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State Space Model

Definition 1 (State Space Model)

Given observation sequence x1, ..., x s . Identify hidden activities h with the
state of a dynamical system. Discrete time evolution of hidden state space
sequence

ht = F
(
ht−1, x t , θ

)
, h0 = 0, t = 1, ..., s (1)

1 Markov property: hidden state at time t depends on input of time t
as well as previous hidden state

2 Time-invariance: state evolution function F is independent of time t
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Recurrent Neural Network

How should F be chosen?

Definition 2 (Recurrent Neural Network)

Linear dynamical system with elementwise non-linearity

F (h, x , θ) = Wh + Ux + b, θ = (U,W , b, ...)

F = σ ◦ F , σ ∈ {logistic , tanh, ReLU, ...}
(2)

Optionally produce outputs via

y = H (h, θ) , H (h, θ) , σ (Vh + c) , θ = (...,V , c) (3)
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Unfolding of Recurrency

Recurrent networks: feeding back activities (with time delays).
Unfold computational graph over time (also called unrolling)

Figure 1: Unfolding of recurrency
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Lossy Memorization

What does a recurrent network (RNN) do?

1 hidden state can be thought of as a noisy memory or a noisy data
summary.

2 learn to memorize relevant aspects of partial observation sequence:(
x1, · · · , x t−1

)
7→ ht (4)

3 more powerful than just memorizing fixed-length context.
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Feedforward vs. Recurrent Networks

1 for any fixed length s, the unrolled recurrent network corresponds to a
feedforward network with s hidden layers

2 however, inputs are processed in sequence and (optionally) outputs
are produced in sequence

3 main difference: sharing of parameters between layers – same function
F and H at all layers / time steps.
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Backpropagation through Time

1 backpropagation is straightforward: propagete derivatives backwards
through time

2 parameter sharing leads to sum over t, when dealing with derivatives
of weights

3 define shortcut σ̇ti , σ′
(
F̄
(
ht−1, x t

))
, then

∂R
∂wij

=
s∑

t=1

∂R
∂hti
·
∂hti
∂wij

=
s∑

t=1

∂R
∂hti
· σ̇ti · ht−1j

∂R
∂uik

=
s∑

t=1

∂R
∂hti
·
∂hti
∂uij

=
s∑

t=1

∂R
∂hti
· σ̇ti · x tk

(5)
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RNN Gradients

RNN where output is produced in last step: y = y s .
Remember backpropagation in MLPs:

∇xR = JF 1 · · · JF L∇yR (6)

Shared weights: F t = F , yet evaluated at different points

∇x tR =

[
s∏

r=t+1

W TS (hr )

]
· JH · ∇yR︸ ︷︷ ︸

,z

(7)

where S (hr ) = diag (σ̇t1, ...σ̇
t
n) , which is ≤ I for

σ ∈ {logistic , tanh, ReLU} .
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Exploding and/or Vanishing Gradients

Spectral norm of matrix which is the largest singular value

‖A‖2 = max
x :‖x‖=1

‖Ax‖ = σmax (A) (8)

Note that ‖AB‖2 6 ‖A‖2 · ‖B‖2, hence with S (·) 6 I∥∥∥∥∥
s∏

s=t+1

W TS
(
ht
)∥∥∥∥∥

2

6

∥∥∥∥∥
s∏

s=t+1

W T

∥∥∥∥∥
2

6 ‖W ‖s−t2 = [σmax (W )]s−t (9)

If σmax (W ) < 1, gradients are vanishing, i.e.

‖∇x tR‖ 6 σmax(W )s−t · ‖z‖ (s−t)→∞→ 0 (10)

Conversely, if σmax (W ) > 1 gradients may explode. (depends on gradient
direction [Pascanu et.al 2013]).
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Bi-directional Recurrent Networks

Hidden state evolution does not always have to follow direction of time (or causal
direction).
Define reverse order sequence

g t = G
(
x t , g t+1, θ

)
(11)

as model with separate parameters.

