Deep Learning Fall 2019

Lecture 1: Convolutional Neural Networks
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Definition 1.1 (Integral operator). A transform T expressible with the kernel H and tq,ty € R|J{—00, 00}
such that for any function f (for with Tf exists)

(Tf) (u) = / CH (u,t) f (1)t (L1)

1

is called an integral operator.

Example 1.1 (Fourier transform).

FEp e [ ey (1)
Definition 1.2 (Convolution). Given two functions f,h, their convolution is defined as
(f*h)(u)é/ h(u—t)f(t)dt:/ f(u—t)h(t)dt (1.3)

Remark 1.1.
1. integral operator with kernel H (u,t) = h(u —t)
2. shift-invariant as H (u — s,t —s) =h(u—1t) = H (u,t) (Vs)
Proof. content... O
3. convolution operator is commutative
Proof. content... O

4. existence depends on properties of f, h
5. typical use f = signal, h = fast decaying kernel function

Definition 1.3 (Linear transform). T is linear, if for all functions f,g and the scalars o, 3,

T(af +Bg)=aTlf+pTg (1.4)

Definition 1.4 (Translation invariant transform). T is translation (or shift) invariant, if for any f and
scalar T,

fr) 2 ft+T), (Tf) @)= (Tf)({E+7) (1.5)

Remark 1.2. content...
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Theorem 1.1. Any linear, translation-invariant transformation T can be written as convolution with a
suitable h.

Proof. content... O

Signal processing with neural networks:

1. Transforms in deep networks: linear 4+ simple non-linearity

2. Many signals (audio, image, etc.) obey translation invariance = invariant feature maps: shift in input
= shift in feature map

1 + 2 in above:

1. = learn convolutions, not (full connectivity) weight matrices

2. = convolutional layers for signal processing

For all practical purposes: signal are sampled, i.e. discrete.
Definition 1.5 (Discrete convolution (1-D)). For f,h:Z — R, we can define the discrete convolution via

(fxh)[u] & > flt]h[u—t] (1.6)

t=—o0

Remark 1.3.

1. use of rectangular brackets to suggest "arrays”

2. 2D case:
content... (1.7)

3. typical: h with finite support (window size)

Example 1.2. Small Gaussian kernel with support [—2: 2] C Z

6 t=0
1 =
hil =151 Ii} -, (1.8)
0 otherwise
Consequence: convolution sum can be truncated:
u+2 2
(fm)ful = Y fllhlu—t]=Y h[t]flu—1]
t=u—2 t=—2 (1.9)
_ 6f[u] + 4f[u—1]4+4flu+1]+ flu—2]+ flu+2]
16

Remark 1.4. content...
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Definition 1.6 (Discrete cross-correlation). Let f,h: Z — R, then

(h® f)[u] & Z ht] f [u+t] (1.10)

t=—o0

Remark 1.5.

1. Def. 1.6 also called a "sliding inner product”, u+t instead of u —t

2. note that cross-correlation and convolution are closely related:

o0

> [t flu+]

t=—o00

(h& f) [u]

o

> h[t] flu—t] (1.11)

(E*f) [u]
= (f*h)[u]

where h[t] £ h[—t].
Only difference: kernel flipped over, but not non-commutative.

Convolution via matrices:

1. In practice: signal f and kernel h have finite support
2. Without loss of generality (w.l.o.g) f[t] =0fort ¢ [1:n],h[t] =0 for ¢t ¢ [1:m]

3. We can think of f and h as vectors and define:

[h1 0 0 .0 0 e A
hy  h 0 o0 0 : : : : fi
. . ) . I2
hs ho hy . 0 0 : : : : fs
how h—1 hm—o -+ hi 0 fmfl
I (1.12)
0 hm hm—l hQ hl
0 0 Pom hs  ha .
0 0 0 0 hyy hgpeq  cee e een fn—2
: L fa
Lo 0 0 0 0 0 0 hy

éHTFLL cR(m+n—-1)xn

Remark 1.6. content...
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Definition 1.7 (Toeplitz matrix). A matriz H € R¥*" is a Toeplitz matriz, if there exists n+k—1 numbers

g (le[-(n-1):(k—=1)] CZ) such that
Hij = ci—j

Remark 1.7.

