1

]
(8)

If p =
1

2
,

(ΣA) 1
2

=

(
σ

1
2
1 + σ

1
2
2

)2

=

(
1 +

(
1

2

) 1
2

)2

=
3

2
+
√

2

(ΣB) 1
2

=

(
σ

1
2
1 + σ

1
2
2

)2

=

(
2

1
2 +

(
1

2

) 1
2

)2

=
9

2

(ΣA+B) 1
2

=

(
σ

1
2
1 + σ

1
2
2

)2

=
(

3
1
2 + (1)

1
2

)2
= 4 + 2

√
3

(9)

but
4 + 2

√
3 = (ΣA + ΣB) 1

2
> (ΣA) 1

2
+ (ΣB) 1

2
= 6 +

√
2 (10)

Now, recall that ‖·‖p is norm if and only if

1. ‖0‖p = 0

2. ‖aα‖p = a|α|p ∀a ∈ R

3. ‖α+ β‖p 6 |α|p + |α|p

Due to the example above ‖·‖p where 0 < p < 1 is not a norm.

But the fowling lemma give us a different view.

Lemma 1. If p ∈ (0, 1) and a, b ≥ 0, then

(a+ b)p 6 ap + bp (11)

with equality if and only if either a or b is 0.

Proof. Define a function f(t) = (1 + t)p − 1 − tp, and it is easy to show that f (t) 6 0, then let

t =
a

b
.
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To recover a low-rank matrix from a small set of linear observations, b ∈ Rl, the general Schatten−p
quasi-norm minimization (SQNM) problem is formulated as follows:

min
X∈Rm×n

‖X‖pSp
, s.t. A(X) = b (12)

where A : Rm×n → Rl is a general linear operator.

Alternatively, the Lagrangian version of Eq.12 is

min
X∈Rm×n

λ ‖X‖pSp
+ f (A (X)− b) (13)

where λ > 0 is a regularization parameter, and the loss function f(·): Rl → R generally denote
certain measurement for characterizing the loss A(X)−b, Such as A is the linear projection operator
PΩ, and f(·) = ‖·‖22 in low rank matrix complement (LRMC); A is the identity operator and
f(·) = ‖·‖1; A(x) = AX and f (·) = ‖·‖2F in multivariate regression.

Why the authors present their ideas in there papers?

1. Most exiting Schatten Norm minimization algorithms involve SVD or EVD of the whole
matrix in each iteration, they suffer from a high computational cost of O(n2m), which severely
limits their application to large-scale problems.

2. They present a method which factorize X into two or more smaller factor matrices, i.e.

X = UV or X =
M∏
i=1

Ui, get a lower computational cost.

Questions:

1. Is ‖X‖pSp
a continuous function over p?

2. Does lim
p→0
‖X‖pSp

exist?

3. If it exists, lim
p→0
‖X‖pSp

?
= ‖X‖0S0

= rank(X)

3 Main results

Theorem 1. For any matrix X ∈ Rm×n with the rank(X) = r ≤ d, it can be decomposed into
the product of two much smaller matrices U ∈ Rm×d and V ∈ Rn×d, i.e.,X = UV T , For any
0 < p ≤ 1, p1 > 0 and p2 > 0 satisfying 1

p1
+ 1

p2
= 1

p , then

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d,X=UV T
‖U‖Sp1

‖V ‖Sp2
(14)
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Remark 1. From Thm.1, it is very clear that for any 0 < p ≤ 1, and p1, p2 > 0, satisfying
1
p = 1

p1
+ 1

p2
, then the Schatten-p norm of any matrix X is equivalent to minimizing the product of

the Schatten-p1 and Schatten-p2 norm of its two factor matrix.

Naturally, p1 = p2 or p1 6= p2, We discuss it respectively. if p1 = p2 = 2p

Theorem 2. Given any matrix X ∈ Rm×n of rank(X) = r ≤ d, then the flowing equalities hold:

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d,X=UV T
‖U‖S2p

‖V ‖S2p

= min
U∈Rm×d,V ∈Rn×d,X=UV T

(
‖U‖2p2p + ‖V ‖2p2p

2

)1

p
(15)

Remark 2. From the 2nd equation in Eq.15, for any 0 < p ≤ 1, the SQNM in many LRMC
and low rank matrix recovery application can be transformed into the one of the minimizing the
mean of the Schatten-2p norms of both much smaller factor matrices. Notice that 1 < 2p 6 2, i.e.
1

2
< p 6 1, Schatten-2p are convex and smooth.

