
Notes for Neumann Networks for Linear Inverse Problems in Imaging

Yao Zhang https://zhims.github.io/

The general model for liner inverse problem is

y = Xβ∗ + ε (1.1)

where y, ϵ ∈ Rm, β ∈ Rp andX ∈ Rm×p.

To solve Eq 1.1,

β∗ = argmin
β

1

2
∥y −Xβ∥22 + r (β) (1.2)

where r (β) is a regular term from the data. (regular term is also called prior knowledge.)

In this paper [1], Eq 1.1 is equivalent to a quadratic form

XT y = XTXβ +XT ε (1.3)

In [1], assumes that

r (β) =
1

2
βTRβ (1.4)

where R ∈ Rp×p, then ∇r (β) = Rβ.

Then by the Fermat lemma, the condition for the optional solution for 1.2 is

(
XTX +R

)
β∗ = XT y (1.5)

then

β∗ =
(
XTX +R

)−1
XT y (1.6)

where
(
XTX +R

)
is invertible.

To solve Eq 1.6, [1] considers a Neumann series expansion of linear operators as below

https://zhims.github.io/

(I −A)−1 =
∞∑
k=0

Ak = I +A+A2 + · · ·Ak + · · · (1.7)

where I, A ∈ Rp×p, here we leave out the conditions for Neumann series expansion in details.

(Just recall that 1
1−x = 1 + x+ x2 + x3 + · · · where |x| < 1, Eq 1.7 is well-defined if you want to

check by using SVD of A.)

Now, let

I −A = ηB (1.8)

then B = I−A
η , so we can get that

B−1 = η
∞∑
k=0

(I − ηB)k (1.9)

Finally,

β∗ =
∞∑
j=0

(
I − ηXTX − ηR

)j (
ηXT y

)
(1.10)

Then, [1] considers designing the special type of neural networks which called Neumann Network
ro solve Eq 1.10.

It is is just a technical report I mentioned above.

Week 48

Truncating the series in 1.10 to B + 1, and replacing multiplication by matrix R with a general
mapping R: Rp → Rp, motivates an estimator β̂ of the form

β̂ (y) ≜
B∑
j=0

[(
I − ηXTX

)
(·)− ηR (·)

]j (
ηXT y

)
(1.11)

Remark 1.1. In Eq 1.11, (·) stands for parameters which will be learned via the neural networks.

We turn 1.11 into a trainable estimator by R = Rθ, η = ηθ1 be a trainable mapping depending on
a vector of parameters θ ∈ Rq, θ1 ∈ Rq1 to be learned from the training data. In other words,

β̂ (y) = β̂ (y, θ, η) (1.12)

2

Remark 1.2. The trainable network R = Rθ which we call Neumann Network.

To see how 1.11 can be formulated as a network, observe that the terms in 1.11 have the following
recursive form:

β̃0 = ηXT y

β̃1 =
(
I − ηXTX

)
β̃0 − ηR

(
β̃0

)
=

(
I − ηXTX

)
ηXT y − ηR

(
β̃0

)
β̃2 =

(
I − ηXTX

)
β̃1 − ηR

(
β̃1

)
=

(
I − ηXTX

)2
ηXT y −

(
I − ηXTX

)
ηR

(
β̃0

)
− ηR

(
β̃1

)
· · · = · · ·

(1.13)

1.13 is equal to

β̃j =
(
I − ηXTX

)
β̃j−1 − ηR

(
β̃(j−1)

)
(1.14)

where β̃0 = ηXT y.

Finally, we want to

β̂ (y) =

B∑
j=0

β̃j (1.15)

The Newmann network is as the following:

Figure 1: Neumann network. Here R is a trained neural network, and η is also trained.

It is a challenge task when XTX +R is ill-conditioned in 1.5. So, [1] derive a variant of Neumann
networks inspired by a preconditioning of 1.5.

Starting from 1.5, for any λ > 0 we have

(
XTX + λI

)
β∗ + (R− λI)β∗ = XT y (1.16)

Denote that Tλ =
(
XTX + λI

)−1, then applying Tλ to both sides of 1.16 and rearranging terms
gives

3

(
I − λTλ + R̃

)
β∗ = TλX

T y (1.17)

where R̃ = TλR.

Similar to 1.11, we can get that

β̃pc (y) =
B∑
j=0

(
λTλ (·)− R̃ (·)

)j
TλX

T y (1.18)

The Peconditioned Newmann network is as the following:

Figure 2: Peconditioned Neumann network. Here R is a trained neural network, η is trained, and
λ is trained, respectively

4

Applications

Figure 3: PSNR comparison for the CIFAR, CELEBA, and STL10 datasets with the tasks which
including inpaint, deblur, deblurg & denoising, Compressed sensing Cs and super resolution.

(a) deblur + denoise (b) 8 × CS

Figure 4: Examples.

5

Figure 5: MRI reconstruction

References
[1] D. Gilton, G. Ongie and R. Willett, “Neumann Networks for Linear Inverse Problems in

Imaging”, IEEE Transactions on Computational Imaging, 2019, Vol. 6, pp. 328 –343.

6

