Convolutional Neural Networks

Yao Zhang

Mostly based on Thomas Hofmann's lecture in ETH
https://zhims.github.io/datascience.html
Nov 12, 2019

Integral Operators

Definition 1 (Integral operator)

A transform T expressible with the kernel H and $t_{1}, t_{2} \in \mathbb{R} \bigcup\{-\infty, \infty\}$ such that for any function f (for with Tf exists)

$$
\begin{equation*}
(T f)(u)=\int_{t_{1}}^{t_{2}} H(u, t) f(t) d t \tag{1}
\end{equation*}
$$

is called an integral operator.

Example 1 (Fourier transform)

$$
\begin{equation*}
(\mathcal{F} f)(u) \triangleq \int_{-\infty}^{\infty} e^{-2 \pi i t u} f(t) d t \tag{2}
\end{equation*}
$$

Convolution

Definition 2 (Convolution)

Given two functions f, h, their convolution is defined as

$$
\begin{equation*}
(f * h)(u) \triangleq \int_{-\infty}^{\infty} h(u-t) f(t) d t=\int_{-\infty}^{\infty} f(u-t) h(t) d t \tag{3}
\end{equation*}
$$

Remark 1

(1) integral operator with kernel $H(u, t)=h(u-t)$
(2) shift-invariant as $H(u-s, t-s)=h(u-t)=H(u, t) \quad(\forall s)$
(3) convolution operator is commutative
(9) existence depends on properties of f, h
(5) typical use $f=$ signal, $h=$ fast decaying kernel function

Linear Time-Invariant Transforms

Definition 3 (Linear transform)

T is linear, if for all functions f, g and the scalars α, β,

$$
\begin{equation*}
T(\alpha f+\beta g)=\alpha T f+\beta T g \tag{4}
\end{equation*}
$$

Definition 4 (Translation invariant transform)

T is translation (or shift) invariant, if for any f and scalar τ,

$$
\begin{equation*}
f_{\tau}(t) \triangleq f(t+\tau), \quad\left(T f_{\tau}\right)(t) \triangleq(T f)(t+\tau) \tag{5}
\end{equation*}
$$

Theorem 1

Any linear, translation-invariant transformation T can be written as convolution with a suitable h.

Signal Processing with Neural Networks

(1) Transforms in deep networks: linear + simple non-linearity
(2) Many signals (audio, image, etc.) obey translation invariance \Rightarrow invariant feature maps: shift in input $=$ shift in feature map
$1+2$ in above:
(1) \Rightarrow learn convolutions, not (full connectivity) weight matrices
(2) \Rightarrow convolutional layers for signal processing

Discrete Convolutions

For all practical purposes: signal are sampled, i.e. discrete.

Definition 5 (Discrete convolution (1-D))

For $f, h: \mathbb{Z} \rightarrow \mathbb{R}$, we can define the discrete convolution via

$$
\begin{equation*}
(f * h)[u] \triangleq \sum_{t=-\infty}^{\infty} f[t] h[u-t] \tag{6}
\end{equation*}
$$

Remark 2

(1) use of rectangular brackets to suggest "arrays"
(2) $2 D$ case:
content...
(3) typical: h with finite support (window size)

Discrete Convolutions: Example

Example 2

Small Gaussian kernel with support $[-2: 2] \subset \mathbb{Z}$

$$
h[t]=\frac{1}{16}\left\{\begin{array}{cc}
6 & t=0 \tag{8}\\
4 & |t|=1 \\
1 & |t|=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Consequence: convolution sum can be truncated:

$$
\begin{align*}
(f * h)[u] & =\sum_{t=u-2}^{u+2} f[t] h[u-t]=\sum_{t=-2}^{2} h[t] f[u-t] \tag{9}\\
& =\frac{6 f[u]+4 f[u-1]+4 f[u+1]+f[u-2]+f[u+2]}{16}
\end{align*}
$$

Discrete Cross-Correlation

Definition 6 (Discrete cross-correlation)

Let $f, h: \mathbb{Z} \rightarrow \mathbb{R}$, then

$$
\begin{equation*}
(h \otimes f)[u] \triangleq \sum_{t=-\infty}^{\infty} h[t] f[u+t] \tag{10}
\end{equation*}
$$