When p = 1 , and p1 = p2 = 2, the Eq.15 in Thm.2 become the flowing corollary.

Corollary 1. Given any matrix X ∈ Rm×n with the rank(X) = r ≤ d, the flowing equalities hold:

‖X‖∗ = min
U∈Rm×d,V ∈Rn×d,X=UV T

‖U‖F · ‖V ‖F

= min
U∈Rm×d,V ∈Rn×d,X=UV T

‖U‖2F + ‖V ‖2F
2

(16)

Remark 3. The bilinear spectral penalty in the 2nd equality of Eq.16 has been wildly used in many
LRMC and LRM recovery. Recall that the model of regularized singular value decomposition [3]:

J1 =
∥∥X − UV T

∥∥2

F
+ λ ‖U‖2F + λ ‖V ‖2F (17)

when p =
1

2
, and by setting p1 = p2 = 1, we can get that

Corollary 2. Given any matrix X ∈ Rm×n with the rank(X) = r ≤ d, the flowing equalities hold:

‖X‖S 1
2

= min
U∈Rm×d,V ∈Rn×d,X=UV T

‖U‖∗‖V ‖∗

= min
U∈Rm×d,V ∈Rn×d,X=UV T

(
‖U‖∗ + ‖V ‖∗

2

)2 (18)

Remark 4. The above equalities are known as the bi-nuclear quasi-norm.
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when p =
2

3
, and by setting p1 = p2 =

4

3
, we can get that

Corollary 3. Given any matrix X ∈ Rm×n with the rank(X) = r ≤ d, the flowing equalities hold:

‖X‖S 2
3

= min
U∈Rm×d,V ∈Rn×d,X=UV T

‖U‖S 4
3

‖V ‖S 4
3

= min
U∈Rm×d,V ∈Rn×d,X=UV T

‖U‖S 4
3

(
‖U‖

4
3
S 4

3

+ ‖V ‖
4
3
S 4

3

) 3
2

(19)

if p1 6= p2

Theorem 3. Given any matrix X ∈ Rm×n of rank(X) = r ≤ d, and any0 < p ≤ 1, p1 > 0 and
p2 > 0 satisfying 1

p1
+ 1

p2
= 1

p , then the following equalities hold:

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d,X=UV T
‖U‖Sp1

‖V ‖Sp2

= min
U∈Rm×d,V ∈Rn×d,X=UV T

(
p2 ‖U‖p1Sp1

+ p1 ‖V ‖p2Sp2

p1 + p2

) 1
p

= min
U∈Rm×d,V ∈Rn×d,X=UV T


‖U‖p1Sp1
p1

+
‖V ‖p2Sp2
p2

1

p


1

p

(20)

Remark 5. The SPQM problem can be transformed in to the one of minimizing the weighed sum
of the Schatten-p1 and Schatten-p2 norm of two much smaller factor matrices, i.e.

1

p1

1

p

=
1

p1
· p =

1

p1
· p1 · p2

p1 + p2
=

p2

p1 + p2
and

1

p2

1

p

=
p1

p1 + p2
(21)

when p =
2

3
, and by setting p1 = 1 and p2 = 2, we can get that

Corollary 4. Given any matrix X ∈ Rm×n of rank(X) = r ≤ d, then

‖X‖S 2
3

= min
U∈Rm×d,V ∈Rn×d,X=UV T

‖U‖∗‖V ‖F

= min
U∈Rm×d,V ∈Rn×d,X=UV T

(
2‖U‖∗ + ‖V ‖2F

3

) 3
2 (22)

Remark 6. It is called Frobenius/nuclear hybrid quasi-norm in the 2nd equality of Eq.22.
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when p =
2