1. in plain English, all NW-SE diagonals are constant
if m < n: additional sparseness (band matriz of width m)

H! has only m degrees of freedom

e e

locality (sparseness m < n) and weight sharing (kernel)

Figure 1.1: Sparse vs dense connectivity

Convolutions in higher dimensions: generalize concept of convolution to:

1. 2D: e.g. images, spectograms
2. 3D: e.g. color or multi-spectral images, voxel images, video
3. or even higher dimensions

Replace vector by:

1. matrices or fields (e.g. in discrete case)

(F«G)[ijl= > Y Fli—kj—1]-G[k1]

k=—o0l=—00

2. tensors: for 3D and higher
Different options for border handling:

1. our definition: padding with zeros = same padding

(1.13)

(1.14)
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Figure 1.2

2. only retain values from windows fully contained in support of signal f = valid padding
layout:

1. Convolved signal inherits topology of original signal

2. Hence: units in a convolutional layer are typically arranged on the same grid (1D, 2D, 3D,...)

i
Ox; .
-1
azj

Exploit structural sparseness in computing

1. receptive filed of #! : Z! £ {j : Wilj # 0}, where W' is the Toeplitz matrix of the convolution

l
2. obviously ~2%; = 0 for j ¢ I!

(91';71 -
Weight sharing in computing g%, where hé» is a kernel weight
J

IR _ - OR 03]
ohl 4~ ozl Onl

(1.15)

Weight is re-used for every unit within target layer = additive combination of derivatives in chain rule.

FFT (Fast Fourier Transform): compute convolutions fast(er).

1. Fourier transform of signal f — (Ff) and kernel h — (Fh)

2. pointwise multiplication and inverse Fourier transform:

(fxh) = F((Ff) - (Fh)) (1.16)
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Figure 1.3

3. FFT: signal of length n, can be done in O (n logn)

4. pays off, if many channels (amortizes computation of F f)

5. small kernels (m < logn): favor time / space domain

Remark 1.8. content...

Stages:

1. Non-linearites: detector stage. As always: scalar non-linearities (activation function)

2. Pooling stage: locally combine activities

Most frequently used pooling function:max pooling.

Definition 1.8 (Max Pooling). Define window size r (e.g. 3 or 3 x 3), then

Remark 1.9.

1D: P =max{ziyrp:0< k<r},

2D ™ =max {Zitrj+1: 0< kI <r}

(1.17)

1. maximum over a small patch of units

2. other functions are possible: average, soft-mazimization

Max-pooling: invariance

1. set of invertible transformations 7T : group w.r.t composition

2. T—invariance through maximization fr (z) £ max f(rz)
TE

Proposition 1.1. fr is invariant under T € T.

Proof.

fr(rz) = max f (p (rz)) = max (f (p o 7)) = max f (0z) (1.18)

as Vo,0 = por with p=co77 1. O
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sub-sampling(also known as (aka) strides):

1. often, it is desirable to reduce the size of feature maps

2. sub-sampling: reduce temporal/spatial resolution. Often: combined with (max-)pooling (aka. stride)

3. example: max-pool, filter 2 x 2, stride 2 x 2

4. disadvantage: loss of information

Learn multiple convolution kernel (or filters) = multiple channels:

1. typically: all channels use same window size

2. channels form additional dimension for next layer (e.g. 2D signal x channels = 3D tensor)

3. number of channels: design parameter
http://cs231n.github.io/assets/conv-demo/index.html