Discrete Cross-Correlation

Remark 3

(1) Def. 6 also called a "sliding inner product", $u+t$ instead of $u-t$
(2) note that cross-correlation and convolution are closely related:

$$
\begin{align*}
(h \otimes f)[u] & =\sum_{t=-\infty}^{\infty} h[t] f[u+t] \\
& =\sum_{t=-\infty}^{\infty} h[-t] f[u-t] \tag{11}\\
& =(\bar{h} * f)[u] \\
& =(f * \bar{h})[u]
\end{align*}
$$

where $\bar{h}[t] \triangleq h[-t]$.
Only difference: kernel flipped over, but not non-commutative.

Convolution via Matrices

(1)

In practice: signal f and kernel h have finite support
(2) Without loss of generality (w.l.o.g) $f[t]=0$ for $t \notin[1: n], h[t]=0$ for $t \notin[1: m]$
(3) We can think of f and h as vectors and define:
$\left[\begin{array}{cccccccccc}h_{1} & 0 & 0 & \cdots & 0 & 0 & \cdots & \cdots & \cdots & \cdots \\ h_{2} & h_{1} & 0 & \cdots & 0 & 0 & \vdots & \vdots & \vdots & \vdots \\ h_{3} & h_{2} & h_{1} & \cdots & 0 & 0 & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ h_{m} & h_{m-1} & h_{m-2} & \cdots & h_{1} & 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & h_{m} & h_{m-1} & \cdots & h_{2} & h_{1} & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & h_{m} & \cdots & h_{3} & h_{2} & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & h_{m} & h_{m-1} & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & h_{m}\end{array}\right]\left[\begin{array}{c}f_{1} \\ f_{2} \\ f_{3} \\ \vdots \\ f_{m-1} \\ f_{m} \\ \vdots \\ \vdots \\ f_{n-2} \\ f_{n-1} \\ f_{n}\end{array}\right]$

Toeplitz Matrix

Definition 7 (Toeplitz matrix)

A matrix $H \in \mathbb{R}^{k \times n}$ is a Toeplitz matrix, if there exists $n+k-1$ numbers $c_{l}(I \in[-(n-1):(k-1)] \subset \mathbb{Z})$ such that

$$
\begin{equation*}
H_{i j}=c_{i-j} \tag{13}
\end{equation*}
$$

Remark 4

(1) in plain English, all NW-SE diagonals are constant
(2) if $m \ll n$: additional sparseness (band matrix of width m)
(3) H_{n}^{h} has only m degrees of freedom
(9) locality (sparseness $m \ll n$) and weight sharing (kernel)

Sparse Connectivity

Figure 1: Sparse vs dense connectivity

Convolutions in Higher Dimensions

Generalize concept of convolution to:
(1) 2D: e.g. images, spectograms
(2) 3D: e.g. color or multi-spectral images, voxel images, video
(3) or even higher dimensions

Replace vector by:
(1) matrices or fields (e.g. in discrete case)

$$
\begin{equation*}
(F * G)[i, j]=\sum_{k=-\infty}^{\infty} \sum_{I=-\infty}^{\infty} F[i-k, j-l] \cdot G[k, I] \tag{14}
\end{equation*}
$$

(2) tensors: for 3D and higher

Convolutional Layers: Border Handling

Different options for border handling:
(1) our definition: padding with zeros $=$ same padding
(2) only retain values from windows fully contained in support of signal $f=$ valid padding

Figure 2:

Convolutional Layers: Layout

(1) Convolved signal inherits topology of original signal
(2) Hence: units in a convolutional layer are typically arranged on the same grid (1D, 2D, 3D, ...)

