K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

Yao Zhang

1.1 Introduction

We assume that the vector \boldsymbol{x} is sparse, i.e. there are only a few non-zeros.
Definition 1.1 (spare representation of signal). Let $\boldsymbol{y} \in \mathbb{R}^{n \times 1}$ be an observed signal. Let $D \in \mathbb{R}^{n \times K}$ be a dictionary. Let $\boldsymbol{x} \in \mathbb{R}^{K \times 1}$ be the representation coefficients. In the absence of noise. we assume

$$
\begin{equation*}
\boldsymbol{y}=D \boldsymbol{x} . \tag{1.1}
\end{equation*}
$$

More precisely, if $D=\left[\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{K}\right]$, where $\boldsymbol{d}_{k} \in \mathbb{R}^{n \times 1}$, are the basis vectors, then

$$
\begin{equation*}
\boldsymbol{y}=\sum_{k=1}^{K} x_{k} \boldsymbol{d}_{k} \tag{1.2}
\end{equation*}
$$

Suppose we have $\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N}\right\}$ observations share a common dictionary D and is known to have spare representations. How to design D ?

Our problem is:

$$
\begin{equation*}
\min _{X, D}\left\|\boldsymbol{x}_{i}\right\|_{0} \quad \text { s.t. } D X=Y \tag{1.3}
\end{equation*}
$$

where $Y=\left[\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N}\right]\left(\boldsymbol{y}_{i} \in \mathbb{R}^{n \times 1}\right)$ is the collection of N observations, and $X=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right]\left(\boldsymbol{x}_{i} \in\right.$ $\left.\mathbb{R}^{K \times 1}\right)$ is the collection of N representation coefficient vectors.

Remark. Eq 1.3 is not convex, and in reality, there is always noise and so $D X \approx Y$.

Therefore,

$$
\begin{equation*}
\min _{X, D}\|D X-Y\|_{F}^{2} \quad \text { s.t. }\left\|\boldsymbol{x}_{i}\right\|_{0} \leqslant T \tag{1.4}
\end{equation*}
$$

Solve the problem 1.4 using alternating minimization:

1. update the sparse coding: $X^{k+1}=\min _{X}\left\|D^{(k)} X-Y\right\|_{F}^{2} \quad$ s.t. $\left\|\boldsymbol{x}_{i}\right\|_{0} \leqslant T$
2. update the dictionary: $D^{k+1}=\min _{D}\left\|D X^{(k+1)}-Y\right\|_{F}^{2}$

1.2 K-Means

Remark. K is from $D \in \mathbb{R}^{n \times K}$, means is from average, respectively.

Sparse coding

Suppose we have a dictionary D. For now let us assume that D is known and fixed. Suppose we want to fire one and only column (denote k). How should we do it?

1. For the i-th observation $\boldsymbol{y}_{i}(i=1, \ldots, N)$, we should select column k if

$$
\begin{equation*}
\left\|\boldsymbol{y}_{i}-D \boldsymbol{e}_{k}\right\|_{2}^{2} \leqslant\left\|\boldsymbol{y}_{i}-D \boldsymbol{e}_{j}\right\|_{2}^{2} \tag{1.5}
\end{equation*}
$$

for $j \neq k$, where $\boldsymbol{e}_{k}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]$ is the standard basis.
2. Repeat the same process for all $i=1, \ldots, N$. The each \boldsymbol{y}_{i} will have its own closest column and we can partition the indices $\{1, \ldots, N\}$ into at most K groups R_{1}, \ldots, R_{k} :

$$
\begin{equation*}
R_{k}=\left\{i:\left\|\boldsymbol{y}_{i}-D \boldsymbol{e}_{k}\right\|_{2}^{2} \leqslant\left\|\boldsymbol{y}_{i}-D \boldsymbol{e}_{j}\right\|_{2}^{2}, j \neq k\right\} \tag{1.6}
\end{equation*}
$$

Dictionary Update

Now, once the observations $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N}$ are grouped into K groups specified by R_{1}, \ldots, R_{K}, how can we update the dictionary D ?