5
, and by setting p1 =

1

2
andp2 = 2, we can get that

Corollary 5. Given any matrix X ∈ Rm×n of rank(X) = r ≤ d, then

‖X‖S 2
5

= min
U∈Rm×d,V ∈Rn×d,X=UV T

‖U‖S 1
2

‖V ‖F

= min
U∈Rm×d,V ∈Rn×d,X=UV T

4 ‖U‖
1
2
S 1

2

+ ‖V ‖2F
5


5
2

(23)

Generalization:

Theorem 4. For any matrix X ∈ Rm×n of rank(X) = r ≤ d, it can be decomposed into the
product of three much smaller matrices U ∈ Rm×d, V ∈ Rd×d and W ∈ Rn×d, X = UVW T . For
any 0 < p ≤ 1 and pi > 0 for all i = 1, 2, 3, satisfying 1

p1
+ 1

p2
+ 1

p3
= 1

p , then

‖X‖Sp
= min

U∈Rm×d,V ∈Rd×d,W∈Rn×dX=UVWT
‖U‖Sp1

‖V ‖Sp2
‖W‖Sp3

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×dX=UVWT

(
p2p2 ‖U‖p1Sp1

+ p1p3 ‖V ‖p2Sp2
+ p1p2 ‖W‖p3Sp3

p2p3 + p1p3 + p1p2

) 1
p

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×dX=UVWT


‖U‖p1Sp1

p1
+
‖V ‖p2Sp2

p2
+
‖W‖p3Sp3

p3

1

p


1

p

(24)

Remark 7. ∀0 < p ≤ 1 and p1, p2, p3 > 0 satisfying
1

p1
+

1

p2
+

1

p3
=

1

p
, the Schatten-p quasi-norm

of any matrix is equivalent to minimizing the weighted sum of the Schatten-p1 norm, Schatten-p2

norm and Schatten-p3 norm of these three much smaller factor matrices, where the weights of the

three term are
p

p1
,
p

p2
and

p

p3
, respectively.

By setting the same value for p1, p2 and p3, i.e. p1 = p2 = p3 = 3p, we give the following united
scalable equivalent formulations for the Schatten-p quasi-norm.

Corollary 6. Given any matrix X ∈ Rm×n of rank(X) = r ≤ d, then the flowing equalities hold:

‖X‖Sp
= min

U∈Rm×d,V ∈Rd×d,W∈Rn×dX=UVWT
‖U‖S3p

‖V ‖S3p
‖W‖S3p

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×dX=UVWT

(
‖U‖3pS3p

+ ‖V ‖3pS3p
+ ‖W‖3pS3p

3

) 1
p (25)
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Remark 8. From the 2nd of Eq.25, we know that ∀0 < p < 1, various SPQM problems in many
LRMC and low rank matrix recovery applications can be transformed into the problems of minimiz-
ing the mean of the Schatten-3p norms of three much smaller factor matrices. And we note that

when 1 ≤ 3p ≤ 3, i.e.
1

3
≤ p ≤ 1, the norms of the three factor matrices are convex and smooth.

when p =
1

3
and p1 = p2 = p3 = 1, we can get the flowing corollary,

Corollary 7. For any matrix X ∈ Rm×n of rank(X) = r ≤ d, then the flowing equalities hold:

‖X‖S 1
3

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×dX=UVWT

‖U‖∗‖V ‖∗‖W‖∗

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×dX=UVWT

(
‖U‖∗ + ‖V ‖∗ + ‖W‖∗

3

)3 (26)

Similarly, we extend Thm.4 to the case of more factor matrices as follows.

