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1.1 Introduction

We assume that the vector x is sparse, i.e. there are only a few non-zeros.

Definition 1.1 (spare representation of signal). Let y ∈ Rn×1 be an observed signal. Let D ∈ Rn×K

be a dictionary. Let x ∈ RK×1 be the representation coefficients. In the absence of noise. we assume

y = Dx. (1.1)

More precisely, if D = [d1, ...,dK ], where dk ∈ Rn×1, are the basis vectors, then

y =

K∑
k=1

xkdk (1.2)

Suppose we have {y1, ...,yN} observations share a common dictionary D and is known to have
spare representations. How to design D ?

Our problem is:

min
X,D

‖xi‖0 s.t. DX = Y (1.3)

where Y = [y1, ...,yN ](yi ∈ Rn×1) is the collection of N observations, and X = [x1, ...,xN ](xi ∈
RK×1) is the collection of N representation coefficient vectors.

Remark. Eq 1.3 is not convex, and in reality, there is always noise and so DX ≈ Y .

Therefore,
min
X,D

‖DX − Y ‖2F s.t. ‖xi‖0 6 T (1.4)

Solve the problem 1.4 using alternating minimization:

1. update the sparse coding: Xk+1 = min
X

∥∥D(k)X − Y
∥∥2
F

s.t. ‖xi‖0 6 T

2. update the dictionary: Dk+1 = min
D

∥∥DX(k+1) − Y
∥∥2
F



1.2 K-Means

Remark. K is from D ∈ Rn×K , means is from average, respectively.

Sparse coding

Suppose we have a dictionary D. For now let us assume that D is known and fixed. Suppose we
want to fire one and only column(denote k). How should we do it?

1. For the i-th observation yi(i = 1, ..., N), we should select column k if

‖yi −Dek‖22 6 ‖yi −Dej‖22 (1.5)

for j 6= k, where ek =



0
0
...
0
1
0
...
0


is the standard basis.

2. Repeat the same process for all i = 1, ..., N . The each yi will have its own closest column
and we can partition the indices {1, ..., N} into at most K groups R1, ..., Rk:

Rk =
{
i : ‖yi −Dek‖22 6 ‖yi −Dej‖22 , j 6= k

}
(1.6)

Dictionary Update

Now, once the observations y1, ...,yN are grouped into K groups specified by R1, ..., RK , how can
we update the dictionary D?

1. Replace the column by the mean of observations in the group:

dk =
1

|Rk|
∑
i∈Rk

yyi (1.7)

Why? See Theorem 1.1.

2. After that, go back to the sparse coding step. Stop until stopping criteria is met.

Theorem 1.1. K-Means is equivalent to

min
D,X
‖Y −DX‖2F s.t. ∀i,∃k, xi = ek (1.8)

where Y = [y1, ...,yN ] ∈ Rn×N , X = [x1, ...,xN ] ∈ RK×N
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Proof.

1. Given D, if we can only fire one column(denote k), then the solution has to satisfy

‖yi −Dek‖22 6 ‖yi −Dej‖22 (1.9)

2. Given X, we can separate the sum-square into K groups of individual terms. Each will take
the form

min
dk

∑
i∈Rk

‖yi − dk‖22 (1.10)

The optimal solution of 1.10 is the average of {yi}i∈Rk

1.3 K-SVD

Remark. K is from D ∈ Rn×K , SVD is from rank 1 decomposition, respectively.

In fact, K-Means

min
D,X

‖Y −DX‖2F s.t. ∀i, ‖xi‖0 = 1 (1.11)

Now, K-SVD:

min
D,X

‖Y −DX‖2F s.t. ∀i, ‖xi‖0 ≤ T (1.12)

1. Sparse Coding

Fix D, solve X in
min
X
‖Y −DX‖2F s.t. ∀i, ‖xi‖0 ≤ T (1.13)

Note that

‖Y −DX‖2F =

N∑
i=1

‖yi −Dxi‖22 (1.14)

Why do this?

Thus, we only need to solve

min
xi

‖yi −Dxi‖22 s.t. ∀i, ‖xi‖0 6 T (1.15)

This can be done using OMP, or any other algorithm along the same vein.
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2. Dictionary Update

Now, assume X is fixed. Suppose we want to update D.

Can we solve this?

min
D
‖DX − Y ‖2F (1.16)

If we solve for D in this way, i.e.

D = Y XT
(
XXT

)−1
(1.17)

But, there are drawback in this method

(a) X ∈ RK×N , so XXT ∈ RK×K , Inversion is hard for large K.

(b) There is no way of preserving sparsity inherent from X.

Can we update the k-th column of D while fixing the others?

We know that (let xi be the j-th row, and xj be the j-th column)

Y ≈

 d1︸︷︷︸
∈Rn×1

, ...,dK




x1︸︷︷︸
∈R1×N

...
xK

 ∈ Rn×N (1.18)

then

‖Y −DX‖2F

=

∥∥∥∥∥∥Y −
k∑

j=1

djx
j

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
Y −

k∑
j=1,j 6=k

djx
j

− dkx
k

∥∥∥∥∥∥
2

F

,
∥∥∥Ek − dkx

k
∥∥∥2
F

(1.19)

Therefore, since Ek is fixed, finding
(
dk,x

k
)

is the same as finding the best rank-1 update of
Ek.

To find
(
dk,x

k
)

such that

min
dk,xk

∥∥∥Ek − dkx
k
∥∥∥2
F

(1.20)

Not quite! We also need to preserve sparsity of xk.

Then, let us restrict ourselves to the existing non-zeros of xk. Define

ωk =
{
i : xk [i] 6= 0

}
(1.21)

and ωk be an n×|ωk| matrix representing the sampling operator. Find rank-1 approximation
for
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min
dk,xk

∥∥∥EkΩk − dkx
kΩk

∥∥∥2
F

(1.22)

Let ER
k , EkΩk, then 1.22 can be solved by doing SVD on ER

k :

ER
k = UΣV T (1.23)

Then

(a) dk = the first column of U

(b) xkΩk = the first row of V × Σ(1, 1). Fill xk[i] with zero for i /∈ ωk

(c) Repeat the process for k = 1, ...,K

Suppose the sparse coding is prefect. Then the dictionary update:

1. guarantees reduction or no charge of ‖Y −DX‖2F

2. guarantees sparsity of X is unchanged

However,

1. Since the sparse coding step may not be perfect, convergence is not guaranteed i general

2. When T is small, OMP has worst case guarantee. Even for moderate T , OMP can still work
under high probability (with some assumptions on the signal)

3. Practically, K-SVD works reasonably well (but slow)
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