Note that kernels (across channels) form a linear map:

hiRTXE o RE

(1.19)
where r X r is the window size and d is the depth.
i &
g 7% &
L ‘
L :
«— width —
Figure 1.4: convolutional layers for vision
Convolutional networks: multiple, stacked feature maps
ylr]  [st] = Z Z wr,u) [As,At]  xz[u] [s+ As,t+ At (1.20)
~~ w AsAL T ~
r—th channel parameters u—th channel
1. z,y tensor, 3-rd order
2. number of parameters:
#r-Hu - H#As-HAL (1.21)
—— —_—
fully connected window size

3. pointwise non-linearities (e.g. ReLU)


http://cs231n.github.io/assets/conv-demo/index.html
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4. interleaved with: pooling (e.g. max, average)

5. optionally: downsampling (use of strides)

Convolutional pyramid:
Typical use of convolution in vision: sequence of convolutions that

1. reduce spatial dimensions (sub-sampling)

2. increase number of channels
= smaller, but more feature maps.

C3:f. maps 16@10x10
C1: feature maps S4: f maps 16@5x5

INPUT
6@28x28
@28x S2:f. maps
B6@14x14 I

32x32

‘ Full conlLection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Figure 1.5: Architecture of LeNet-5, a convolutional neural network, here for digits recognition. Each plan
is a feature map, i.e. a set of units whose weights are constrained to be identical. [

LeNet5 [1,2]
C1/S2: 6 channels, 5 x 5 kernels, 2 x 2 sub (4704 units)

C3/S4: 16 channels,6 x 6 kernels, 2 x 2 sub (1600 units)
C5: 120 channels, F6: fully-connected

Ll

output: Gaussian noise model (squared loss)

AlexNet[3]

1. Pyramidal architecture: reduce spatial resolution, increase channels with depth
2. Challenge: many channels (width) + large windows + depth
3. Number of parameters

(a) 384 to 384 channels with 3 x 3 windows: > 1.3 M
(b) 13 x 13 x 384 tensor to 4096, fully connected: > 265 M

Deep ConvNets: key challenges

avoid blow-up of model size (e.g. # parameters)
preserve computational efficiency of learning (e.g. gradients)

allow for large depth (as it is known to be a plus)

Ll A

allow for sufficient width (as it is known to be a plus, too)
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Conv2 Conv3 Convd Convs FC6 FCT7 FCE

13% 13 = 384 13x 13 x 384 13% 13 » 256
2Tx 27 = 256
55x% 55 x 26
L] L1 1000
22T 22T = 3 4096 406
Figure 1.6: AlexNet architecture
Very deep convolutional networks: VGG [4]
224 x 224 x 3 224 x 224 x 64
112 x 112 x 128
V7 25268 28 x 512 Lot
b x
1ax1ax 512 1x1x4096 1 x 1 x 1000

S

7 convolution+RelLU
1) max pooling
fully nected +RelLU
softmax

Figure 1.7: VGG 16

1. use very small receptive fields (maximally 3 x 3)
2. avoid downsampling/pooling
3. stacking small receptive fields: more depth, fewer parameters

4. example: 3-(3x3) =27 <49(7 x 7)

Many channels needed for high accuracy, typically k£ ~ 200 — 1000 (e.g. AlexNet: 2 x 192).

Observation (motivated by Arora et al, 2013 [5]): when convolving, dimension reduction across channels
may be acceptable.

Dimension reduction: m channels of a 1 x 1 x k convolution m < k:

at =0 (Way), WeR™F (1.22)

)

1. 1 x 1 convolution = no convolution
2. inception module (Szegedy et al. [6])
3. network within a network (Lin et al, [7])

4. i.e. W is shared for all (4, ) (translation invariance)

Inception module: mixing
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Filter Fiter
concatenation concalenalion
I3 i 5x5 i 1
1x1 33 5x§ 3x3 max pooling
1x1 i [) L] L]
ﬂm 1x1 convolutions 3x3 max pooling
—_—
Previous layer Previous layer
(a) naive version (b)

Figure 1.8: Inception module [8]

Instead of fixed window size convolution: mix 1 x 1 with 3 x 3 and 5 x 5, max-polling. Use 1 x 1 convolutions
for dimension reduction before convolving with large kernels.

