## Convolutional Neural Networks

#### Yao Zhang

#### Mostly based on Thomas Hofmann's lecture in ETH

https://zhims.github.io/datascience.html

Nov 12, 2019

## Definition 1 (Integral operator)

A transform T expressible with the kernel H and  $t_1, t_2 \in \mathbb{R} \bigcup \{-\infty, \infty\}$  such that for any function f (for with Tf exists)

$$(Tf)(u) = \int_{t_1}^{t_2} H(u, t) f(t) dt$$
 (1)

is called an integral operator.

Example 1 (Fourier transform)

$$(\mathcal{F}f)(u) \triangleq \int_{-\infty}^{\infty} e^{-2\pi i t u} f(t) dt$$
 (2)

Nov 12, 2019

2 / 36

## Definition 2 (Convolution)

Given two functions f, h, their convolution is defined as

$$(f * h)(u) \triangleq \int_{-\infty}^{\infty} h(u - t) f(t) dt = \int_{-\infty}^{\infty} f(u - t) h(t) dt \qquad (3)$$

#### Remark 1

- integral operator with kernel H(u, t) = h(u t)
- Solution invariant as H(u s, t s) = h(u t) = H(u, t) ( $\forall s$ )
- Sonvolution operator is commutative
- existence depends on properties of f, h
- typical use f = signal, h = fast decaying kernel function

## Definition 3 (Linear transform)

T is linear, if for all functions f, g and the scalars  $\alpha, \beta$ ,

$$T\left(\alpha f + \beta g\right) = \alpha Tf + \beta Tg$$

## Definition 4 (Translation invariant transform)

T is translation (or shift) invariant, if for any f and scalar  $\tau$ ,

$$f_{\tau}(t) \triangleq f(t+\tau), \quad (Tf_{\tau})(t) \triangleq (Tf)(t+\tau)$$
(5)

#### Theorem 1

Any linear, translation-invariant transformation T can be written as convolution with a suitable h.

- **1** Transforms in deep networks: linear + simple non-linearity
- ② Many signals (audio, image, etc.) obey translation invariance ⇒ invariant feature maps: shift in input = shift in feature map
- 1 + 2 in above:
  - $\mathbf{0} \Rightarrow$  learn convolutions, not (full connectivity) weight matrices
  - $\bigcirc$   $\Rightarrow$  convolutional layers for signal processing

## **Discrete Convolutions**

For all practical purposes: signal are sampled, i.e. discrete.

## Definition 5 (Discrete convolution (1-D))

For  $f, h : \mathbb{Z} \to \mathbb{R}$ , we can define the discrete convolution via

$$(f * h)[u] \triangleq \sum_{t=-\infty}^{\infty} f[t] h[u-t]$$
(6)

#### Remark 2

use of rectangular brackets to suggest "arrays"
2D case:

content...

• typical: h with finite support (window size)

Yao Zhang

(7)

## Example 2

Small Gaussian kernel with support  $[-2:2] \subset \mathbb{Z}$ 

$$h[t] = \frac{1}{16} \begin{cases} 6 & t = 0 \\ 4 & |t| = 1 \\ 1 & |t| = 2 \\ 0 & otherwise \end{cases}$$

Consequence: convolution sum can be truncated:

$$(f * h)[u] = \sum_{t=u-2}^{u+2} f[t] h[u-t] = \sum_{t=-2}^{2} h[t] f[u-t]$$

$$= \frac{6f[u] + 4f[u-1] + 4f[u+1] + f[u-2] + f[u+2]}{16}$$
(9)

э

(8)

## Definition 6 (Discrete cross-correlation)

Let  $f, h : \mathbb{Z} \to \mathbb{R}$ , then

$$(h \otimes f)[u] \triangleq \sum_{t=-\infty}^{\infty} h[t] f[u+t]$$
(10)

< ∃ >

3

#### Remark 3

- **1** Def. 6 also called a "sliding inner product", u + t instead of u t
- **2** note that cross-correlation and convolution are closely related:

$$(h \otimes f)[u] = \sum_{t=-\infty}^{\infty} h[t] f[u+t]$$
  
= 
$$\sum_{t=-\infty}^{\infty} h[-t] f[u-t]$$
(11)  
= 
$$(\overline{h} * f)[u]$$
  
= 
$$(f * \overline{h})[u]$$

Image: Image:

where  $\overline{h}[t] \triangleq h[-t]$ .

Only difference: kernel flipped over, but not non-commutative.