Theorem 5. For any matrix X ∈ Rm×n of rank(X) = r ≤ d, it can be decomposed into the product

of multiple much smaller matrices Ui, i = 1, 2, ...,M, i.e. X =
M∏
i=1

Ui. For any 0 < p ≤ 1 and pi > 0

for all i = 1, 2, ...,M. Satisfying
M∑
i=1

1
pi

= 1
p , then

‖X‖Sp
= min

Ui:
M∏
i=1

Ui

M∏
i=1

‖Ui‖Spi

= ‖X‖Sp
= min

Ui:
M∏
i=1

Ui



M∑
i=1
‖Ui‖piSpi

pi
1

p



1

p (27)

Corollary 8. Given any matrix X ∈ Rm×n of rank(X) = r ≤ d, then the flowing equalities hold:

‖X‖Sp
= min

Ui:X=
M∏
i=1

Ui

M∏
i=1

‖Ui‖SMp

= min

Ui:X=
M∏
i=1

Ui


M∑
i=1
‖Ui‖

Mp

SMp

M


1
p (28)
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Remark 9. From Thm.2, we can get that ∀ 1 < (≤) 2p, (i.e. 1
2 < (6) p), the Schatten-p quasi-

norm of any matrix is equivalent to minimizing the mean of Schatten-2p norms of both factor
matrix, as well as Cor.6, ∀ 1 < (≤) 3p, (i.e. 1

3 < (6) p), the original SPNM can be transformed
into a simpler one only involving the convex and smooth (convex but not smooth)norms of two
or three factor matrices. To extend Thm.2 and Corol.6, then we can get Cor.8, ∀ 1 < (≤) Mp,

i.e. M = (b1/pc+ 1) where b1/pc denotes the largest integer not exceeding
1

p
, then the original

SPNM can be transformed into a simpler one only involving the convex and smooth (convex but not
smooth)norms of M factor matrices. And we also set p ≤ 1.

4 Proof

We can get a simple general proof in [2], but it is not from special to general case.

Lemma 2 (Jensen’s inequality). Assume that the function g : R+ → R+ is a continuous concave
function on [0,+∞). For all ti ≥ 0 satisfying

∑
i
ti = 1, and any xi ∈ R+ for i = 1, ..., n, then

g

(
n∑
i=1

tixi

)
>

n∑
i=1

tig (xi) (29)

Lemma 3 (H
..
o lder′s inequality). For any p, q > 1 satisfying 1

p+1
q = 1, for any xi and yi, i = 1, ..., n

n∑
i=1

|xiyi| 6

(
n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

(30)

with equality if and only if there is a constant c 6= 0 such that each xpi = cyqi .

Lemma 4 (Young’s inequality). Let a, b ≥ 0 and 1 < p, q <∞ be such that 1
p + 1

q = 1, Then

ap

p
+
bq

q
> ab (31)

with equality if and only if ap = bq.

Lemma 5. Suppose that Z ∈ Rm×n is a matrix of rank r ≤ min(m,n), and we denote its thin SVD
by Z = LZ

∑
ZR

T
Z , where LZ ∈ Rm×r,

∑
Z ∈ Rr×r and RZ ∈ Rn×r. For any A ∈ Rr×r satisfying

AAT = ATA = Ir×r, and the given p(0 < p ≤ 1), then
(
A
∑

ZA
T
)
k,k

> 0 for all k = 1, ..., r, and

Trp
(
AΣZA

T
)
> Trp (ΣZ) = ‖Z‖pSp

(32)

where Trp (B) =
∑
i
Bp
ii.

Proof. ∀k ∈ {1, ..., r}, we have
(
AΣZA

T
)
k,k

=
∑
i
a2
k,iσi > 0, where σi ≥ 0 is the i-th sigular value

of Z. Then

Trp
(
AΣZA

T
)

=
∑
k

(∑
i

a2
k,iσi

)p
(33)
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Recall that g (x) = xp with 0 < p < 1 g′′ < 0 on R+, so it is a concave function on R+, by using
the Jensen’s inequality, as stated in Lemma 2, and

∑
k

a2
ki = 1 for any k ∈ {1, 2, ...r}, we have that

Trp
(
AΣZA

T
)

=
∑
k

(∑
i

a2
kiσi

)p
>
∑
k

∑
i

a2
kiσ

p
i

=
∑
i

∑
k

a2
kiσ

p
i

=
∑
i

σpi

= Trp (σZ)

= ‖Z‖pSp

(34)

In addition, when g(x)=x, i.e. p = 1, we obtain that(∑
i

a2
kiσi

)p
=
∑
i

a2
kiσi (35)

which means that the inequality (34) is still satisfied.

