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1.1 Introduction

It is a typical ill-posed linear inverse problem and can be generally formulated as:

y = Hx+ n (1.1)

where x,y are lexicographically stacked representations of the original image and the degraded
image, respectively, H is a matrix representing a non-invertible linear degradation operator and n
is usually additive Gaussian white noise.

To cope with the ill-posed nature of image restoration, image prior knowledge is usually employed
for regularizing the solution to the following minimization problem

argmin
x

1

2
∥Hx− y∥22 + λΨ(x) (1.2)

where 1
2 ∥Hx− y∥22 is l2 data-fidelity term, Ψ(x) is called the regularization term denoting image

prior and λ is the regularization parameter.

1.2 Traditional Patch-based Sparse Representation

The basic unit of sparse representation for natural image is patch. Mathematically, denote by
x ∈ RN and xk ∈ RBs the vector representations of the original image and an image patch of size√
Bs ×

√
Bs at location k. Then

xk = Rk (x) (1.3)
where Rk (·) is an operator that extracts the patch xk from the image x, and transpose, denoted by
RT

k
(·), is able to put back a patch into the k-th position in the reconstructed image. Considering

that patches are usually overlapped, the recovery of x from {xk} becomes

x =

n∑
k=1

RT
k (xk).

/
n∑

k=1

RT
k (1Bs) (1.4)

where the notion ./ stands for the element-wise division of two vectors, and 1Bs is a vector of size
Bs with all its elements being 1. For a given dictionary D ∈ RBs×M (M is the number of atoms
in D), the sparse coding process of each patch xk over D is to find a sparse vector αk ∈ RM (i.e.
most of the coefficients in αk are zero or close to zero) such that xk ≈ Dαk. Then the entire image
can be sparsely represented by the set of sparse codes {αk}. In practice,

αk = argmin
α

1

2
∥xk −Dα∥22 + λ∥α∥p (1.5)



where αk ∈ RM .

Similar to Eq 1.4, reconstructing x from its sparse codes {αk} is formulated:

x = D ◦ α ≜
n∑

k=1

RT
k (Dαk) ./

n∑
k=1

RT
k (1Bs) (1.6)

where α =
[
αT
1 , α

T
2 , ..., α

T
n

]T ∈ RMn×1.

Now, considering the degraded version in Eq 1.1, the regularization-based image restoration scheme
utilizing traditional patch-based sparse representation model is formulated as

α̂ = argmin
α

1

2
∥HD ◦ α− y∥22 + λ∥α∥p (1.7)

With α̂, the reconstructed image can be expressed by x̂ = D ◦ α̂.

The heart of the sparse representation modeling lies in the choice of dictionary D. In other words,
how seek the best domain to sparsity a given image? Much effort has been devoted to learning a
redundant dictionary from a set of training example image patches. To be concrete, given a set
of training patches X = [x1,x2, ...,xJ ], where J is the number of training image patches, the goal
of dictionary learning is to jointly optimize the dictionary D and the representation coefficients
matrix Λ = [α1,α2, ...,αJ ] such that xk ≈ Dαk and ∥αk∥p ⩽ L.

This can be formulated by the following minimization problem�

(
D̂, Λ̂

)
= argmin

D,Λ

J∑
k=1

∥xk −Dαk∥22 s.t. ∥αk∥p ⩽ L, ∀k. (1.8)

Apparently, 1.8 is large-scale and highly non-convex even when p is 1. To make it tractable and
solvable, some approximation approaches including MOD and K-SVD, have been proposed to
optimize D and Γ alternatively, leading to many state-of-the-art results in image processing.

However, these approximation approaches for dictionary learning inevitably require high computa-
tional complexity.

1.3 Group-Based Sparse Representation

[1] propose a novel spare representation modeling in the unit of group instead of patch, aiming to
exploit the local sparsity and nonlocal self-similarity of natural images simultaneously in a unified
framework. Each group is represented by the form of matrix, which is composed of nonlocal patches
with similar structures.

Group Construction
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Figure 1: Illustrations for the group construction. Extract each patch xk from image x. For each
xk, denote Sxk

the set composed of its c best matched patches. Stack all the patches in Sxk
in the

form of matrix to construct the group, denoted by xGk
.

As shown in Fig 1, first, divide the image x with size N into n overlapped patches of size
√
Bs×
√
Bs

and each patches is denoted by the vector xk ∈ RBs , i.e. k = 1, 2, ..., n.

