
Deep Learning Fall 2019

Lecture 1: Convolutional Neural Networks
Lecturer: Thomas Hofmann Scribes: Yao Zhang

It is the 3rd test version, updated November 21, 2019

Definition 1.1 (Integral operator). A transform T expressible with the kernel H and t1, t2 ∈ R
∪
{−∞,∞}

such that for any function f (for with Tf exists)

(Tf) (u) =

∫ t2

t1

H (u, t) f (t)dt (1.1)

is called an integral operator.

Example 1.1 (Fourier transform).

(Ff) (u) ≜
∫ ∞

−∞
e−2πituf (t) dt (1.2)

Definition 1.2 (Convolution). Given two functions f, h, their convolution is defined as

(f ∗ h) (u) ≜
∫ ∞

−∞
h (u− t) f (t) dt =

∫ ∞

−∞
f (u− t)h (t) dt (1.3)

Remark 1.1.

1. integral operator with kernel H (u, t) = h (u− t)

2. shift-invariant as H (u− s, t− s) = h (u− t) = H (u, t) (∀s)

Proof. content...

3. convolution operator is commutative

Proof. content...

4. existence depends on properties of f, h

5. typical use f = signal, h = fast decaying kernel function

Definition 1.3 (Linear transform). T is linear, if for all functions f, g and the scalars α, β,

T (αf + βg) = αTf + βTg (1.4)

Definition 1.4 (Translation invariant transform). T is translation (or shift) invariant, if for any f and
scalar τ ,

fτ (t) ≜ f (t+ τ) , (Tfτ) (t) ≜ (Tf) (t+ τ) (1.5)

Remark 1.2. content...

1-1

1-2 Lecture 1: Convolutional Neural Networks

Theorem 1.1. Any linear, translation-invariant transformation T can be written as convolution with a
suitable h.

Proof. content...

Signal processing with neural networks:

1. Transforms in deep networks: linear + simple non-linearity

2. Many signals (audio, image, etc.) obey translation invariance ⇒ invariant feature maps: shift in input
= shift in feature map

1 + 2 in above:

1. ⇒ learn convolutions, not (full connectivity) weight matrices

2. ⇒ convolutional layers for signal processing

For all practical purposes: signal are sampled, i.e. discrete.

Definition 1.5 (Discrete convolution (1-D)). For f, h : Z → R, we can define the discrete convolution via

(f ∗ h) [u] ≜
∞∑

t=−∞
f [t]h [u− t] (1.6)

Remark 1.3.

1. use of rectangular brackets to suggest ”arrays”

2. 2D case:

content... (1.7)

3. typical: h with finite support (window size)

Example 1.2. Small Gaussian kernel with support [−2 : 2] ⊂ Z

h [t] =
1

16


6
4
1
0

t = 0
|t| = 1
|t| = 2

otherwise

(1.8)

Consequence: convolution sum can be truncated:

(f ∗ h) [u] =
u+2∑

t=u−2

f [t]h [u− t] =

2∑
t=−2

h [t] f [u− t]

=
6f [u] + 4f [u− 1] + 4f [u+ 1] + f [u− 2] + f [u+ 2]

16

(1.9)

Remark 1.4. content...

Lecture 1: Convolutional Neural Networks 1-3

Definition 1.6 (Discrete cross-correlation). Let f, h : Z → R, then

(h⊗ f) [u] ≜
∞∑

t=−∞
h [t] f [u+ t] (1.10)

Remark 1.5.

1. Def. 1.6 also called a ”sliding inner product”, u+ t instead of u− t

2. note that cross-correlation and convolution are closely related:

(h⊗ f) [u] =

∞∑
t=−∞

h [t] f [u+ t]

=
∞∑

t=−∞
h [−t] f [u− t]

=
(
h ∗ f

)
[u]

=
(
f ∗ h

)
[u]

(1.11)

where h [t] ≜ h [−t].

Only difference: kernel flipped over, but not non-commutative.

Convolution via matrices:

1. In practice: signal f and kernel h have finite support

2. Without loss of generality (w.l.o.g) f [t] = 0 for t /∈ [1 : n] , h [t] = 0 for t /∈ [1 : m]

3. We can think of f and h as vectors and define:

h1 0 0 · · · 0 0 · · · · · · · · · · · ·

h2 h1 0 · · · 0 0
...

...
...

...

h3 h2 h1 · · · 0 0
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...

hm hm−1 hm−2 · · · h1 0
...

...
...

...

0 hm hm−1 · · · h2 h1

...
...

...
...