Proof of Theorem 1

Proof. Let U = LUΣUR
T
U and V = LV ΣVR

T
V be the thin SVDs of U and V, respectively, where

LU ∈ Rm×d, LV ∈ Rn×d, and RU ,ΣU , RV ΣV ∈ Rd×d. X = LxΣXR
T
X , where the columns of

Lx ∈ Rm×d and RX ∈ Rn×d are the left and right singular vectors associated with the top d singu-
lar values of X with rank at most r(r ≤ d), and ΣX = diag([σ1(X), · · · , σr(X), 0, · · · , 0]) ∈ Rd×d.

Recall that X = UV T , i.e. LXΣXR
T
X = LUΣUR

T
URV ΣV L

T
V , then ∃O1Ô1 ∈ Rd×d satisfy LX =

LUO1 and LU = LXÔ1, which implies that O1 = LTULX and Ô1 = LTXLU . Thus, O1 = Ô1
T
. Since

LX = LUO1 = LXÔ1O1, we have Ô1O1
T = O1

TO1 = Id. Similarly, we have O1Ô1 = O1O
T
1 = Id. In

addition,∃O2 ∈ Rd×d satisfies RX = LVO2 with O2O
T
2 = OT2 O2 = Id. Let O3 = O2O

T
1 ∈ Rd×d, then

we have O3O
T
3 = OT3 O3 = Id, i.e.

∑
i

(O3)2
ij =

∑
j

(O3)2
ij = 1 for i, j ∈ {1, 2, ..., d}, where ai,j denotes

the element of the matrix A in the i-th row and the j-th column. In addition, let O4 = RTURV , we
have

∑
i

(O4)2
ij 6 1 and

∑
j

(O4)2
ij 6 1 for ∀i, j ∈ {1, 2, ..., d}.

According to the above analysis, then we have O2ΣXO
T
2 = O2O

T
1 ΣUO4ΣV = O3ΣUO4ΣV . Let ρi

and τi denote the i-th and j-th diagonal elements of ΣU and ΣV , respectively. In flowing, we consider
the two cases of p1 and p2, i.e. at least one of p1 and p2 must be no less than 1, or both of them
are smaller than 1. It is clear that for any 1

2 6 p 6 1 and p1, p2 > 0 satisfying 1
p1

+ 1
p2

= 1
p , at least

one p1 and p2 must be no less than 1. On the other hand, only if 0 < p <
1

2
, there exist 0 < p1 < 1

and 0 < p2 < 1 such that 1
p1

+ 1
p2

= 1
p , i.e. both of them are smaller than 1.
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1. Case 1: For any 1
2 6 p 6 1 and p1, p2 > 0 satisfying 1

p1
+ 1

p2
= 1

p , at least one p1 and p2 must
be no less than 1.
Without loss of generality, we assume that that p2 ≥ 1. Here, we set k1 = p1

p and k2 = p2
p ,.

Clearly, we can know that k1, k2 > 1 and 1
k1

+ 1
k2

= 1. From Lemma 5, we have

‖X‖Sp
6
(
Trp

(
O2ΣXO

T
2

)) 1
p =

(
Trp

(
O2O

T
1 ΣUO4

∑
V

)) 1
p

= (Trp (O3ΣUO4ΣV ))
1
p

=

 d∑
i=1

 d∑
j=1

τj(O3)ij(O4)jiρi

p
1
p

6︸︷︷︸
a


[

d∑
i=1

(ρpi )
k1

] d∑
i=1

 d∑
j=1

τj(O3)ij(O4)ji

p×k2


1
k2


1
p

=

(
d∑
i=1

ρp1i

) 1
p1

 d∑
i=1

 d∑
j=1

τj(O3)ij(O4)ji

p2
1
p2

6︸︷︷︸
b

(
d∑
i=1

ρp1i

) 1
p1

 d∑
i=1

 d∑
j=1

τj
(O3)2

ij + (O4)2
ji

2

p2
1
p2

6︸︷︷︸
c

(
d∑
i=1

ρp1i

) 1
p1 [

τp2j

] 1
p2

(36)

where the inequality 6︸︷︷︸
a

holds due to H
..
o lder

′s inequality, as stated in Lemma 3. In addition

the inequality 6︸︷︷︸
b

follows from the basic inequality xy 6 x2+y2

2 for any real numbers x and

y, and the inequality 6︸︷︷︸
c

relies on the facts that
∑
i

(O3)2
ij = 1 and

∑
i

(O4)2
ji 6 1, and we

apply the Jensen’s inequality Lemma 2 for the convex function h (x) = xp2 with p2 ≥ 1.
Thus, for any matrices U ∈ Rm×d and V ∈ Rn×d satisfying X = UV T , we have