Then, for each patch xk, denoted by small red square in Fig 1, in the L×L training window(big blue
square), search its c best matched patches, which comprise the set Sxk

. Here, Euclidean distance
is selected as the similarity criterion between different patches.

Next, all the in Sxk
are stacked into a matrix of size Bs × c, denoted by xGk

∈ RBs×c, which is
includes every patch in Sxk

as its columns, i.e. xGk
= {xGk⊗1,xGk⊗2,...,xGk⊗c}. The matrix xGk

containing all the patches with similar structures is named as a group. Similarly to Eq 1.3, we
define

xGk
= RGk

(x) (1.9)

where RGk
(·) is actually an operator that extracts the group xGk

from x, and transpose, denote
by RT

Gk
(·), can put back a group into the k-th position in the reconstructed image padded with

zeros elsewhere.

Figure 2: Comparison between patch xk and xGk
. One can also see that the construction of xGk

explicitly exploits the self-similarity of natural images.

By averaging all the groups, the recovery of the whole image x from {xGk
} becomes

x =
n∑

k=1

RT
Gk

(xGk
)./

n∑
k=1

RT
Gk

(1Bs×c) (1.10)
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where ./ stands for the element-wise division of two vectors and 1Bs×c is a matrix of size Bs × c
with all the elements being 1.

Group-Based Sparse Representation Modeling

The proposed group-based sparse representation(GSR) model assume that each group xGk
can be

accurately represented by a few atoms of a self-adaptive learning dictionary DGk
.

DGk
= [dGk⊗1, dGk⊗2, . . . , dGk⊗m] is supposed to be shown, where dGk⊗ i ∈ RBs×c is a matrix of

the same size as the group xGk
, and m is the number of atoms in DGk

. Different from the dictionary
in patch sparse representation D ∈ RBs×M , here DGk

∈ R(Bs×c)×m.

The sparse coding process of each group xGk
over DGk

is to seek a sparse vector αGk
= [αGk⊗1,αGk⊗2,, . . . , αGk⊗m]

such that

xGk︸︷︷︸
∈RBs×c

≈
m∑
i=1

αGk⊗i︸ ︷︷ ︸
∈R1×1

× dGk⊗i︸ ︷︷ ︸
∈RBs×c

(1.11)

and denote that

DGk
αGk

≜
m∑
i=1

αGk⊗idGk⊗i (1.12)

Then the entire image can be sparsely represented by the set of sparse codes {αGk
} in the group

domain. Reconstructing x from the sparse codes {αGk
} is expressed as

x = DGG
◦ αG ≜

n∑
k=1

RT
Gk

(DGk
αGk

)./
n∑

k=1

RT
Gk

(1Bs×c) (1.13)

where DG denotes the concatenation of all αGk
, and denotes the concatenation of all αGk

.

Back to Eq 1.10.

By considering the degraded version in Eq 1.1, the proposed regularization-based image restoration
scheme via GSR is formulated as

α̂G = argmin
αG

1

2
∥HDG ◦ αG − y∥22 + λ∥αG∥0 (1.14)

We can see the differences between Eq 1.14 and Eq 1.7 lie in the dictionary and the unit of sparse
representation.
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Self-Adaptive Group Dictionary Learning

[1] will show how to learn the adaptive dictionary DGk
for each group xGk

. On one hand, we hope
that each xGk

can be faithfully represented by DGk
. On the other hand, it is expected that the

representation coefficient vector of xGk
over DGk

is as sparse as possible.

The adaptive dictionary learning of group can be intuitively formulated as:

argmin
Dx,αGk

n∑
k=1

∥xGk
−DxαGk

∥22 + λ

n∑
k=1

∥αGk
∥p (1.15)

Eq 1.15 is a joint optimization problem of Dx and {αGk
}, which can be solved by alternatively

optimizing Dx and {αGk
}.

Remark 1.1. It is Dx in Eq 1.15, not DGk
.

[1], utilized DGk
instead of Dx based on the following three considerations.

1. Solving the joint optimization in Eq 1.15 requires much computational cost.

2. Eq 1.15 is actually adaptive for given image x, not adaptive for a group xGk
.

3. Eq 1.15 neglects the characteristics of each group xGk
.

So,

argmin
DxGk

,αGk

n∑
k=1

∥∥∥xGk
−DxGk

αGk

∥∥∥2
2
+ λ

n∑
k=1

∥αGk
∥p (1.16)

We propose to learn the adaptive dictionary DGk
for each group xGk

directly from its estimate rGk

(see Eq 1.29).