0 0 hm · · · h3 h2 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · 0 hm hm−1 · · · · · · · · ·
...

...
... · · ·

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · 0 hm


︸ ︷︷ ︸

≜Hh
n∈R(m+n−1)×n



f1
f2
f3
...

fm−1

fm
...
...

fn−2

fn−1

fn



(1.12)

Remark 1.6. content...

1-4 Lecture 1: Convolutional Neural Networks

Definition 1.7 (Toeplitz matrix). A matrix H ∈ Rk×n is a Toeplitz matrix, if there exists n+k−1 numbers
cl (l ∈ [− (n− 1) : (k − 1)] ⊂ Z) such that

Hij = ci−j (1.13)

Remark 1.7.

1. in plain English, all NW-SE diagonals are constant

2. if m ≪ n: additional sparseness (band matrix of width m)

3. Hh
n has only m degrees of freedom

4. locality (sparseness m ≪ n) and weight sharing (kernel)

Figure 1.1: Sparse vs dense connectivity

Convolutions in higher dimensions: generalize concept of convolution to:

1. 2D: e.g. images, spectograms

2. 3D: e.g. color or multi-spectral images, voxel images, video

3. or even higher dimensions

Replace vector by:

1. matrices or fields (e.g. in discrete case)

(F ∗G) [i, j] =

∞∑
k=−∞

∞∑
l=−∞

F [i− k, j − l] ·G [k, l] (1.14)

2. tensors: for 3D and higher

Different options for border handling:

1. our definition: padding with zeros = same padding

Lecture 1: Convolutional Neural Networks 1-5

Figure 1.2

2. only retain values from windows fully contained in support of signal f = valid padding

layout:

1. Convolved signal inherits topology of original signal

2. Hence: units in a convolutional layer are typically arranged on the same grid (1D, 2D, 3D,...)

Exploit structural sparseness in computing
∂xl

i

∂xl−1
j

:

1. receptive filed of xl
i : Il

i ≜
{
j : W l

ij ̸= 0
}
, where W l is the Toeplitz matrix of the convolution

2. obviously
∂xl

i

∂xl−1
j

= 0 for j /∈ Il
i

Weight sharing in computing ∂R
∂hl

j

, where hl
j is a kernel weight

∂R
∂hl

j

=
∑
i

∂R
∂xl

i

∂xl
i

∂hl
j

(1.15)

Weight is re-used for every unit within target layer ⇒ additive combination of derivatives in chain rule.

FFT (Fast Fourier Transform): compute convolutions fast(er).

1. Fourier transform of signal f → (Ff) and kernel h → (Fh)

2. pointwise multiplication and inverse Fourier transform:

(f ∗ h) = F−1 ((Ff) · (Fh)) (1.16)

1-6 Lecture 1: Convolutional Neural Networks

Figure 1.3

3. FFT: signal of length n, can be done in O (n logn)

4. pays off, if many channels (amortizes computation of Ff)

5. small kernels (m < log n): favor time / space domain

Remark 1.8. content...

Stages:

1. Non-linearites: detector stage. As always: scalar non-linearities (activation function)

2. Pooling stage: locally combine activities

Most frequently used pooling function:max pooling.

Definition 1.8 (Max Pooling). Define window size r (e.g. 3 or 3× 3), then

1D : xmax
i = max {xi+k : 0 ⩽ k < r} ,

2D : xmax
ij = max {xi+k,j+l : 0 ⩽ k, l < r}

(1.17)

Remark 1.9.

1. maximum over a small patch of units

2. other functions are possible: average, soft-maximization

Max-pooling: invariance

1. set of invertible transformations T : group w.r.t composition

2. T −invariance through maximization fT (x) ≜ max
τ∈T

f (τx)

Proposition 1.1. fT is invariant under τ ∈ T .

Proof.
fT (τx) = max

ρ∈T
f (ρ (τx)) = max

ρ∈T
(f (ρ ◦ τ)x) = max

σ∈T
f (σx) (1.18)

as ∀σ, σ = ρ ◦ τ with ρ = σ ◦ τ−1.

Lecture 1: Convolutional Neural Networks 1-7

sub-sampling(also known as (aka) strides):

1. often, it is desirable to reduce the size of feature maps

2. sub-sampling: reduce temporal/spatial resolution. Often: combined with (max-)pooling (aka. stride)

3. example: max-pool, filter 2× 2, stride 2× 2

4. disadvantage: loss of information

Learn multiple convolution kernel (or filters) = multiple channels:

1. typically: all channels use same window size

2. channels form additional dimension for next layer (e.g. 2D signal × channels = 3D tensor)

3. number of channels: design parameter

http://cs231n.github.io/assets/conv-demo/index.html

Note that kernels (across channels) form a linear map:

h : Rr2×d → Rk (1.19)

where r × r is the window size and d is the depth.

