
Convolutional Neural Networks

Yao Zhang

Mostly based on Thomas Hofmann’s lecture in ETH

https://zhims.github.io/datascience.html

Nov 12, 2019

Yao Zhang CNN Nov 12, 2019 1 / 36

https://zhims.github.io/datascience.html


Integral Operators

Definition 1 (Integral operator)

A transform T expressible with the kernel H and t1, t2 ∈ R
⋃
{−∞,∞}

such that for any function f (for with Tf exists)

(Tf ) (u) =

∫ t2

t1

H (u, t) f (t)dt (1)

is called an integral operator.

Example 1 (Fourier transform)

(F f ) (u) ,
∫ ∞
−∞

e−2πituf (t) dt (2)
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Convolution

Definition 2 (Convolution)

Given two functions f , h, their convolution is defined as

(f ∗ h) (u) ,
∫ ∞
−∞

h (u − t) f (t) dt =

∫ ∞
−∞

f (u − t) h (t) dt (3)

Remark 1

1 integral operator with kernel H (u, t) = h (u − t)

2 shift-invariant as H (u − s, t − s) = h (u − t) = H (u, t) (∀s)

3 convolution operator is commutative

4 existence depends on properties of f , h

5 typical use f = signal, h = fast decaying kernel function
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Linear Time-Invariant Transforms

Definition 3 (Linear transform)

T is linear, if for all functions f , g and the scalars α, β,

T (αf + βg) = αTf + βTg (4)

Definition 4 (Translation invariant transform)

T is translation (or shift) invariant, if for any f and scalar τ ,

fτ (t) , f (t + τ) , (Tfτ ) (t) , (Tf ) (t + τ) (5)

Theorem 1

Any linear, translation-invariant transformation T can be written as
convolution with a suitable h.
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Signal Processing with Neural Networks

1 Transforms in deep networks: linear + simple non-linearity

2 Many signals (audio, image, etc.) obey translation invariance ⇒
invariant feature maps: shift in input = shift in feature map

1 + 2 in above:

1 ⇒ learn convolutions, not (full connectivity) weight matrices

2 ⇒ convolutional layers for signal processing
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Discrete Convolutions

For all practical purposes: signal are sampled, i.e. discrete.

Definition 5 (Discrete convolution (1-D))

For f , h : Z→ R, we can define the discrete convolution via

(f ∗ h) [u] ,
∞∑

t=−∞
f [t] h [u − t] (6)

Remark 2

1 use of rectangular brackets to suggest ”arrays”

2 2D case:
content... (7)

3 typical: h with finite support (window size)
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Discrete Convolutions: Example

Example 2

Small Gaussian kernel with support [−2 : 2] ⊂ Z

h [t] =
1

16


6
4
1
0

t = 0
|t| = 1
|t| = 2

otherwise

(8)

Consequence: convolution sum can be truncated:

(f ∗ h) [u] =
u+2∑

t=u−2

f [t] h [u − t] =
2∑

t=−2

h [t] f [u − t]

=
6f [u] + 4f [u − 1] + 4f [u + 1] + f [u − 2] + f [u + 2]

16

(9)

Yao Zhang CNN Nov 12, 2019 7 / 36



Discrete Cross-Correlation

Definition 6 (Discrete cross-correlation)

Let f , h : Z→ R, then

(h ⊗ f ) [u] ,
∞∑

t=−∞
h [t] f [u + t] (10)
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Discrete Cross-Correlation

Remark 3

1 Def. 6 also called a ”sliding inner product”, u + t instead of u − t

2 note that cross-correlation and convolution are closely related:

(h ⊗ f ) [u] =
∞∑

t=−∞
h [t] f [u + t]

=
∞∑

t=−∞
h [−t] f [u − t]

=
(
h ∗ f

)
[u]

=
(
f ∗ h

)
[u]

(11)

where h [t] , h [−t].