‖X‖Sp
6 ‖U‖ Sp1

‖V ‖Sp2
(37)

On the other hand, let U∗ = LXΣ
p
p1
X , and V∗ = RXΣ

p
p2
X , where Σp

X is entry-wise power to p,
then we obtain

X = U∗V
T
∗ , ‖U∗‖

p1
Sp1

= ‖V∗‖p2Sp2
= ‖X‖pSp

with
1

p
=

1

p1
+

1

p2
(38)

and
‖X‖Sp

= (TrpΣX)
1
p = ‖U∗‖Sp1

‖V∗‖Sp2
(39)

Therefore, under the constraint X = UV T , we have

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d:X=UV T
‖U‖Sp1

‖V ‖Sp2
(40)
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2. Case 2: For any 0 < p <
1

2
, there exist 0 < p̂1 < 1 and 0 < p̂2 < 1 such that

1

p̂1
+

1

p̂1
=

1

p
.

Naturally, for any given p, there must exist p1 > 0 and p2 > 1 such that
1

p1
+

1

p2
=

1

p
and

1

p1
=

1

p̂1
+

1

q
with q ≥ 1. Clearly, we can know that

1

p̂1
6

1

p1
. Let U∗ = LX

∑ p
p1
X , V ∗ =

RX
∑ p

p2
X , U∗1 = LX

∑ p
p̂1
X and V ∗1 = RX

∑ p
p̂2
X , then we have

X = U∗(V ∗)T = U∗1 (V ∗1 )T (41)

from which it follows that

‖X‖Sp
= ‖U∗‖Sp1

‖V ∗‖Sp2
= ‖U∗1 ‖Sp̂1

‖V ∗1 ‖Sp̂2
(42)

Since
1

p
=

1

p1
+

1

p2
=

1

p̂1
+

1

p̂2
and

1

p1
=

1

p̂1
+

1

q
, then

1

p̂2
=

1

q
+

1

p2
. Consider any factor

matrices U and V satisfying X = UV T , V = LV ΣVR
T
V is the thin SVD of V. Let U1 = UUT2

and V1 = LV Σ
p̂2
p2
V , where UT2 = RV Σ

p̂2
q

V , then it is easy to get that

V = V1U2, X = U1V
T

1

‖V ‖Sp̂2
= ‖U2‖Sq

‖V1‖Sp2

‖U1‖Sp1
6 ‖U‖Sp̂1

‖U2‖Sq

(43)

where the above inequality follows from (37) with q ≥ 1. Combining (42) and (43), for any
U and V satisfying X = UV T , we have

‖X‖Sp
= ‖U∗‖Sp1

‖V ∗‖Sp2

≤ ‖U1‖Sp1
‖V1‖Sp2

≤ ‖U‖Sp̂1
‖U2‖Sq

‖V1‖Sp2

= ‖U‖Sp̂1
‖V ‖Sp̂2

(44)

where the 1st inequality follows from (37). Recall that

‖X‖Sp
= ‖U∗1 ‖Sp̂1

‖V ∗1 ‖Sp̂2
(45)

Therefore, for any 0 < p̂1 < 1 and 0 < p̂2 < 1 satisfying 1
p = 1

p̂1
+ 1

p̂2
, and by (44) and (45).

we also have
‖X‖Sp

= min
U∈Rm×d,V ∈Rn×d:X=UV T

‖U‖Sp̂1
‖V ‖Sp̂2

(46)

In summary, for any 0 < p ≤ 1, p1 > 0 and p2 > 0 satisfying 1
p = 1

p1
+ 1

p2
, we have

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d:X=UV T
‖U‖Sp1

‖V ‖Sp2
(47)