After obtaining rGk
, we then apply SVD to it,

rGk
= UGk

∑
Gk

V T
Gk

=

m∑
i=1

γrGk⊗i

(
uGk⊗iv

T
Gk⊗i

)
(1.17)
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Remark 1.2. Recall the SVD:

X︸︷︷︸
∈Rm×n

= U︸︷︷︸
∈Rm×m

∑
︸︷︷︸

∈Rm×n

V T︸︷︷︸
∈Rn×n

=

 u1︸︷︷︸
∈Rm×1

, u2, . . . , um




σ11 · · · 0 0 · · · 0
... . . . ...

... · · · 0
0 · · · σrr 0 · · · 0
0 · · · 0 0 · · · 0
... · · ·

...
... . . . ...

0 · · · 0 0 · · · 0




vT1︸︷︷︸

∈R1×m

vT2
...
vTn



=

min{m,n}∑
i=1

σiiuiv
T
i

=
r∑

i=1

σiiuiv
T
i

(1.18)

So, each atom in DGk
for group xGk

, is defined as

dGk⊗i = uGk⊗iv
T
Gk⊗i, 1 ⩽ i ⩽ m (1.19)

where dGk⊗i ∈ RBs×c, then

DGk
= [dGk⊗1, dGk⊗2, . . . , dGk⊗m] . (1.20)

1.4 Optimization for GSR-Driven l0 Minimization

The straightforward method to solve Eq 1.14 is translated into solving l1 convex form, i.e.

α̂G = argmin
αG

1

2
∥HDG ◦ αG − y∥22 + λ∥αG∥1 (1.21)

But in this paper [1], adopts the framework of split Bregman iteration(SBI) [2] to solve Eq 1.14.

But ∥ · ∥0 is not convex !!!

Then first of all, let’s make a brief review of SBI. Consider a constrained optimization problem

min
u∈RN ,v∈RM

f (u) + g (v) , s.t. u = Gv︸ ︷︷ ︸
⇔∥u−Gv∥22=0

(1.22)

where G ∈ RM×N and f : RN → R, g : RM → R are convex functions. The SBI solve Eq 1.22 as
Algorithm 1.
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Algorithm 1 Split Bregman Iteration(SBI)
Set t = 0, choose µ > 0, b0 = 0,u0 = 0,v0 = 0.
Repeat

ut+1 = argmin
u

f (u) + µ
2

∥∥u−Gvt − bt
∥∥2
2

vt+1 = argmin
v

g (v) + µ
2

∥∥ut+1 −Gv − bt
∥∥2
2

bt+1 = bt −
(
ut+1 −Gvt+1

)
t← t+ 1

Until stopping criterion satisfied

Remark 1.3. In Algorithm 1,

1. Where is the b from? Why b0 = 0? Obviously, we want to get that b→ 0.

2. What about µ? µ→∞ or not ?

Answer

1. b is the Bregman parameter, see [3,4] .

2. NOT, µ is fixed, here is SBI not classical ALM

Now, let’s back to Eq 1.14, we get that

min
αG,u

1

2
∥Hu− y∥22 + λ∥αG∥0, s.t. u = DG ◦ αG (1.23)

Then, we define that
f (u) =

1

2
∥Hu− y∥22 , g (αG) = λ∥αG∥0 (1.24)

Then, update u, αG and b by Eq 1.25

ut+1 = argmin
u

1

2
∥Hu− y∥22 +

µ

2

∥∥u−DG ◦ αt
G − bt

∥∥2
2

αt+1
G = argmin

αG

λ∥αG∥0 +
µ

2

∥∥ut+1 −DG ◦ αG − bt
∥∥2
2

bt+1 = bt −
(
ut+1 −DG ◦ αt+1

G

) (1.25)

7



u Sub-Problem

min
u

Q1 (u) = min
u

1

2
∥Hu− y∥22 +

µ

2
∥u−DG ◦ αG − b∥22 (1.26)

By Eq 1.26 is convex and Fermat’s Lemma, it is easy to get that

u∗ =
(
HTH + µI

)−1 [
HTy + µ (DG ◦ αG + b)

]
(1.27)

back to Eq 1.23 & Eq 1.13 .

Remark 1.4. I do not check Eq 1.27 carefully.

However, there are some drawbacks in inverse of a matrix.