Only difference: kernel flipped over, but not non-commutative.
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Convolution via Matrices

1 In practice: signal f and kernel h have finite support

2 Without loss of generality (w.l.o.g) f [t] = 0 for t /∈ [1 : n] , h [t] = 0 for t /∈ [1 : m]

3 We can think of f and h as vectors and define:
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Toeplitz Matrix

Definition 7 (Toeplitz matrix)

A matrix H ∈ Rk×n is a Toeplitz matrix, if there exists n + k − 1 numbers
cl (l ∈ [− (n − 1) : (k − 1)] ⊂ Z) such that

Hij = ci−j (13)

Remark 4

1 in plain English, all NW-SE diagonals are constant

2 if m� n: additional sparseness (band matrix of width m)

3 Hh
n has only m degrees of freedom

4 locality (sparseness m� n) and weight sharing (kernel)
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Sparse Connectivity

Figure 1: Sparse vs dense connectivity
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Convolutions in Higher Dimensions

Generalize concept of convolution to:

1 2D: e.g. images, spectograms

2 3D: e.g. color or multi-spectral images, voxel images, video

3 or even higher dimensions

Replace vector by:

1 matrices or fields (e.g. in discrete case)

(F ∗ G ) [i , j ] =
∞∑

k=−∞

∞∑
l=−∞

F [i − k , j − l ] · G [k , l ] (14)

2 tensors: for 3D and higher
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Convolutional Layers: Border Handling

Different options for border handling:
1 our definition: padding with zeros = same padding
2 only retain values from windows fully contained in support of signal

f = valid padding

Figure 2:
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Convolutional Layers: Layout

1 Convolved signal inherits topology of original signal

2 Hence: units in a convolutional layer are typically arranged on the
same grid (1D, 2D, 3D,...)
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Convolutional Layers: Backpropagation

Exploit structural sparseness in computing
∂x li
∂x l−1

j

:

1 receptive filed of x li : I li ,
{
j : W l

ij 6= 0
}

, where W l is the Toeplitz

matrix of the convolution

2 obviously
∂x li
∂x l−1

j

= 0 for j /∈ I li

Weight sharing in computing ∂R
∂hlj

, where hlj is a kernel weight

∂R
∂hlj

=
∑
i

∂R
∂x li

∂x li
∂hlj

(15)

Weight is re-used for every unit within target layer ⇒ additive combination
of derivatives in chain rule.
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Efficient Computations of Convolutional Activities

FFT (Fast Fourier Transform): compute convolutions fast(er).

1 Fourier transform of signal f → (F f ) and kernel h→ (Fh)

2 pointwise multiplication and inverse Fourier transform:

(f ∗ h) = F−1 ((F f ) · (Fh)) (16)

3 FFT: signal of length n, can be done in O (n logn)

4 pays off, if many channels (amortizes computation of F f )

5 small kernels (m < log n): favor time / space domain
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Convolutional Layers: Stages

1 Non-linearites: detector stage. As always: scalar non-linearities
(activation function)

2 Pooling stage: locally combine activities
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Pooling

Most frequently used pooling function:max pooling.

Definition 8 (Max Pooling)

Define window size r (e.g. 3 or 3× 3), then

1D : xmax
i = max {xi+k : 0 6 k < r} ,

2D : xmax
ij = max {xi+k,j+l : 0 6 k , l < r}

(17)

Remark 5

1 maximum over a small patch of units

2 other functions are possible: average, soft-maximization

Yao Zhang CNN Nov 12, 2019 19 / 36



Max-pooling

Max-pooling: invariance

1 set of invertible transformations T : group w.r.t composition

2 T −invariance through maximization fT (x) , max
τ∈T

f (τx)

Proposition 1

fT is invariant under τ ∈ T .

Proof.

fT (τx) = max
ρ∈T

f (ρ (τx)) = max
ρ∈T

(f (ρ ◦ τ) x) = max
σ∈T

f (σx) (18)

as ∀σ, σ = ρ ◦ τ with ρ = σ ◦ τ−1.
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Sub-Sampling(also known as (aka) Strides)

1 often, it is desirable to reduce the size of feature maps

2 sub-sampling: reduce temporal/spatial resolution. Often: combined
with (max-)pooling (aka. stride)

3 example: max-pool, filter 2× 2, stride 2× 2

4 disadvantage: loss of information
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Channels

Learn multiple convolution kernel (or filters) = multiple channels:

1 typically: all channels use same window size

2 channels form additional dimension for next layer (e.g. 2D signal ×
channels = 3D tensor)

3 number of channels: design parameter
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Convolutional Layers: Animation

http://cs231n.github.io/assets/conv-demo/index.html
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Convolutional Layers for Vision

Note that kernels (across channels) form a linear map:

h : Rr2×d → Rk (19)

where r × r is the window size and d is the depth.

