Deep Learning

Lecture 2: RNN & LSTM & Attention

Lecturer: Thomas Hofmann

Definition 2.1 (State space model). Given observation sequence $x^1, ..., x^s$. Identify hidden activities h with the state of a dynamical system. Discrete time evolution of hidden state space sequence

$$h^{t} = F(h^{t-1}, x^{t}, \theta), \quad h^{0} = 0, \quad t = 1, ..., s$$

$$(2.1)$$

- 1. Markov property: hidden state at time t depends on input of time t as well as previous hidden state
- 2. Time-invariance: state evolution function F is independent of time t

How should F be chosen?

Definition 2.2 (Recurrent Neural Network). Linear dynamical system with elementwise non-linearity

$$F(h, x, \theta) = Wh + Ux + b, \quad \theta = (U, W, b, ...)$$

$$F = \sigma \circ \overline{F}, \quad \sigma \in \{logistic, \ tanh, \ ReFLU, ...\}$$
(2.2)

Optionally produce outputs via

$$y = H(h,\theta), \quad H(h,\theta) \triangleq \sigma \left(Vh + c \right), \quad \theta = (...,V,c)$$

$$(2.3)$$

Unfolding of recurrency. Recurrent networks: feeding back activities (with time delays). Unfold computational graph over time (also called unrolling)

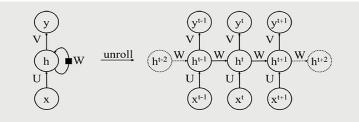


Figure 2.1: Unfolding of recurrency

Lossy memorization: what does a recurrent network (RNN) do?

- 1. hidden state can be thought of as a noisy memory or a noisy data summary.
- 2. learn to memorize relevant aspects of partial observation sequence:

$$\left(x^1, \cdots, x^{t-1}\right) \mapsto h^t \tag{2.4}$$

3. more powerful than just memorizing fixed-length context.

Feedforward vs. Recurrent networks:

Scribes: Yao Zhang

Fall 2019

- 1. for any fixed length s, the unrolled recurrent network corresponds to a feedforward network with s hidden layers
- 2. however, inputs are processed in sequence and (optionally) outputs are produced in sequence
- 3. main difference: sharing of parameters between layers same function F and H at all layers / time steps.

Backpropagation through time:

- 1. backpropagation is straightforward: propagete derivatives backwards through time
- 2. parameter sharing leads to sum over t, when dealing with derivatives of weights
- 3. define shortcut $\dot{\sigma}_i^t \triangleq \sigma' \left(\bar{F} \left(h^{t-1}, x^t \right) \right)$, then

$$\frac{\partial \mathcal{R}}{\partial w_{ij}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_i^t} \cdot \frac{\partial h_i^t}{\partial w_{ij}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_i^t} \cdot \dot{\sigma}_i^t \cdot h_j^{t-1}
\frac{\partial \mathcal{R}}{\partial u_{ik}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_i^t} \cdot \frac{\partial h_i^t}{\partial u_{ij}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_i^t} \cdot \dot{\sigma}_i^t \cdot x_k^t$$
(2.5)

RNN gradients: RNN where output is produced in last step: $y = y^s$. Remember backpropagation in MLPs:

$$\nabla_x \mathcal{R} = J_{F^1} \cdots J_{F^L} \nabla_y \mathcal{R} \tag{2.6}$$

Shared weights: $F^t = F$, yet evaluated at different points

$$\nabla_{x^{t}} \mathcal{R} = \left[\prod_{r=t+1}^{s} W^{T} S\left(h^{r}\right)\right] \cdot \underbrace{J_{H} \cdot \nabla_{y} \mathcal{R}}_{\triangleq z}$$
(2.7)

where $S(h^r) = diag(\dot{\sigma}_1^t, ... \dot{\sigma}_n^t)$, which is $\leq I$ for $\sigma \in \{logistic, tanh, ReLU\}$.