Therefore, this paper [1] obtain the u via the gradient descent method as the following ,

ut+1 = ut − η
[
HTHut −HTy + µ

(
ut −DG ◦ αG − b

)]
(1.28)

When ut → ut+1, we will get u∗.

Remark 1.5. What about η ?

αG Sub-Problem

Back to 2nd formula of Eq 1.25, we can get that

min
αG

Q2 (αG) = min
αG

1

2
∥DG ◦ αG − r∥22 +

λ

µ
∥αG∥0 (1.29)

where r = u− b.

Let x = DG ◦ αG, then Eq 1.29 can be write

min
αG

Q2 = min
αG

1

2
∥x− r∥22 +

λ

µ
∥αG∥0 (1.30)

In this paper [1], gives a key theorem�
Theorem 1.1 ([1]). Let x, r ∈ RN , rGk

∈ RBs×c, and denote the error vector by e = x − r, and e (j),
where j = 1, ..., N .

Assume that e (j) is independent and comes from a distribution with zero mean and variance σ2. Then for any
ϵ > 0, we have the following property to describe the relationship between ∥x− r∥22 and

n∑
k=1

∥xGk
− rGk

∥F 2

lim
N→∞
K→∞

P

{
1

N
∥x− r∥22 −

1

K

n∑
k=1

∥xGk
− rGk

∥2F < ε

}
= 1 (1.31)
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By Thm 1.1, we can get that

1

N

∥∥xt − rt
∥∥2
2
=

1

K

n∑
k=1

∥∥xt
Gk
− rtGk

∥∥2
F

(1.32)

with a large probability.

Eq 1.32 is equal to

∥x− r∥22 =
N

K

n∑
k=1

∥xGk
− rGk

∥2F (1.33)

Back to 1.30

argmin
αG

1

2
∥x− r∥22 +

λ

µ
∥αG∥0

=argmin
αG

N

2K

n∑
k=1

∥xGk
− rGk

∥2F +
λ

µ
∥αG∥0

=argmin
αG

1

2

n∑
k=1

∥xGk
− rGk

∥2F +
λK

µN
∥αG∥0

=argmin
αG

1

2

n∑
k=1

∥xGk
− rGk

∥2F +
λK

µN

n∑
k=1

∥αGk
∥0

=argmin
αG

n∑
k=1

(
1

2
∥xGk

− rGk
∥2F + τ∥αGk

∥0

)

(1.34)

where τ = λK
µN .

Eq 1.34 can be efficiently minimized by solving n sub-problems for all group xGk
.

So,

argmin
αGk

1

2
∥xGk

− rGk
∥2F + τ∥αGk

∥0 = argmin
αGk

1

2
∥DGk

αGk
− rGk

∥2F + τ∥αGk
∥0 (1.35)

By Eq 1.17,1.19,1.20, rGk
= DGk

γGk
where DGk

is an unitary operator.

Back to Eq 1.35

argmin
αGk

1

2
∥xGk

− rGk
∥2F + τ∥αGk

∥0

=argmin
αGk

1

2
∥DGk

αGk
− rGk

∥2F + τ∥αGk
∥0

=argmin
αGk

1

2

∥∥∥DGk
αGk
−DGk

γrGk

∥∥∥2
F
+ τ∥αGk

∥0

=argmin
αGk

1

2

∥∥∥αGk
− γrGk

∥∥∥2
F
+ τ∥αGk

∥0

(1.36)

9



Then Eq 1.36 can be solve by hard thresholding, see Section 1.5.

The solution of Eq 1.36 is α∗
Gk

= hard
(
γGk

,
√
2τ

)
= γGk

⊙1
(
|γGk
| −
√
2τ

)
, where ⊙ is element-wise

product of two vector.

1.5 Hard Thresholding

The objective function is defined as follows:

f (x) = (x− b)2 + λ|x|0 (1.37)

where |x|0 =
{
0
1

if x = 0
if x ̸= 0

.

Then we can get that

f (x) =

{
b2

(x− b)2 + λ

if x = 0
if x ̸= 0

(1.38)

Whether b2 ⩾ λ or not?

Finally, we can get that

x∗ = argmin
x

f (x) =

{
0,
b,

f (x) = b2, |b| ⩽
√
λ

f (x) = λ, |b| >
√
λ

(1.39)

Eq.1.39 is also called hard thresholding by the following formula

x∗ = hard
(
b,
√
λ
)

(1.40)
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