Convolutional Layers: Backpropagation

Exploit structural sparseness in computing $\frac{\partial x_{i}^{\prime}}{\partial x_{j}^{-1}}$:
(1) receptive filed of $x_{i}^{\prime}: \mathcal{I}_{i}^{\prime} \triangleq\left\{j: W_{i j}^{\prime} \neq 0\right\}$, where W^{\prime} is the Toeplitz matrix of the convolution
(2) obviously $\frac{\partial x_{i}^{\prime}}{\partial x_{j}^{\prime-1}}=0$ for $j \notin \mathcal{I}_{i}^{\prime}$

Weight sharing in computing $\frac{\partial \mathcal{R}}{\partial h_{j}^{\prime}}$, where h_{j}^{\prime} is a kernel weight

$$
\begin{equation*}
\frac{\partial \mathcal{R}}{\partial h_{j}^{\prime}}=\sum_{i} \frac{\partial \mathcal{R}}{\partial x_{i}^{\prime}} \frac{\partial x_{i}^{\prime}}{\partial h_{j}^{\prime}} \tag{15}
\end{equation*}
$$

Weight is re-used for every unit within target layer \Rightarrow additive combination of derivatives in chain rule.

Efficient Computations of Convolutional Activities

FFT (Fast Fourier Transform): compute convolutions fast(er).
(1) Fourier transform of signal $f \rightarrow(\mathcal{F} f)$ and kernel $h \rightarrow(\mathcal{F} h)$
(2) pointwise multiplication and inverse Fourier transform:

$$
\begin{equation*}
(f * h)=\mathcal{F}^{-1}((\mathcal{F} f) \cdot(\mathcal{F} h)) \tag{16}
\end{equation*}
$$

(3) FFT: signal of length n, can be done in O (n logn)
(9) pays off, if many channels (amortizes computation of $\mathcal{F} f$)
(3) small kernels $(m<\log n)$: favor time / space domain

Convolutional Layers: Stages

(1) Non-linearites: detector stage. As always: scalar non-linearities (activation function)
(2) Pooling stage: locally combine activities

Pooling

Most frequently used pooling function:max pooling.

Definition 8 (Max Pooling)

Define window size r (e.g. 3 or 3×3), then

$$
\begin{array}{ll}
1 D: & x_{i}^{\max }=\max \left\{x_{i+k}: 0 \leqslant k<r\right\}, \\
2 D: & x_{i j}^{\max }=\max \left\{x_{i+k, j+1}: 0 \leqslant k, l<r\right\} \tag{17}
\end{array}
$$

Remark 5

(1) maximum over a small patch of units
(2) other functions are possible: average, soft-maximization

Max-pooling

Max-pooling: invariance
(1) set of invertible transformations \mathcal{T} : group w.r.t composition
(2) \mathcal{T}-invariance through maximization $f_{\mathcal{T}}(x) \triangleq \max _{\tau \in \mathcal{T}} f(\tau x)$

Proposition 1

$f_{\mathcal{T}}$ is invariant under $\tau \in \mathcal{T}$.

Proof.

$$
\begin{equation*}
f_{\mathcal{T}}(\tau x)=\max _{\rho \in \mathcal{T}} f(\rho(\tau x))=\max _{\rho \in \mathcal{T}}(f(\rho \circ \tau) x)=\max _{\sigma \in \mathcal{T}} f(\sigma x) \tag{18}
\end{equation*}
$$

as $\forall \sigma, \sigma=\rho \circ \tau$ with $\rho=\sigma \circ \tau^{-1}$.

Sub-Sampling(also known as (aka) Strides)

(1) often, it is desirable to reduce the size of feature maps
(2) sub-sampling: reduce temporal/spatial resolution. Often: combined with (max-)pooling (aka. stride)
(3) example: max-pool, filter 2×2, stride 2×2
(9) disadvantage: loss of information

Channels

Learn multiple convolution kernel (or filters) = multiple channels:
(1) typically: all channels use same window size
(2) channels form additional dimension for next layer (e.g. 2D signal \times channels $=3 \mathrm{D}$ tensor)
(3) number of channels: design parameter

Convolutional Layers: Animation

http://cs231n.github.io/assets/conv-demo/index.html

Convolutional Layers for Vision

Note that kernels (across channels) form a linear map:

$$
\begin{equation*}
h: \mathbb{R}^{r^{2} \times d} \rightarrow \mathbb{R}^{k} \tag{19}
\end{equation*}
$$

where $r \times r$ is the window size and d is the depth.