Yao Zhang

Nov 12, 2019 9 / 36

## Convolution via Matrices

In practice: signal f and kernel h have finite support

Without loss of generality (w.l.o.g) f[t] = 0 for  $t \notin [1:n]$ , h[t] = 0 for  $t \notin [1:m]$ 

We can think of f and h as vectors and define:



 $\triangleq H_n^h \in \mathbb{R}^{(m+n-1) \times n}$ 

(12)

э

## Definition 7 (Toeplitz matrix)

A matrix  $H \in \mathbb{R}^{k \times n}$  is a Toeplitz matrix, if there exists n + k - 1 numbers  $c_l$   $(l \in [-(n-1):(k-1)] \subset \mathbb{Z})$  such that

$$H_{ij} = c_{i-j} \tag{13}$$

#### Remark 4

- In plain English, all NW-SE diagonals are constant
- 2) if  $m \ll n$ : additional sparseness (band matrix of width m)
- **(3)**  $H_n^h$  has only m degrees of freedom
- locality (sparseness  $m \ll n$ ) and weight sharing (kernel)

# Sparse Connectivity



Figure 1: Sparse vs dense connectivity

Image: A matrix of the second seco

3

Generalize concept of convolution to:

- 2D: e.g. images, spectograms
- 2 3D: e.g. color or multi-spectral images, voxel images, video
- or even higher dimensions

Replace vector by:

matrices or fields (e.g. in discrete case)

$$(F * G)[i,j] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} F[i-k,j-l] \cdot G[k,l]$$
(14)

e tensors: for 3D and higher

## Convolutional Layers: Border Handling

Different options for border handling:

- our definition: padding with zeros = same padding
- ${\ensuremath{ \bullet } }$  only retain values from windows fully contained in support of signal
  - f = valid padding



#### Figure 2:

| Vaa | 7 | h   |    |
|-----|---|-----|----|
| Yao | ~ | nan | g. |

- Convolved signal inherits topology of original signal
- Hence: units in a convolutional layer are typically arranged on the same grid (1D, 2D, 3D,...)

Exploit structural sparseness in computing  $\frac{\partial x_i^l}{\partial x_i^{l-1}}$ :

- receptive filed of  $x_i^l : \mathcal{I}_i^l \triangleq \left\{ j : W_{ij}^l \neq 0 \right\}$ , where  $W^l$  is the Toeplitz matrix of the convolution
- $\textbf{@ obviously } \frac{\partial x_i^l}{\partial x_j^{l-1}} = 0 \text{ for } j \notin \mathcal{I}_i^l$

Weight sharing in computing  $\frac{\partial \mathcal{R}}{\partial h_i^l}$ , where  $h_j^l$  is a kernel weight

$$\frac{\partial \mathcal{R}}{\partial h_j^l} = \sum_i \frac{\partial \mathcal{R}}{\partial x_i^l} \frac{\partial x_i^l}{\partial h_j^l}$$
(15)

Weight is re-used for every unit within target layer  $\Rightarrow$  additive combination of derivatives in chain rule.

FFT (Fast Fourier Transform): compute convolutions fast(er).

- **(**) Fourier transform of signal  $f \to (\mathcal{F}f)$  and kernel  $h \to (\mathcal{F}h)$
- Ø pointwise multiplication and inverse Fourier transform:

$$(f * h) = \mathcal{F}^{-1}\left((\mathcal{F}f) \cdot (\mathcal{F}h)\right) \tag{16}$$

FFT: signal of length n, can be done in O(n logn)
pays off, if many channels (amortizes computation of Ff)
small kernels (m < log n): favor time / space domain</li>

- Non-linearites: detector stage. As always: scalar non-linearities (activation function)
- Pooling stage: locally combine activities

## Most frequently used pooling function:max pooling.

## Definition 8 (Max Pooling)

Define window size r (e.g. 3 or  $3 \times 3$ ), then

$$1D: \quad x_{i}^{\max} = \max \left\{ x_{i+k} : 0 \leq k < r \right\}, \\ 2D: \quad x_{ij}^{\max} = \max \left\{ x_{i+k,j+l} : 0 \leq k, l < r \right\}$$
(17)

#### Remark 5

- maximum over a small patch of units
- *other functions are possible: average, soft-maximization*

#### Max-pooling: invariance

- $\textbf{0} \text{ set of invertible transformations } \mathcal{T}: \text{group w.r.t composition}$
- **2**  $\mathcal{T}$ -invariance through maximization  $f_{\mathcal{T}}(x) \triangleq \max_{\tau \in \mathcal{T}} f(\tau x)$

## Proposition 1

 $f_{\mathcal{T}}$  is invariant under  $\tau \in \mathcal{T}$ .