Google inception networks [6]
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Figure 1.9: Google inception networks

Very deep network: many inception modules (green boxes: concatenation points). Additional trick: connect
softmax layer (and loss) at intermediate stages (yellow boxes) = gradient shortcuts.
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Residual networks: ResNets [9]

X

A
weight layer

Fx) Jrelo

weight layer

A

X

identity

(b)
Figure 1.10: Residual Networks module [9]

1. learn changes to the identity map (aka. shortcut connections)
2. use small filters (VGG), use dimension reduction (inception)

3. reach depth of 100 + layers (+ increase accuracy + trainable)

Models for sequences:

1. many relevant application deal with sequences, e.g. time series(speech, sensors), sequences of symbols
(language, biology)

2. vector-valued sequences: zf € R%, ¢t =0,1,2,...
3. symbol sequences: w? € Q,t=0,1,2,... with Q : alphabet

(a) variable length sequences, how to represent?

(b) translation invariance, how to incorporate?

From symbols to vectors: DNNs operate on real-valued vectors. How can we process (and learn with) symbol
sequences? The answer is: via embeddings.

Definition 1.9 (symbol Embedding). A d-dimensional symbol embedding is a mapping z : Q — R, which
maps every symbol to a vector representation.

Definition 1.10 (Sequence Matrix). Given a symbol sequence wl, ....,w® and an embedding z, the sequence
matriz Z is defined via

Z=[z(w) - z(w)] e R¥** (1.23)
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DNN terminology: embedding "layer” = look-up layer. Shortcut z; = 2 (w;).

Learnable symbol representations:

1. embedding are not fixed, but are learned from datal
2. gradient-based updates via backpropagation, compute V z,!
3. which embeddings are updated depends on which symbols occurred (and how often)

4. learn (just) embeddings in self-supervised learning (a.k.a representation learning), e.g. word embed-
dings (word2vec, skipgram, GloVe)

CNNs for natural language processing: multi-Channel CNNs for NLP
Classical CNN architecture [10]:

1. look-up layers for words and (optionally) linguistic feature

2. 1-d multi-channel convolution

3. polling over time (e.g. max)

4. fully connected layers

5. softmax classifier (e.g.)

Input Sentence nwords, K features
feature 1 (text) the cat sat on the mat
feature 2 S1(1) 5142) s1(3) 51(4) 51(5) 51(6)
feature K sK(1) sK(2) sK(3) sK(4) sK(5) sKI6)

Lookup Tables (dl+d2+..dK)*n

w ~~ JHTNED

v ~~ DOREDD
B
Convolution Layer l’ J’

#hidden units * (n-2) ‘ 4 2 H_H_H_H

-/

I
Max Over Time ¥
#hidden units | —

C Optional Classical NN Layer(s)

(Softmax  E— j

Figure 1.11: A general deep NN architecture for NLP, in [10]

Deep CNNs for sentence modeling: single-channel cross-pooling CNNs for NLP, alternative modern CNN
architecture in [11]:

1. embedding layers

2. (wide) one-channel convolutions
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3. max-k polling (order preserving)

4. 7dynamic” = k based on data

5. cross-channel interactions via folding (parameter free)

The cat sat on the red mat

Figure 1.12: A DCNN for the seven word input sentence., in [11]

Other work on CNNs for NLP: themes and variants found in the recent literature

1. Pham et al [12], convoluutional neural network language model: avoid max pooling, use batch normal-
ization, (almost) competitive language model.

2. Severyn & Moschitti [13], sentiment prediction for tweets.

Next topic is recurrent networks
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