Figure 1.4: convolutional layers for vision

Convolutional networks: multiple, stacked feature maps

y [r]︸︷︷︸
r−th channel

[s, t] =
∑
u

∑
∆s,∆t

w [r, u] [∆s,∆t]︸ ︷︷ ︸
parameters

x [u]︸︷︷︸
u−th channel

[s+∆s, t+∆t] (1.20)

1. x, y tensor, 3-rd order

2. number of parameters:
#r ·#u︸ ︷︷ ︸

fully connected

· #∆s ·#∆t︸ ︷︷ ︸
window size

(1.21)

3. pointwise non-linearities (e.g. ReLU)

http://cs231n.github.io/assets/conv-demo/index.html

1-8 Lecture 1: Convolutional Neural Networks

4. interleaved with: pooling (e.g. max, average)

5. optionally: downsampling (use of strides)

Convolutional pyramid:
Typical use of convolution in vision: sequence of convolutions that

1. reduce spatial dimensions (sub-sampling)

2. increase number of channels

⇒ smaller, but more feature maps.

Figure 1.5: Architecture of LeNet-5, a convolutional neural network, here for digits recognition. Each plan
is a feature map, i.e. a set of units whose weights are constrained to be identical. [2]

LeNet5 [1,2]

1. C1/S2: 6 channels, 5× 5 kernels, 2× 2 sub (4704 units)

2. C3/S4: 16 channels,6× 6 kernels, 2× 2 sub (1600 units)

3. C5: 120 channels, F6: fully-connected

4. output: Gaussian noise model (squared loss)

AlexNet[3]

1. Pyramidal architecture: reduce spatial resolution, increase channels with depth

2. Challenge: many channels (width) + large windows + depth

3. Number of parameters

(a) 384 to 384 channels with 3× 3 windows: > 1.3 M

(b) 13× 13× 384 tensor to 4096, fully connected: > 265 M

Deep ConvNets: key challenges

1. avoid blow-up of model size (e.g. # parameters)

2. preserve computational efficiency of learning (e.g. gradients)

3. allow for large depth (as it is known to be a plus)

4. allow for sufficient width (as it is known to be a plus, too)

Lecture 1: Convolutional Neural Networks 1-9

Figure 1.6: AlexNet architecture

Very deep convolutional networks: VGG [4]

Figure 1.7: VGG 16

1. use very small receptive fields (maximally 3× 3)

2. avoid downsampling/pooling

3. stacking small receptive fields: more depth, fewer parameters

4. example: 3 · (3× 3) = 27 < 49(7× 7)

Many channels needed for high accuracy, typically k ∼ 200− 1000 (e.g. AlexNet: 2× 192).

Observation (motivated by Arora et al, 2013 [5]): when convolving, dimension reduction across channels
may be acceptable.

Dimension reduction: m channels of a 1× 1× k convolution m ≤ k:

x+
ij = σ (Wxij) , W ∈ Rm×k (1.22)

1. 1× 1 convolution = no convolution

2. inception module (Szegedy et al. [6])

3. network within a network (Lin et al, [7])

4. i.e. W is shared for all (i, j) (translation invariance)

Inception module: mixing

1-10 Lecture 1: Convolutional Neural Networks

(a) naive version (b)

Figure 1.8: Inception module [8]

Instead of fixed window size convolution: mix 1×1 with 3×3 and 5×5, max-polling. Use 1×1 convolutions
for dimension reduction before convolving with large kernels.

Google inception networks [6]

Lecture 1: Convolutional Neural Networks 1-11

Figure 1.9: Google inception networks

Very deep network: many inception modules (green boxes: concatenation points). Additional trick: connect
softmax layer (and loss) at intermediate stages (yellow boxes) ⇒ gradient shortcuts.

1-12 Lecture 1: Convolutional Neural Networks

Residual networks: ResNets [9]

(a)

(b)

Figure 1.10: Residual Networks module [9]

1. learn changes to the identity map (aka. shortcut connections)

2. use small filters (VGG), use dimension reduction (inception)

3. reach depth of 100 + layers (+ increase accuracy + trainable)

Models for sequences:

1. many relevant application deal with sequences, e.g. time series(speech, sensors), sequences of symbols
(language, biology)

2. vector-valued sequences: xt ∈ Rd, t = 0, 1, 2, ...