Proof of Theorem 2
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Proof. ∵ p1 = p2 = 2p > 0 and 1
p1

+ 1
p2

= 1
p , and use Thm.1, we obtain that

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d:X=UV T
‖U‖S2p

‖V ‖S2p
(48)

Due to basic inequality xy 6 x2+y2

2 for any real numbers x and y, we have

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d:X=UV T
‖U‖S2p

‖V ‖S2p

= min
U∈Rm×d,V ∈Rn×d:X=UV T

(
‖U‖pS2p

‖V ‖pS2p

) 1
p

≤ min
U∈Rm×d,V ∈Rn×d:X=UV T

(
‖U‖2pS2p

+ ‖V ‖2pS2p

2

) 1
p

(49)

Let U∗ = LXΣ
1
2
X and V∗ = RXΣ

1
2
X , where Σ

1
2
X is entry-wise power to 1

2 , then we obtain

X = U∗V
T
∗ , ‖U∗‖

2p
S2p

= ‖V∗‖2pS2p
= ‖X‖pSp

(50)

which implies that

‖X‖pSp
= ‖U∗‖S2p

‖V∗‖S2p
=

(
‖U∗‖2pS2p

+ ‖V∗‖2pS2p

2

) 1
p

(51)

The Thm.2 now follows because

min
U∈Rm×d,V ∈Rn×d:X=UV T

‖U‖S2p
‖V ‖S2p

= min
U∈Rm×d,V ∈Rn×d:X=UV T

(
‖U‖2pS2p

+ ‖V ‖2pS2p

2

) 1
p

(52)

Proof of Theorem 3

Proof. For any 0 < p ≤ 1, p1 > 0 and p2 > 0 satisfying 1
p1

+ 1
p2

= 1
p , and using Thm.1, we have

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d:X=UV T
‖U‖Sp1

‖V ‖Sp2

= min
U∈Rm×d,V ∈Rn×d:X=UV T

(
‖U‖pSp1

‖V ‖pSp2

) 1
p

≤ min
U∈Rm×d,V ∈Rn×d:X=UV T

‖U‖pk1Sp1

k1
+
‖V ‖pk2Sp2

k2

 1
p

= min
U∈Rm×d,V ∈Rn×d:X=UV T

(
p2 ‖U‖p1Sp1

p1
+
p1 ‖V ‖p2Sp2

p2

) 1
p

(53)

where the above inequality follows from Young’s inequality in Lemma 4, and the monotone increas-

ing property of the function g (x) = x
1
p .
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Let U∗ = LXΣ
p
p1
X and V∗ = RXΣ

p
p2
X , then X = U∗V

T
∗ . Using Thm.1, we have

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d:X=UV T
‖U‖Sp1

‖V ‖Sp2

= ‖U∗‖Sp1
‖V∗‖Sp2

=

(
p2 ‖U∗‖p1Sp1

+ p1 ‖V∗‖p2Sp2

p1 + p2

) 1
p

(54)

which implies that

‖X‖Sp
= min

U∈Rm×d,V ∈Rn×d:X=UV T
‖U‖Sp1

‖V ‖Sp2

= min
U∈Rm×d,V ∈Rn×d:X=UV T

(
p2 ‖U‖p1Sp1

+ p1 ‖V ‖p2Sp2

p1 + p2

) 1
p

= min
U∈Rm×d,V ∈Rn×d:X=UV T

 ‖U‖
p1
Sp1
p1

+
‖V ‖p2Sp2
p2

1
p


1
p

(55)

Proof of Theorem 4

Proof. Let U ∈ Rm×d and V̂ ∈ Rn×d be any factor matrices such that X = UV̂ T , and p̂1 = p1 > 0
and p̂2 = p2p3

p2+p3
> 0, which means that 1

p̂1
+ 1

p̂2
= 1

p . According to Thm.1, we obtain

‖X‖Sp
= min

U∈Rm×d,V̂ ∈Rn×d:X=UV̂ T
‖U‖Sp̂1

∥∥∥V̂ ∥∥∥
Sp̂2

(56)