Figure 3: convolutional layers for vision

Convolutional Networks: ConvNets

Convolutional networks: multiple, stacked feature maps

$$
\begin{equation*}
\underbrace{y[r]}_{- \text {th channel }}[s, t]=\sum_{u} \sum_{\Delta s, \Delta t} \underbrace{w[r, u][\Delta s, \Delta t]}_{\text {parameters }} \underbrace{x[u]}_{u-\text { th channel }}[s+\Delta s, t+\Delta t] \tag{20}
\end{equation*}
$$

(1) x, y tensor, 3-rd order
(2) number of parameters:

$$
\begin{equation*}
\underbrace{\# r \cdot \# u}_{\text {fully connected }} \cdot \underbrace{\# \Delta s \cdot \# \Delta t}_{\text {window size }} \tag{21}
\end{equation*}
$$

(3) pointwise non-linearities (e.g. ReLU)
(9) interleaved with: pooling (e.g. max, average)
(6) optionally: downsampling (use of strides)

Convolutional Pyramid

Typical use of convolution in vision: sequence of convolutions that
(1) reduce spatial dimensions (sub-sampling)
(2) increase number of channels
\Rightarrow smaller, but more feature maps.

LeNet5

Figure 4: Architecture of LeNet-5, a convolutional neural network, here for digits recognition. Each plan is a feature map, i.e. a set of units whose weights are constrained to be identical.
(1) C1/S2: 6 channels, 5×5 kernels, 2×2 sub (4704 units)
(2) C3/S4: 16 channels, 6×6 kernels, 2×2 sub (1600 units)
(3) C5: 120 channels, F6: fully-connected
(9) output: Gaussian noise model (squared loss)

AlexNet

Figure 5: AlexNet architecture
(1) Pyramidal architecture: reduce spatial resolution, increase channels with depth
(2) Challenge: many channels (width) + large windows + depth
(3) Number of parameters
(1) 384 to 384 channels with 3×3 windows: $>1.3 \mathrm{M}$
(2) $13 \times 13 \times 384$ tensor to 4096 , fully connected: $>265 \mathrm{M}$

Deep ConvNets: Key Challenges

(1) avoid blow-up of model size (e.g. \# parameters)
(2) preserve computational efficiency of learning (e.g. gradients)
(3) allow for large depth (as it is known to be a plus)
(9) allow for sufficient width (as it is known to be a plus, too)

Very Deep Convolutional Networks: VGG

Figure 6: VGG 16
(1) use very small receptive fields (maximally 3×3)
(2) avoid downsampling/pooling
(3) stacking small receptive fields: more depth, fewer parameters
(9) example: $3 \cdot(3 \times 3)=27<49(7 \times 7)$

Inception Module: 1×1 Convolution

Many channels needed for high accuracy, typically $k \sim 200-1000$ (e.g. AlexNet: 2×192).
Observation (motivated by Arora et al, 2013): when convolving, dimension reduction across channels may be acceptable.
Dimension reduction: m channels of a $1 \times 1 \times k$ convolution $m \leq k$:

$$
\begin{equation*}
x_{i j}^{+}=\sigma\left(W x_{i j}\right), \quad W \in \mathbb{R}^{m \times k} \tag{22}
\end{equation*}
$$

(1) 1×1 convolution $=$ no convolution
(2) inception module (Szegedy et al.)
(3) network within a network (Lin et al.)
(1) i.e. W is shared for all (i, j) (translation invariance)

Inception Module: Mixing

Figure 7: Inception Module

Instead of fixed window size convolution: mix 1×1 with 3×3 and 5×5, max-polling. Use 1×1 convolutions for dimension reduction before convolving with large kernels.

Google Inception Network

Very deep network: many inception modules (green boxes: concatenation points). Additional trick: connect softmax layer (and loss) at intermediate stages (yellow boxes) \Rightarrow gradient shortcuts.

Google Inception Network

Figure 8: Google inception networks

Residual Networks: ResNets

Figure 9: Residual Networks module
(1) learn changes to the identity map (aka. shortcut connections)
(2) use small filters (VGG), use dimension reduction (inception)
(3) reach depth of $100+$ layers (+ increase accuracy + trainable)

Last But Not Least

Thank you all of you! -Yao