3. symbol sequences: ωt ∈ Ω, t = 0, 1, 2, ... with Ω : alphabet

(a) variable length sequences, how to represent?

(b) translation invariance, how to incorporate?

From symbols to vectors: DNNs operate on real-valued vectors. How can we process (and learn with) symbol
sequences? The answer is: via embeddings.

Definition 1.9 (symbol Embedding). A d-dimensional symbol embedding is a mapping z : Ω → Rd, which
maps every symbol to a vector representation.

Definition 1.10 (Sequence Matrix). Given a symbol sequence ω1,, ωs and an embedding z, the sequence
matrix Z is defined via

Z =
[
z
(
ω1

)
· · · z (ωs)

]
∈ Rd×s (1.23)

Lecture 1: Convolutional Neural Networks 1-13

DNN terminology: embedding ”layer” = look-up layer. Shortcut zi ≜ z (ωi).

Learnable symbol representations:

1. embedding are not fixed, but are learned from data!

2. gradient-based updates via backpropagation, compute ∇Zi l

3. which embeddings are updated depends on which symbols occurred (and how often)

4. learn (just) embeddings in self-supervised learning (a.k.a representation learning), e.g. word embed-
dings (word2vec, skipgram, GloVe)

CNNs for natural language processing: multi-Channel CNNs for NLP

Classical CNN architecture [10]:

1. look-up layers for words and (optionally) linguistic feature

2. 1-d multi-channel convolution

3. polling over time (e.g. max)

4. fully connected layers

5. softmax classifier (e.g.)

Figure 1.11: A general deep NN architecture for NLP, in [10]

Deep CNNs for sentence modeling: single-channel cross-pooling CNNs for NLP, alternative modern CNN
architecture in [11]:

1. embedding layers

2. (wide) one-channel convolutions

1-14 Lecture 1: Convolutional Neural Networks

3. max-k polling (order preserving)

4. ”dynamic” = k based on data

5. cross-channel interactions via folding (parameter free)

Figure 1.12: A DCNN for the seven word input sentence., in [11]

Other work on CNNs for NLP: themes and variants found in the recent literature

1. Pham et al [12], convoluutional neural network language model: avoid max pooling, use batch normal-
ization, (almost) competitive language model.

2. Severyn & Moschitti [13], sentiment prediction for tweets.

Next topic is recurrent networks

Reading List

[1] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard and L. Jackel, “Back-
propagation applied to handwritten zip code recognition,” Neural Computation , 1989, Vol. 1(4),
pp. 541–551.

[2] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE , 1998, Vol. 86(11), pp. 2278–2324.

[3] A. Krizhevsky, I. Sutskever and G. Hinton, “ImageNet classification with deep convolutional
neural networks,” NIPS 2012, Neural Information Processing Systems , 2012, Vol. 60, pp. 84–90.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recog-
nition,” International Conference on Learning Representations , 2015.

Lecture 1: Convolutional Neural Networks 1-15

[5] M. Arora and H. Kaur, “Performance analysis of communication system with convolutional
coding over fading channel,” International Journal of Scientific & Engineering Research , 2013,
Vol. 4(5), pp. 1116–1120.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhanand, V. Vanhoucke
and A. Rabinovich, “Going deeper with convolutions,” 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) , 2015, pp. 1–9.

[7] M. Lin, Q. Chen, S. Yan, “Network in network,” International Conference on Learning Repre-
sentations (ICLR), 2013.

[8] C. Vasconcelos, B. Vasconcelos, “Network in convolutional neural network committees for
melanoma classification with classical and expert knowledge based image transforms data aug-
mentation,” arXiv:1702.07025, 2017.

[9] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2016, pp. 770–778.

[10] R. Collobert and J. Westonand, “A unified architecture for natural language processing: deep
neural networks with multitask learning,” Machine Learning, Proceedings of the Twenty-Fifth
International Conference (ICML) , 2008.

[11] N. Kalchbrenner, E. Grefenstette and P. Blunsom, “A convolutional neural network for mod-
elling sentences,” Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics , 2014, Vol. 1, pp. 655–665.

[12] H. Pham, M. Guan, B. Zoph, Q. Le and J. Dean, “Efficient neural architecture search via
parameters sharing,” Proceedings of the 35th International Conference on Machine Learning
(PMLR) , 2018, Vol. 80, pp. 4095–4101.

[13] A. Severyn and A. Moschitti, “UNITN: training deep convolutional neural network for twitter
sentiment classification,” Proceedings of the 9th International Workshop on Semantic Evalua-
tion (SemEval 2015) , 2015, pp. 464–469.