Exploding and/or vanishing gradients: spectral norm of matrix which is the largest singular value

$$\|A\|_{2} = \max_{x:\|x\|=1} \|Ax\| = \sigma_{\max}(A)$$
(2.8)

Note that $||AB||_2 \leq ||A||_2 \cdot ||B||_2$, hence with $S(\cdot) \leq I$

$$\left\|\prod_{s=t+1}^{s} W^{T} S\left(h^{t}\right)\right\|_{2} \leq \left\|\prod_{s=t+1}^{s} W^{T}\right\|_{2} \leq \left\|W\right\|_{2}^{s-t} = \left[\sigma_{\max}\left(W\right)\right]^{s-t}$$
(2.9)

If $\sigma_{\max}(W) < 1$, gradients are vanishing, i.e.

$$\|\nabla_{x^t} R\| \leqslant \sigma_{\max}(W)^{s-t} \cdot \|z\| \xrightarrow{(s-t) \to \infty} 0 \tag{2.10}$$

Conversely, if $\sigma_{\max}(W) > 1$ gradients may explode. (depends on gradient direction [1]).

Bi-directional recurrent networks: hidden state evolution does not always have to follow direction of time (or causal direction).

Define reverse order sequence

$$g^{t} = G\left(x^{t}, g^{t+1}, \theta\right) \tag{2.11}$$

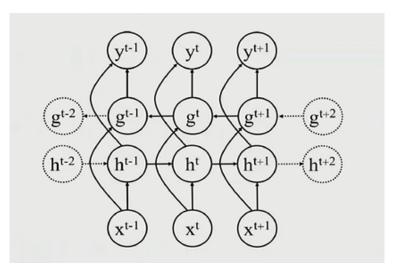


Figure 2.2: hidden state sequences

as model with separate parameters.

Now we can interweave hidden state sequences (see Fig. 2.2). Backpropagation is also bi-directional.

Deep recurrent networks: hierchical hidden state:

$$h^{t,1} = F^1 \left(h^{t-1,1}, x^t, \theta \right)$$

$$h^{t,l} = F^l \left(h^{t-1,l}, x^t, \theta \right) \quad l = 1, ..., L$$
(2.12)

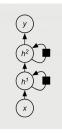


Figure 2.3

Output connected to last hidden layer

$$y^{t} = H\left(h^{t,L},\theta\right) \tag{2.13}$$

Can be combined with bi-directionality (how?).

Differentiable memory: long-term dependencies

- 1. sometimes: important to model long-term dependencies \Rightarrow network needs to memorize features from the distant past
- 2. recurrent networks: hidden state needs to preserve memory
- 3. conflicts with short-term fluctuations and vanishing gradients
- 4. conclusion: difficult to learn long-term dependencies with standard recurrent network
- 5. popular remedy: gated units

LSTM: overrall architecture, Long-Short-Term-Memory: unit for memory management

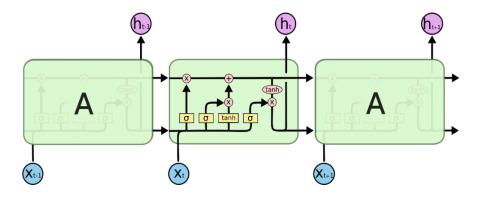


Figure 2.4: The repeating module in an LSTM contains four interacting layers

where



Figure 2.5: from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: flow of information

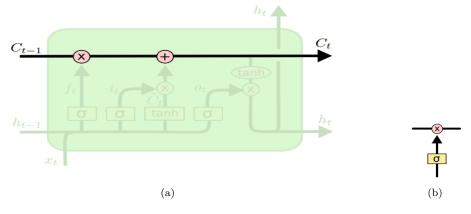


Figure 2.6: flow of information

- 1. information propagates along the chain like on a conveyor belt
- 2. information can flow unchanged and is only selectively changed (vector addition) by σ -gates

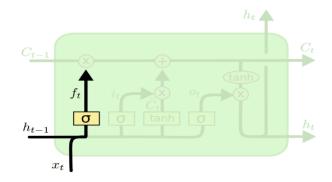


Figure 2.7: forget gate

where

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$
(2.14)

1. keeping or forgetting of stored content?