1. Replace the column by the mean of observations in the group:

$$
\begin{equation*}
\boldsymbol{d}_{k}=\frac{1}{\left|R_{k}\right|} \sum_{i \in R_{k}} \boldsymbol{y} y_{i} \tag{1.7}
\end{equation*}
$$

Why? See Theorem 1.1.
2. After that, go back to the sparse coding step. Stop until stopping criteria is met.

Theorem 1.1. K-Means is equivalent to

$$
\begin{equation*}
\min _{D, X}\|Y-D X\|_{F}^{2} \quad \text { s.t. } \forall i, \exists k, \boldsymbol{x}_{i}=\boldsymbol{e}_{k} \tag{1.8}
\end{equation*}
$$

where $Y=\left[\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N}\right] \in \mathbb{R}^{n \times N}, X=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right] \in \mathbb{R}^{K \times N}$

Proof.

1. Given D, if we can only fire one column(denote k), then the solution has to satisfy

$$
\begin{equation*}
\left\|\boldsymbol{y}_{i}-D \boldsymbol{e}_{k}\right\|_{2}^{2} \leqslant\left\|\boldsymbol{y}_{i}-D \boldsymbol{e}_{j}\right\|_{2}^{2} \tag{1.9}
\end{equation*}
$$

2. Given X, we can separate the sum-square into K groups of individual terms. Each will take the form

$$
\begin{equation*}
\min _{\boldsymbol{d}_{k}} \sum_{i \in R_{k}}\left\|\boldsymbol{y}_{i}-\boldsymbol{d}_{k}\right\|_{2}^{2} \tag{1.10}
\end{equation*}
$$

The optimal solution of 1.10 is the average of $\left\{\boldsymbol{y}_{i}\right\}_{i \in R_{k}}$

1.3 K-SVD

Remark. K is from $D \in \mathbb{R}^{n \times K}$, SVD is from rank 1 decomposition, respectively.

In fact, K-Means

$$
\begin{equation*}
\min _{D, X}\|Y-D X\|_{F}^{2} \text { s.t. } \forall i,\left\|\boldsymbol{x}_{i}\right\|_{0}=1 \tag{1.11}
\end{equation*}
$$

Now, K-SVD:

$$
\begin{equation*}
\min _{D, X}\|Y-D X\|_{F}^{2} \text { s.t. } \forall i,\left\|\boldsymbol{x}_{i}\right\|_{0} \leq T \tag{1.12}
\end{equation*}
$$

1. Sparse Coding

Fix D, solve X in

$$
\begin{equation*}
\min _{X}\|Y-D X\|_{F}^{2} \text { s.t. } \forall i,\left\|\boldsymbol{x}_{i}\right\|_{0} \leq T \tag{1.13}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\|Y-D X\|_{F}^{2}=\sum_{i=1}^{N}\left\|\boldsymbol{y}_{i}-D \boldsymbol{x}_{i}\right\|_{2}^{2} \tag{1.14}
\end{equation*}
$$

Why do this?
Thus, we only need to solve

$$
\begin{equation*}
\min _{\boldsymbol{x}_{i}}\left\|\boldsymbol{y}_{i}-D \boldsymbol{x}_{i}\right\|_{2}^{2} \text { s.t. } \forall i,\left\|\boldsymbol{x}_{i}\right\|_{0} \leqslant T \tag{1.15}
\end{equation*}
$$

This can be done using OMP, or any other algorithm along the same vein.

2. Dictionary Update

Now, assume X is fixed. Suppose we want to update D.
Can we solve this?

$$
\begin{equation*}
\min _{D}\|D X-Y\|_{F}^{2} \tag{1.16}
\end{equation*}
$$

If we solve for D in this way, i.e.

$$
\begin{equation*}
D=Y X^{T}\left(X X^{T}\right)^{-1} \tag{1.17}
\end{equation*}
$$

But, there are drawback in this method
(a) $X \in \mathbb{R}^{K \times N}$, so $X X^{T} \in \mathbb{R}^{K \times K}$, Inversion is hard for large K .
(b) There is no way of preserving sparsity inherent from X.