Figure 3: convolutional layers for vision
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Convolutional Networks: ConvNets

Convolutional networks: multiple, stacked feature maps

y [r ]︸︷︷︸
r−th channel

[s, t] =
∑
u

∑
∆s,∆t

w [r , u] [∆s,∆t]︸ ︷︷ ︸
parameters

x [u]︸︷︷︸
u−th channel

[s + ∆s, t + ∆t]

(20)

1 x , y tensor, 3-rd order

2 number of parameters:

#r ·#u︸ ︷︷ ︸
fully connected

· #∆s ·#∆t︸ ︷︷ ︸
window size

(21)

3 pointwise non-linearities (e.g. ReLU)

4 interleaved with: pooling (e.g. max, average)

5 optionally: downsampling (use of strides)
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Convolutional Pyramid

Typical use of convolution in vision: sequence of convolutions that

1 reduce spatial dimensions (sub-sampling)

2 increase number of channels

⇒ smaller, but more feature maps.
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LeNet5

Figure 4: Architecture of LeNet-5, a convolutional neural network, here for digits
recognition. Each plan is a feature map, i.e. a set of units whose weights are
constrained to be identical.

1 C1/S2: 6 channels, 5× 5 kernels, 2× 2 sub (4704 units)

2 C3/S4: 16 channels,6× 6 kernels, 2× 2 sub (1600 units)

3 C5: 120 channels, F6: fully-connected

4 output: Gaussian noise model (squared loss)
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AlexNet

Figure 5: AlexNet architecture

1 Pyramidal architecture: reduce spatial resolution, increase channels
with depth

2 Challenge: many channels (width) + large windows + depth
3 Number of parameters

1 384 to 384 channels with 3× 3 windows: > 1.3 M
2 13× 13× 384 tensor to 4096, fully connected: > 265 M
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Deep ConvNets: Key Challenges

1 avoid blow-up of model size (e.g. # parameters)

2 preserve computational efficiency of learning (e.g. gradients)

3 allow for large depth (as it is known to be a plus)

4 allow for sufficient width (as it is known to be a plus, too)
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Very Deep Convolutional Networks: VGG

Figure 6: VGG 16

1 use very small receptive fields (maximally 3× 3)

2 avoid downsampling/pooling

3 stacking small receptive fields: more depth, fewer parameters

4 example: 3 · (3× 3) = 27 < 49(7× 7)
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Inception Module: 1× 1 Convolution

Many channels needed for high accuracy, typically k ∼ 200− 1000 (e.g.
AlexNet: 2× 192).
Observation (motivated by Arora et al, 2013): when convolving, dimension
reduction across channels may be acceptable.
Dimension reduction: m channels of a 1× 1× k convolution m ≤ k :

x+
ij = σ (Wxij) , W ∈ Rm×k (22)

1 1× 1 convolution = no convolution

2 inception module (Szegedy et al.)

3 network within a network (Lin et al.)

4 i.e. W is shared for all (i , j) (translation invariance)
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Inception Module: Mixing

(a) naive version (b)

Figure 7: Inception Module

Instead of fixed window size convolution: mix 1× 1 with 3× 3 and 5× 5,
max-polling. Use 1× 1 convolutions for dimension reduction before
convolving with large kernels.
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Google Inception Network

Very deep network: many inception modules (green boxes: concatenation
points). Additional trick: connect softmax layer (and loss) at intermediate
stages (yellow boxes) ⇒ gradient shortcuts.
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Google Inception Network

Figure 8: Google inception networks
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Residual Networks: ResNets

(a) (b)

Figure 9: Residual Networks module

1 learn changes to the identity map (aka. shortcut connections)

2 use small filters (VGG), use dimension reduction (inception)

3 reach depth of 100 + layers (+ increase accuracy + trainable)
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Last But Not Least

Thank you all of you! –Yao
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