LSTM: input \rightarrow memory value where

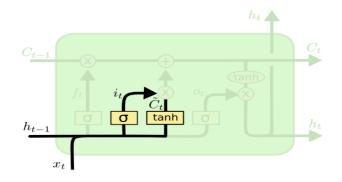
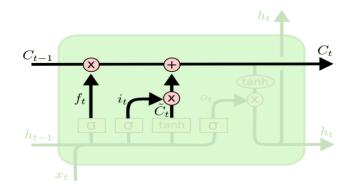


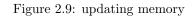
Figure 2.8: input \rightarrow memory value

$$i_{t} = \sigma \left(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i} \right)$$

$$\widetilde{C}_{t} = \tanh \left(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C} \right)$$
(2.15)

- 1. preparing new input information to be added to the memory
- LSTM: updating memory





where

$$C_t = f_t * C_{t-1} + i_t * \widetilde{C}_t \tag{2.16}$$

1. combining stored and new information

LSTM: output gate where

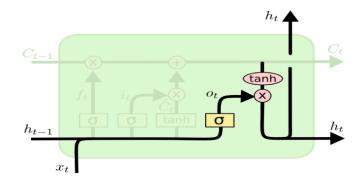


Figure 2.10: output gate

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

$$h_t = o_t * \tanh \left(C_t \right)$$
(2.17)

1. computing output selectively

LSTM: gate memory units

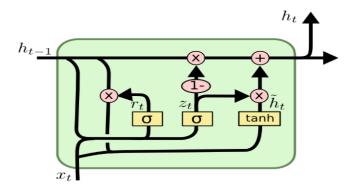


Figure 2.11: gate memory units

where

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$
(2.18)

- 1. memory state = output. modification to logic [2]
- 2. convex combination of old and new information

Gated memory units:

- 1. GRUs and LSTMs can learn active memory strategies: what to memorize, overwrite and recall when
- 2. successful use cases:
 - (a) handwriting recognition
 - (b) speech recognition (also: Google)
 - (c) machine translation
 - (d) image captioning
- 3. notoriously difficult to understand what units learn... Resource-hungry. Slow in learning.

Language	modeling:

Model	TEST PERPLEXITY	NUMBER OF PARAMS [BILLIONS]
Sідмоід-RNN-2048 (Ji et al., 2015а)	68.3	4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (Chelba et al., 2013)	67.6	1.76
Sparse Non-Negative Matrix LM (Shazeer et al., 2015)	52.9	33
RNN-1024 + MaxEnt 9-gram features (Chelba et al., 2013)	51.3	20
LSTM-512-512	54.1	0.82
LSTM-1024-512	48.2	0.82
LSTM-2048-512	43.7	0.83
LSTM-8192-2048 (No Dropout)	37.9	3.3
LSTM-8192-2048 (50% DROPOUT)	32.2	3.3
2-LAYER LSTM-8192-1024 (BIG LSTM)	30.6	1.8
BIG LSTM+CNN INPUTS	30.0	1.04
BIG LSTM+CNN INPUTS + CNN SOFTMAX	39.8	0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION	35.8	0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS	47.9	0.23

Figure 2.12: Best results of single models on the 1B word benchmark [3]

- 1. evaluation on corpus w/ 1B words
- 2. number of parameters can be in the 100Ms or even Bs!
- 3. ensembles can reduce perplexity to ~ 23 (best result 06/2016)

Sequence to sequence learning:

- 1. important use of of memory units: sequence to sequence learning. Seminal paper [4]
- 2. encoder-decoder architecture Encode sequence (e.g. sentence) into vector, decode sequence (e.g. translate) from vector(with autoregressive output feedback)

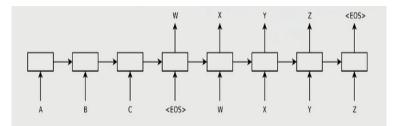


Figure 2.13: encoder-decoder architecture

RNN encoder/decoder: How to make this work? [4]

- 1. deep LSTMs (multiple layers, e.g. 4)
- 2. different RNNs for encoding and decoding
- 3. teacher forcing (maximum likelihood) during training
- 4. beam search for decoding at test time
- 5. reverse order of source sequence
- 6. ensemble-ing
- 7. \Rightarrow state-of-the art results on WMT benchmarks at the time. Today: use of attention-based models.

Attention Mechanisms:

- 1. simple way to overcome some challenges of RNN-based memorization: attention mechanism selectively attend to inputs or feature representations computed from inputs.
- 2. RNNs: learn to encode information relevant for the future.

vs.