Figure 2: hidden state sequences

Now we can interweave hidden state sequences (see Fig. 2).
Backpropagation is also bi-directional.
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Deep Recurrent Networks

Hierchical hidden state:

ht,1 = F 1
(
ht−1,1, x t , θ

)
ht,l = F l

(
ht−1,l , x t , θ

)
l = 1, ..., L

(12)

Figure 3:

Output connected to last hidden layer

y t = H
(
ht,L, θ

)
(13)

Can be combined with bi-directionality (how?)
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Active Functions

(a) f (x) = 1
1+ex (b) f (x) = ex−e−x

ex+e−x
(c) f (x) = max (0, x)

Figure 4: Active Functions
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Long-Term Dependencies

1 Sometimes: important to model long-term dependencies ⇒ network
needs to memorize features from the distant past

2 Recurrent networks: hidden state needs to preserve memory

3 Conflicts with short-term fluctuations and vanishing gradients

4 Conclusion: difficult to learn long-term dependencies with standard
recurrent network

5 Popular remedy: gated units
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LSTM: Overrall Architecture

Figure 5: The repeating module in an LSTM contains four interacting layers

where

Figure 6: from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM: Flow of Information

(a) (b)

Figure 7: flow of information

1 information propagates along the chain like on a conveyor belt

2 information can flow unchanged and is only selectively changed
(vector addition) by σ-gates
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LSTM: Forget Gate

Figure 8: forget gate

where
ft = σ (Wf · [ht−1, xt ] + bf ) (14)

1 keeping or forgetting of stored content?
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LSTM: Input → Memory Value

Figure 9: forget gate

where
ft = σ (Wf · [ht−1, xt ] + bf ) (15)

1 Keeping or forgetting of stored content?
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LSTM: Input → Memory Value

Figure 10: input → memory value

where
it = σ (Wi · [ht−1, xt ] + bi )

C̃t = tanh (WC · [ht−1, xt ] + bC )
(16)

1 Preparing new input information to be added to the memory
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LSTM: Updating Memory

Figure 11: updating memory

where
Ct = ft ∗ Ct−1 + it ∗ C̃t (17)

1 Combining stored and new information
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LSTM: Output Gate

Figure 12: output gate

where

ot = σ (Wo [ht−1, xt ] + bo)

ht = ot ∗ tanh (Ct)
(18)

1 computing output selectively
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LSTM: Gate Memory Units

Figure 13: gate memory units
where

zt = σ
(
Wz ·

[
ht−1, xt

])
rt = σ

(
Wr ·

[
ht−1, xt

])
h̃t = tanh

(
W ·

[
rt ∗ ht−1, xt

])
ht = (1− zt ) ∗ ht−1 + zt ∗ h̃t

(19)

1 memory state = output. modification to logic [Cho et.al 2014]

2 convex combination of old and new information
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Gate Memory Units

1 GRUs and LSTMs can learn active memory strategies: what to
memorize, overwrite and recall when

2 successful use cases:

handwriting recognition
speech recognition (also: Google)
machine translation
image captioning

3 notoriously difficult to understand what units learn...
Resource-hungry. Slow in learning.
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Language Modeling

Figure 14: Best results of single models on the 1B word benchmark
[Jozefowicz et.al 2016]

1 evaluation on corpus with 1B words

2 number of parameters can be in the 100Ms or even Bs!

3 ensembles can reduce perplexity to ∼ 23 (best result 06/2016)
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Sequence to Sequence Learning

1 important use of of memory units: sequence to sequence learning.
Seminal paper [Sutskever et.al 2014]

2 encoder-decoder architecture

Figure 15: encoder-decoder architecture

Encode sequence (e.g. sentence) into vector, decode sequence (e.g.
translate) from vector(with autoregressive output feedback)
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RNN encoder/decoder

How to make this work? [Sutskever et.al 2014]

1 deep LSTMs (multiple layers, e.g. 4)

2 different RNNs for encoding and decoding

3 teacher forcing (maximum likelihood) during training

4 beam search for decoding at test time

5 reverse order of source sequence

6 ensemble-ing

7 ⇒ state-of-the art results on WMT benchmarks at the time. Today:
use of attention-based models.
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Attention Mechanisms

1 simple way to overcome some challenges of RNN-based
memorization: attention mechanism
selectively attend to inputs or feature representations computed from
inputs.

