Notes for Neumann Networks for Linear Inverse Problems in Imaging

Yao Zhang https://zhims.github.io/

The general model for liner inverse problem is

y=XpB"+e

where y,e € R™, 5 € RP andX € R™*P.

To solve Eq 1.1,

« 1
5 =argﬁmm §Hy—XﬁH§+ r(B)

where 7 (/) is a regular term from the data. (regular term is also called prior knowledge.)

In this paper [1], Eq 1.1 is equivalent to a quadratic form

XTy=X"Xp+X"e

In [1], assumes that

1
r(B) = iﬁTRB
where R € RP*P_ then Vr (8) = RpS.
Then by the Fermat lemma, the condition for the optional solution for 1.2 is
(XTX+R)p =X"Ty

then

B* — (XTX+R)_1XTy

where (X Tx 4+ R) is invertible.

To solve Eq 1.6, [1] considers a Neumann series expansion of linear operators as below

(1.5)

https://zhims.github.io/

ZAk—I+A+A2+ AR 4 (1.7)

k=0

(I—A)

where I, A € RP*P | here we leave out the conditions for Neumann series expansion in details
(Just recall that -1~ =1+ 2 + 2%+ 2%+ - where |z| < 1, Eq 1.7 is well-defined if you want to
check by using SVD of A.)

Now, let
I-A=nB (1.8)
then B = , so we can get that
o0
B™'=n> (I-nB)* (1.9)
k=0
Finally,
oo
B => (I-nX"X —nR)’ (nXTy) (1.10)
j=0
Then, [1] considers designing the special type of neural networks which called Neumann Network

ro solve Eq 1.10.

It is is just a technical report I mentioned above.

Week 48

Truncating the series in 1.10 to B + 1, and replacing multiplication by matrix R with a general

mapping R: RP — RP, motivates an estimator S of the form

B .
éZ (T =nXTX) () =R ()] (nXTy) (L11)
=0

Remark 1.1. In Eq 1.11, (-) stands for parameters which will be learned via the neural networks

We turn 1.11 into a trainable estimator by R = Rg,n = 1, be a trainable mapping depending on
a vector of parameters 8 € R?, 0, € R? to be learned from the training data. In other words,

By) =5 (y.0,m) (1.12)

[\

Remark 1.2. The trainable network R = Ry which we call Neumann Network.

To see how 1.11 can be formulated as a network, observe that the terms in 1.11 have the following
recursive form:

B0 =nxTy
Bl = (1 - nX"X) B =R (B°) = (I = nXTX) nXTy — R (5°)

B = (I-nx"X)B' - nR (51) = (I —nXTX)nxTy — (I - nX"X) R (50) — R (,51)

(1.13)
1.13 is equal to
B = (I -nXTX)F~' — R <g(j—1)> (1.14)
where 30 =nXTy.
Finally, we want to
Bly)=>_ 5 (1.15)
§=0

Figure 1: Neumann network. Here R is a trained neural network, and 7 is also trained.

It is a challenge task when X7 X + R is ill-conditioned in 1.5. So, [1] derive a variant of Neumann
networks inspired by a preconditioning of 1.5.

Starting from 1.5, for any A > 0 we have

(XTX + X)) B*+(R- M) B*=X"y (1.16)

Denote that T\ = (X TX 4+ I)_1, then applying T to both sides of 1.16 and rearranging terms
gives

(1 — N+ E) 5 =T xTy (1.17)

where R = TR.

Similar to 1.11, we can get that

B .
gpc (y) = Z ()‘T)\(:) - E (:)>JT/\XT:U (1.18)

J=0

The Peconditioned Newmann network is as the following;:

Figure 2: Peconditioned Neumann network. Here R is a trained neural network, 7 is trained, and
A is trained, respectively

Applications

Inpaint Deblur Deblur4+« CS82 CS8 SR4 SRIO

NN 28.20 36.55 29.43 3383 2515 2448 23.09

_ PNN 28.40 37.83 30.47 3375 2343 606 2179
= GDN 27.76 31.25 29.02 3499 2500 2449 2047
é MoDL 28.18 34.89 2992 3347 2372 2454 2180
5 TWNED 2787 34 84 29.70 3274 25.11 23.54 21.99
HesAuto | 29.05 3104 25.24 1851 929 2484 2192
CSGM 17.88 15.20 14.61 1799 1933 16.87 16.66

TV 25.90 27.57 26,64 2541 20068 2471 20.68

NN 31.06 31.01 30.43 3512 2838 27351 23.57
PNN 30.45 33.79 30.89 32.61 26.41 2870 2374

= GDN 30.99 30.19 29.27 3493 2833 27.14 2346
S MoDL 30.75 30.80 29.59 3022 2584 2642 2412
& TNRD 30.21 20.92 29.79 3389 2B.19 2575 2273
ResAuto | 29.06 25.65 25.29 19.41 9.16 2562 2492
C5GM 17.75 15.68 15.30 1799 18.21 18.11 17.88

TV 24.07 30,96 26.24 25.91 23.01 26.83 20.70

NN 27.47 29.43 26.12 3198 26.65 2488 2180
PNMN 28.00 30.66 27.21 3140 2343 2595 2219

= GDN 28.07 3019 25.61 31.11 26,19 2488 2146
= MoDL 28.03 20.42 26.06 2729 2316 24.67 16.88
in TNRD 27.88 29.33 26.32 3105 2538 2455 21.21
ResAuto | 27.28 25.42 25.13 1948 9.30 2412 21.13
CSGM 16.50 14.04 15.59 16.67 16.39 16.58 16.47

TV 26.29 20.96 26.85 2482 2204 2637 20,12

Figure 3: PSNR comparison for the CIFAR, CELEBA, and STL10 datasets with the tasks which
including inpaint, deblur, deblurg & denoising, Compressed sensing Cs and super resolution.

Original and

T Original and
Xy NN GDN ResAuto

XTy NN GDN ResAuto

(a) deblur + denoise (b) 8 x CS

Figure 4: Examples.

Original/Mask PNN (34.95 dB) NN (33.09dB) MoDL (3409 dB) GDN2 (33.18 dB) GDNI (31.37 dB) TNRD (32.39 dB) TV (3229 dB)
Test Time (sec) 16.3 sec 3.3 sec 14.3 sec 57 sec 3.1 sec 4.0 sec 349.2 sec

Figure 5: MRI reconstruction

References

[1] D. Gilton, G. Ongie and R. Willett, “Neumann Networks for Linear Inverse Problems in
Imaging”, IEEE Transactions on Computational Imaging, 2019, Vol. 6, pp. 328 —343.