Attention: select what is relevant from the past in hindsight! Both ideas can be combined

Gating Function:

Definition 2.3 (Softmax Gating Function). A softmax gating function f_{ϕ} takes as input a query vector $\xi \in \mathbb{R}^n$ as well as a set of values $x^t \in \mathbb{R}^m$ (t = 1, ..., s) and is defined as

$$f_{\phi}\left(\xi, \left(x^{1}, ..., x^{s}\right)\right) = \frac{1}{\sum_{j} e^{\phi(\xi, x^{j})}} \begin{pmatrix} e^{\phi\left(\xi, x^{1}\right)} \\ \vdots \\ e^{\phi(\xi, x^{s})} \end{pmatrix}$$
(2.19)

for some similarity or compatibility function $\phi : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$

- 1. ϕ can often be learned in a black-box manner via MLP
- 2. simplest choice for n = m: $\phi(\xi, x) = \xi^T x$ (inner product)
- 3. every restriction $f_{\phi}(\xi, \cdot)$ maps to the interior of a simplex

Definition 2.4 (Self-Gated Attention). Given a query $\xi \in \mathbb{R}^m$ and a set of values $x_i \in \mathbb{R}^n$ (i = 1, ..., k). The self-gated attention is defined as

$$\underbrace{F\left(\xi, (x_1, \dots, x_k)\right)}_{\in \mathbb{R}^k} = \underbrace{\left[x_1 \ x_2 \ \cdots \ x_k\right]}_{\in \mathbb{R}^{k \times n}} \cdot \underbrace{f_{\phi}\left(\xi, (x_1, \dots, x_k)\right)}_{\in \mathbb{R}^n} \tag{2.20}$$

where f_{ϕ} is a gating function.

Seq2seq with Attention: Schematic

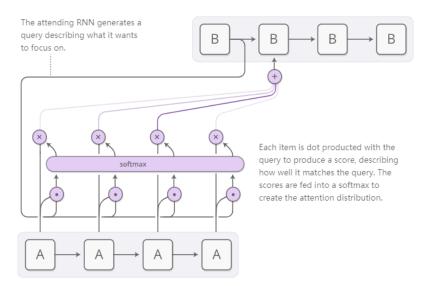


Figure 2.14: from https://distill.pub/2016/augmented-rnns/

Seq2seq with Attention:

- 1. Attend to the hidden state of the encoding RNN, i.e. values $(h_e^1, ..., h_e^s)$.
- 2. Decoding RNN produces query at each time, *i.e.* $(\xi^1, ..., \xi^{s'})$.
- 3. Self-gated attention produces "read-out" z^t from encoder sequence
- 4. Used ad input to the decoding RNN: $(h_d^t, z^t) \mapsto h_d^{t+1}$

Seq2seq with Attention: MT Example

- 1. Interpretable attention model (akin to alignments) [5]
- 2. Bi-directional GRU encoder, left-to-right GRU decoder

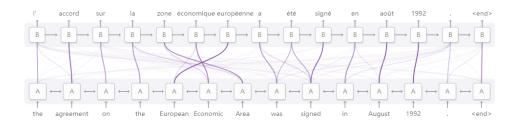


Figure 2.15: from https://distill.pub/2016/augmented-rnns/

Seq2seq with Attention: Speech Recognition

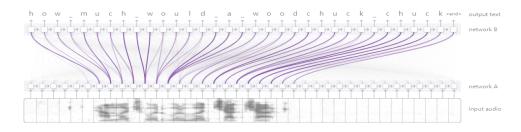


Figure 2.16: from https://distill.pub/2016/augmented-rnns/

- 1. Listen, Attend and Spell Model [6]
- 2. Bi-directional, pyramidal LSTM encoder

Memory Networks:

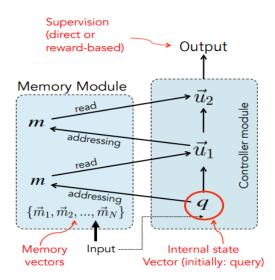


Figure 2.17: from http://www.thespermwhale.com/jaseweston/icml2016/

Definition 2.5 (Key-Value Attention). Given a query $\xi \in \mathbb{R}^n$, key-value pairs $(x^t, z^t) \in \mathbb{R}^n \times \mathbb{R}^m$, t = 1..., s and a gating function f. The (n, m)-dimensional key-value attention map is defined as

$$F\left(\xi, \left(x^{1}, z^{1}\right), ..., \left(x^{s}, z^{s}\right)\right) = \left[z^{1} \ z^{2} \ \cdots \ z^{s}\right] \cdot f\left(\xi, \left(x^{1}, ..., x^{s}\right)\right)$$
(2.21)

- 1. attention weights are computed based on keys
- 2. produced value is linear (or convex) combination of values
- 3. keys determine where to look, values determine what features get extracted

Definition 2.6 (Scaled Dot-Product Attention). The attention map induced by

$$f\left(\xi,x\right) = \frac{\xi^T x}{\sqrt{n}} \tag{2.22}$$

is called scaled dot-product attention.