2 RNNs: learn to encode information relevant for the future.
vs.
Attention: select what is relevant from the past in hindsight! Both
ideas can be combined
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Gating Function

Definition 3 (Softmax Gating Function)

A softmax gating function fφ takes as input a query vector ξ ∈ Rn as well
as a set of values x t ∈ Rm (t = 1, ..., s) and is defined as

fφ
(
ξ,
(
x1, ..., x s

))
=

1∑
j
eφ(ξ,x j )

eφ(ξ,x1)

...

eφ(ξ,x
s)

 (20)

for some similarity or compatibility function φ : Rn × Rm → R

1 φ can often be learned in a black-box manner via MLP

2 simplest choice for n = m : φ (ξ, x) = ξT x (inner product)

3 every restriction fφ (ξ, ·) maps to the interior of a simplex
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Self-Gated Attention

Definition 4 (Self-Gated Attention)

Given a query ξ ∈ Rm and a set of values xi ∈ Rn (i = 1, ..., k). The
self-gated attention is defined as

F (ξ, (x1, ..., xk))︸ ︷︷ ︸
∈Rk

= [x1 x2 · · · xk ]︸ ︷︷ ︸
∈Rk×n

· fφ (ξ, (x1, ..., xk))︸ ︷︷ ︸
∈Rn

(21)

where fφ is a gating function.
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Seq2seq with Attention: Schematic

Figure 16: from https://distill.pub/2016/augmented-rnns/
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Seq2seq with Attention

1 Attend to the hidden state of the encoding RNN, i.e. values(
h1e , ..., h

s
e

)
.

2 Decoding RNN produces query at each time, i .e.
(
ξ1, ..., ξs

′
)

.

3 Self-gated attention produces ”read-out” z t from encoder sequence

4 Used ad input to the decoding RNN: (htd , z
t) 7→ ht+1

d
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Seq2seq with Attention: MT Example

Figure 17: from https://distill.pub/2016/augmented-rnns/

1 Interpretable attention model (akin to alignments)
[Bahdanau et.al 2015]

2 Bi-directional GRU encoder, left-to-right GRU decoder
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Seq2seq with Attention: Speech Recognition

Figure 18: from https://distill.pub/2016/augmented-rnns/

1 Listen, Attend and Spell Model [Chan et.al 2016]

2 Bi-directional, pyramidal LSTM encoder
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Memory Networks

Figure 19: from http://www.thespermwhale.com/jaseweston/icml2016/
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Key-Value Attention

Definition 5 (Key-Value Attention)

Given a query ξ ∈ Rn, key-value pairs (x t , z t) ∈ Rn × Rm, t = 1..., s and
a gating function f . The (n,m)-dimensional key-value attention map is
defined as

F
(
ξ,
(
x1, z1

)
, ...., (x s , zs)

)
=
[
z1 z2 · · · zs

]
· f
(
ξ,
(
x1, ..., x s

))
(22)

1 attention weights are computed based on keys

2 produced value is linear (or convex) combination of values

3 keys determine where to look, values determine what features get
extracted
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Dot-Product Attention

Definition 6 (Scaled Dot-Product Attention)

The attention map induced by

f (ξ, x) =
ξT x√

n
(23)

is called scaled dot-product attention.

1 simple dot-product similarity between query and key, not necessarily
convex (soft-max)

2 motivation for normalization: assume ξ, x are random n-vector with
zero mean and unit variances, then

E
[
ξT x

]
= 0 and E

[(
ξT x

)2]
= n (24)
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Multi-Headed Attention

Definition 7 (Multi-Headed Attention)

Let Fj , 1 6 j 6 r be (n,m)-dimensional key-value attention map. An r
multi-headed (N,M)-dimensional attention map G is defined as follows:

G
(
ξ,
(
x t , z t

)s
t=1

)
= W

F1
(
W q

1 ξ, (W
x
1 x

t ,W z
1 z

t)st=1

)
...

F1
(
W q

1 ξ, (W
x
r x

t ,W z
r z

t)st=1

)
 (25)

1 matrices W q
i ,W

q
i ∈ Rn×N and W z

i ∈ Rm×M are linear
dimension-reduction matrices (typically: n < Nand m < M)

2 W ∈ RM×r ·m adjusts the dimension (typically: reduction)

3 example: design choice in [Vaswani et.al 2017]:
r = 8, n = m = 64,N = M = 512.
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Transformer Architecture: Overview

(a) The Transformer model architecture (b) Multi-Head Attention consists of several
attention layers running in parallel

Figure 20: Transformer Architecture [Vaswani et.al 2017]
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Transformer Architecture: Other Design Choices

1 Fully-connected feedforward networks (specially: ReLU with layer
width 512 7→ 2048 7→ 512 confer(cf.) 1× 1 convolution)

2 Positional encoding: learned or fixed (sine-functions of different
frequency)

3 Layer normalization [Ba et.al 2016] cf. later section on activity
re-normalization

4 Skip connections with add (cf. residual layers)
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Last But Not Least

Thank you all of you! –Yao
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