Let V ∈ Rd×d and W ∈ Rn×d be factor matrices of V̂ , i.e., VW T = V̂ T . Since p̂2 = p2p3
p2+p3

, then
1
p̂2

= 1
p2

+ 1
p3

. Using Thm.1, we also have

‖X‖Sp
= min

V ∈Rd×d,W∈Rn×d,V̂=(VWT )T
‖V ‖Sp2

‖W‖Sp3
(57)

Combining (56) and (57), we obtain

‖X‖Sp
= min

U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT
‖U‖Sp1

‖V ‖Sp2
‖W‖Sp3

(58)

Using the above result, we have

‖X‖Sp
= min

U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT
‖U‖Sp1

‖V ‖Sp2
‖W‖Sp3

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT

(
‖U‖pSp1

‖V ‖pSp2
‖W‖pSp3

) 1
p

≤ min
U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT

(
p2p3 ‖U‖p1Sp1

+ p1p3 ‖V ‖p2Sp2
+ p1p2 ‖W‖p3Sp3

p2p3 + p1p3 + p1p2

) 1
p

(59)
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where the above inequality follows from Lemma 4.

Let U∗ = LXΣ
p
p2
X , V = Σ

p
p2
X and W∗ = RXΣ

p
p3
X , it is easy to get X = U∗V∗W

T
∗ . Then we have

‖X‖Sp
= min

U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT
‖U‖Sp1

‖V ‖Sp2
‖W‖Sp3

= ‖U∗‖Sp1
‖V∗‖Sp2

‖W∗‖Sp1

=

(
p2p3 ‖U∗‖p1Sp1

+ p1p3 ‖V∗‖p2Sp2
+ p1p2 ‖W∗‖p3Sp3

p2p3 + p1p3 + p1p2

) 1
p

(60)

Therefore, we have

‖X‖Sp
= min

U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT
‖U‖Sp1

‖V ‖Sp2
‖W‖Sp3

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT

(
p2p3 ‖U‖p1Sp1

+ p1p3 ‖V ‖p2Sp2
+ p1p2 ‖W‖p3Sp3

p2p3 + p1p3 + p1p2

) 1
p

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT

 ‖U‖
p1
Sp1
p1

+
‖V ‖p2Sp2
p2

+
‖W‖p3Sp3

p3
1
p


1
p

(61)

Proof of Corollary 6

Proof. Since p1 = p2 = p3 = 3p > 0 and 1
p1

+ 1
p2

+ 1
p3

= 1
p , and using Thm.4, we have that

‖X‖Sp
= min

U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT
‖U‖S3p

‖V ‖S3p
‖W‖S3p

(62)

From the basic inequality xyz 6 x3+y3+z3

3 for any positive real numbers x,y and z, we obtain

‖X‖Sp
= min

U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT
‖U‖S3p

‖V ‖S3p
‖W‖S3p

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT

(
‖U‖pS3p

‖V ‖pS3p
‖W‖pS3p

) 1
p

≤ min
U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT

(
‖U‖3pS3p

+ ‖V ‖3pS3p
+ ‖W‖3pS3p

3

) 1
p

(63)

Let U∗ = LXΣ
1
3
X , V∗ = Σ

1
3
X and W∗ = RXΣ

1
3
X , where Σ

1
3
X is entry-wise power to 1

3 , then we have

X = U∗V∗W
T , ‖U∗‖3pS3p

= ‖V∗‖3pS3p
= ‖W∗‖3pS3p

= ‖X‖pSp
(64)

so,

‖X‖Sp
= min

U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT
‖U‖S3p

‖V ‖S3p
‖W‖S3p

= min
U∈Rm×d,V ∈Rd×d,W∈Rn×d,X=UVWT

(
‖U‖3pS3p

+ ‖V ‖3pS3p
+ ‖W‖3pS3p

3

) 1
p (65)

14



5 Conclusions

In general, the SQNM is non-convex, non-smooth, and even non-Lipschitz. Can you give us some
examples?

For any 0 < p ≤ 1, the SQNM can be transformed into an optimization problem only involving the
smooth norms of multiple factor matrices.
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