- 1. simple dot-product similarity between query and key, not necessarily convex (soft-max)
- 2. motivation for normalization: assume ξ, x are random *n*-vector with zero mean and unit variances, then

$$E\left[\xi^{T}x\right] = 0 \quad and \quad E\left[\left(\xi^{T}x\right)^{2}\right] = n \tag{2.23}$$

Definition 2.7 (Multi-Headed Attention). Let F_j , $1 \leq j \leq r$ be (n, m)-dimensional key-value attention map. An r multi-headed (N, M)-dimensional attention map G is defined as follows:

$$G\left(\xi, \left(x^{t}, z^{t}\right)_{t=1}^{s}\right) = W\begin{bmatrix}F_{1}\left(W_{1}^{q}\xi, \left(W_{1}^{x}x^{t}, W_{1}^{z}z^{t}\right)_{t=1}^{s}\right)\\\vdots\\F_{1}\left(W_{1}^{q}\xi, \left(W_{r}^{x}x^{t}, W_{r}^{z}z^{t}\right)_{t=1}^{s}\right)\end{bmatrix}$$
(2.24)

- 1. matrices $W_i^q, W_i^q \in \mathbb{R}^{n \times N}$ and $W_i^z \in \mathbb{R}^{m \times M}$ are linear dimension-reduction matrices (typically: n < N and m < M)
- 2. $W \in \mathbb{R}^{M \times r \cdot m}$ adjusts the dimension (typically: reduction)
- 3. example: design choice in [7]: r = 8, n = m = 64, N = M = 512.

Transformer Architecture: Overview

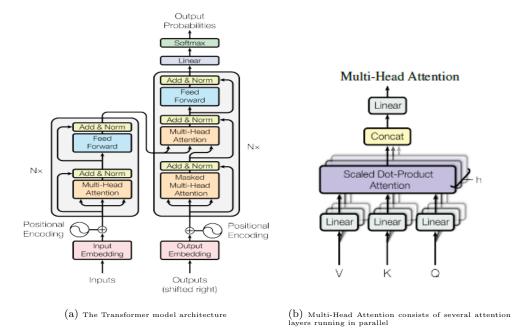


Figure 2.18: Transformer Architecture [7]

Transformer Architecture: Other Design Choices:

- 1. Fully-connected feedforward networks (specially: ReLU with layer width $512 \mapsto 2048 \mapsto 512$ confer(cf.) 1×1 convolution)
- 2. Positional encoding: learned or fixed (sine-functions of different frequency)
- 3. Layer normalization [8] cf. later section on activity re-normalization
- 4. Skip connections with add (cf. residual layers)

Reading List

- [1] R. Pascanu, T. Mikolov and Y. Bengio, "On the difficulty of training Recurrent Neural Networks," *ArXiv*, 2013.
- [2] K.Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk and Y. Bengio, "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation," *Conference* on Empirical Methods in Natural Language Processing (EMNLP 2014), 2014.
- [3] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer and Y. Wu, "Exploring the Limits of Language Modeling," CoRR, 2016.
- [4] I. Sutskever, O. Vinyals and Q. Le, "Sequence to sequence learning with neural networks," NIPS'14 Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, Vol. 2014, pp. 3104-3112.

- [5] D. Bahdanau, K. Cho and Y. Bengio, "Neural Machine Translation by Jointly Learning to Align and Translate," 3rd International Conference on Learning Representations (ICML), 2015.
- [6] W. Chan, N. Jaitly, Q. Le and O. Vinyals, "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016.
- [7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser and I. Polosukhin, "Attention is All you Need," Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017, Vol. 2017, pp. 5998-6008.
- [8] J. Ba, J. Kiros and G. Hinton, "Layer Normalization," ArXiv, 2016, Vol.(abs/1607.06450).