Can we update the k-th column of D while fixing the others?
We know that (let \boldsymbol{x}^{i} be the j-th row, and \boldsymbol{x}_{j} be the j-th column)

$$
Y \approx[\underbrace{\boldsymbol{d}_{1}}_{\in \mathbb{R}^{n \times 1}}, \ldots, \boldsymbol{d}_{K}]\left[\begin{array}{c}
\underbrace{\boldsymbol{x}^{1}}_{\in \mathbb{R}^{1 \times N}} \tag{1.18}\\
\vdots \\
\boldsymbol{x}^{K}
\end{array}\right] \in \mathbb{R}^{n \times N}
$$

then

$$
\begin{align*}
& \|Y-D X\|_{F}^{2} \\
& \qquad=\left\|Y-\sum_{j=1}^{k} \boldsymbol{d}_{j} \boldsymbol{x}^{j}\right\|_{F}^{2}=\left\|\left(Y-\sum_{j=1, j \neq k}^{k} \boldsymbol{d}_{j} \boldsymbol{x}^{j}\right)-\boldsymbol{d}_{k} \boldsymbol{x}^{k}\right\|_{F}^{2} \triangleq\left\|E_{k}-\boldsymbol{d}_{k} \boldsymbol{x}^{k}\right\|_{F}^{2} \tag{1.19}
\end{align*}
$$

Therefore, since E_{k} is fixed, finding $\left(\boldsymbol{d}_{k}, \boldsymbol{x}^{k}\right)$ is the same as finding the best rank- 1 update of E_{k}.
To find $\left(\boldsymbol{d}_{k}, \boldsymbol{x}^{k}\right)$ such that

$$
\begin{equation*}
\min _{\boldsymbol{d}_{k}, \boldsymbol{x}^{k}}\left\|E_{k}-\boldsymbol{d}_{k} \boldsymbol{x}^{k}\right\|_{F}^{2} \tag{1.20}
\end{equation*}
$$

Not quite! We also need to preserve sparsity of \boldsymbol{x}^{k}.
Then, let us restrict ourselves to the existing non-zeros of \boldsymbol{x}^{k}. Define

$$
\begin{equation*}
\omega_{k}=\left\{i: \boldsymbol{x}^{k}[i] \neq 0\right\} \tag{1.21}
\end{equation*}
$$

and ω_{k} be an $n \times\left|\omega_{k}\right|$ matrix representing the sampling operator. Find rank-1 approximation for

$$
\begin{equation*}
\min _{\boldsymbol{d}_{k}, \boldsymbol{x}^{k}}\left\|E_{k} \Omega_{k}-\boldsymbol{d}_{k} \boldsymbol{x}^{k} \Omega_{k}\right\|_{F}^{2} \tag{1.22}
\end{equation*}
$$

Let $E_{k}^{R} \triangleq E_{k} \Omega_{k}$, then 1.22 can be solved by doing SVD on E_{k}^{R} :

$$
\begin{equation*}
E_{k}^{R}=U \Sigma V^{T} \tag{1.23}
\end{equation*}
$$

Then
(a) $\boldsymbol{d}_{k}=$ the first column of U
(b) $\boldsymbol{x}^{k} \Omega_{k}=$ the first row of $V \times \Sigma(1,1)$. Fill $\boldsymbol{x}^{k}[i]$ with zero for $i \notin \omega_{k}$
(c) Repeat the process for $k=1, \ldots, K$

Suppose the sparse coding is prefect. Then the dictionary update:

1. guarantees reduction or no charge of $\|Y-D X\|_{F}^{2}$
2. guarantees sparsity of X is unchanged

However,

1. Since the sparse coding step may not be perfect, convergence is not guaranteed i general
2. When T is small, OMP has worst case guarantee. Even for moderate T, OMP can still work under high probability (with some assumptions on the signal)
3. Practically, K-SVD works reasonably well (but slow)

1.4 Acknowledge

We would like to thank Dr. Stanley Chan for help with the description of the big picture of K-SVD.

1.5 References

[1] M. Aharon, M. Elad and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Transactions on Signal Processing, 2006, Vol. 54(11), pp. 4311-4322.