#### Proof.

as

$$f_{\mathcal{T}}(\tau x) = \max_{\rho \in \mathcal{T}} f(\rho(\tau x)) = \max_{\rho \in \mathcal{T}} (f(\rho \circ \tau) x) = \max_{\sigma \in \mathcal{T}} f(\sigma x)$$
(18)  
$$\forall \sigma, \sigma = \rho \circ \tau \text{ with } \rho = \sigma \circ \tau^{-1}.$$

- often, it is desirable to reduce the size of feature maps
- sub-sampling: reduce temporal/spatial resolution. Often: combined with (max-)pooling (aka. stride)
- S example: max-pool, filter  $2 \times 2$ , stride  $2 \times 2$
- disadvantage: loss of information

Learn multiple convolution kernel (or filters) = multiple channels:

- typically: all channels use same window size
- ② channels form additional dimension for next layer (e.g. 2D signal  $\times$  channels = 3D tensor)
- Inumber of channels: design parameter

#### http://cs231n.github.io/assets/conv-demo/index.html

## Convolutional Layers for Vision

Note that kernels (across channels) form a linear map:

$$h: \mathbb{R}^{r^2 \times d} \to \mathbb{R}^k \tag{19}$$

where  $r \times r$  is the window size and d is the depth.



Figure 3: convolutional layers for vision

| Yao |  |  |
|-----|--|--|
|     |  |  |

## Convolutional Networks: ConvNets

Convolutional networks: multiple, stacked feature maps



- x, y tensor, 3-rd order
- Inumber of parameters:



- opintwise non-linearities (e.g. ReLU)
- interleaved with: pooling (e.g. max, average)
- optionally: downsampling (use of strides)

(21)

Typical use of convolution in vision: sequence of convolutions that

- reduce spatial dimensions (sub-sampling)
- increase number of channels
- $\Rightarrow$  smaller, but more feature maps.



Figure 4: Architecture of LeNet-5, a convolutional neural network, here for digits recognition. Each plan is a feature map, i.e. a set of units whose weights are constrained to be identical.

- **(** C1/S2: 6 channels, 5  $\times$  5 kernels, 2  $\times$  2 sub (4704 units)
- **2** C3/S4: 16 channels,  $6 \times 6$  kernels,  $2 \times 2$  sub (1600 units)
- Sc5: 120 channels, F6: fully-connected
- output: Gaussian noise model (squared loss)



Figure 5: AlexNet architecture

- Pyramidal architecture: reduce spatial resolution, increase channels with depth
- Ochallenge: many channels (width) + large windows + depth
- Oumber of parameters
  - **①** 384 to 384 channels with  $3 \times 3$  windows: > 1.3 M
  - 2  $13 \times 13 \times 384$  tensor to 4096, fully connected: > 265 M

- avoid blow-up of model size (e.g. # parameters)
- Ø preserve computational efficiency of learning (e.g. gradients)
- allow for large depth (as it is known to be a plus)
- allow for sufficient width (as it is known to be a plus, too)

# Very Deep Convolutional Networks: VGG



Figure 6: VGG 16

- **(**) use very small receptive fields (maximally  $3 \times 3$ )
- avoid downsampling/pooling
- Stacking small receptive fields: more depth, fewer parameters
- example:  $3 \cdot (3 \times 3) = 27 < 49(7 \times 7)$

∃ ► < ∃ ►</p>

Many channels needed for high accuracy, typically  $k \sim 200 - 1000$  (e.g. AlexNet:  $2 \times 192$ ).

Observation (motivated by Arora et al, 2013): when convolving, dimension reduction across channels may be acceptable.

Dimension reduction: *m* channels of a  $1 \times 1 \times k$  convolution  $m \leq k$ :

$$x_{ij}^{+} = \sigma \left( W x_{ij} \right), \quad W \in \mathbb{R}^{m \times k}$$
(22)

- $1 \times 1$  convolution = no convolution
- inception module (Szegedy et al.)
- Inetwork within a network (Lin et al.)
- **(**) i.e. W is shared for all (i, j) (translation invariance)

## Inception Module: Mixing



Figure 7: Inception Module

Instead of fixed window size convolution: mix  $1\times 1$  with  $3\times 3$  and  $5\times 5$ , max-polling. Use  $1\times 1$  convolutions for dimension reduction before convolving with large kernels.

| Yao Z | hang |
|-------|------|
|-------|------|

3

(日) (周) (三) (三)

Very deep network: many inception modules (green boxes: concatenation points). Additional trick: connect softmax layer (and loss) at intermediate stages (yellow boxes)  $\Rightarrow$  gradient shortcuts.

## Google Inception Network



#### Figure 8: Google inception networks

|           | < □ | 《문》 《문》      | 1  | $) \land ( \bigcirc )$ |
|-----------|-----|--------------|----|------------------------|
| Yao Zhang | CNN | Nov 12, 2019 | 34 | / 36                   |

## Residual Networks: ResNets



Figure 9: Residual Networks module

- Iearn changes to the identity map (aka. shortcut connections)
- use small filters (VGG), use dimension reduction (inception)
- $\bigcirc$  reach depth of 100 + layers (+ increase accuracy + trainable)

# Thank you all of you! -Yao