
Loss Functions and Backpropagation

Yao Zhang

The guy is a populace

Mostly based on Thomas Hofmann’s lecture in ETH

https://zhims.github.io/

Dec 1, 2019

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 1 / 31

https://zhims.github.io/

Reminder: Notation

Neural networks implements map F : Rn → Rm

Compositional structure layers:

F = F L ◦ F L−1 ◦ · · ·F 1 (1)

Linear + activation function

F l = σl ◦
−→
F l ,

−→
F l (x) = W lx + bl , l = 1, ..., L (2)

F minus output layer non-linearity

F = F
L ◦ F L−1 ◦ · · · ◦ F 1 (3)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 2 / 31

Loss Function

For learning, we need to assess the goodness-of-fit of network.

Definition 1 (Loss function)

A loss (or cost) function is non-negative function

` : Y × Y → R≥0, (y , ν) 7→ ` (y , ν) (4)

such that ` (y , y) = 0 (∀y ∈ Y) and ` (y , ν) > 0 (∀ν 6= y).

1 here: Y: output space

2 general convention: y is the truth and ν predicted

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 3 / 31

Loss Function: Examples

Example 1 (Squared-error)

Y = Rm, `(y , ν) =
1

2
‖y − ν‖22 =

1

2

m∑
i=1

(yi − νi)
2 (5)

Example 2 (Classification error)

Y = [1 : m], `(y , ν) = 1− δyν (6)

with Kronecker delta:

δab =

{
1,
0,

if a = b
otherwise

(7)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 4 / 31

Expected Risk

Definition 2 (Expected Risk)

Assume inputs and outputs are governed by a distribution p(x , y) over
X × Y, X ⊆ Rn, Y ⊆ Rm. The expected risk of F is given by

R?(F) = Ex ,y [`(y ,F (x))] (8)

1 as p is generally unknown, we cannot evaluate R? directly, but it
serves as a point of reference in learning theory

2 R? is a functional (mapping functions to scalars)

3 parameterized functions {Fθ : θ ∈ Θ} ⇒ R? (θ) , R? (Fθ)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 5 / 31

Empirical Risk

Definition 3 (Empirical Risk)

Assume we have a random sample of N input-output pairs,

SN ,
{

(xi , yi)
i .i .d .∼ p : 1, ...,N

}
. (9)

The empirical risk of F is defined as

R(F ,SN) =
1

N

N∑
i=1

` (yi ,F (xi)) (10)

1 a.k.a. training risk = expected risk under the empirical distribution
induced by the sample SN .

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 6 / 31

Empirical Risk Minimization

For a family F = {Fθ : θ ∈ Θ} (e.f. neural network) and training data
SN : find function with lowest empirical risk.

Definition 4 (Empirical risk minimization)

The empirical risk minimizer is defined as

F̂ (SN) ∈ arg min
F∈F

R (F ,SN) (11)

with the corresponding parameters θ̂ (SN).

1 one may also add a regularizer Ω(F) or Ω(θ) to the risk (more on
that later)

2 finding F̂ ∈ F amounts to solving on optimization problem

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 7 / 31

Probability Distributions as Outputs

It is often constructive to think of functions F as mappings from inputs to
distribution P(Y) over outputs y ∈ Y.

F : Rn → Rm, x 7→ ν, ν
fixed7→ p(y , ν) ∈ P(Y), y ∼ p(·, ν) (12)

Each F effectively defines a conditional probability distribution (or
conditional probability density function) via

p (y |x , F) = p (y , ν = F (x)) (13)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 8 / 31

Example: Multivariate Normal Distribution

Example 3 (mean of a normal distribution)

p (y |x , F) =

[
1√
2πγ

]m

e

[
− 1

2γ2
‖y−F (x)‖2

]
(14)

so that

− log p (y |x , F) = mC (γ) +
1

2γ2
‖y − F (x)‖2 (15)

which is equivalent to the squared error loss.

1 F (x) = ν and y live in same space (Rm)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 9 / 31

Generalized Linear Models

Definition 5 (Generalized linear model (simplified))

A generalized linear model over y ∈ Y ⊆ R takes the form

E [y |x] = σ
(
wT x

)
. (16)

where σ is invertible and σ−1 is called the link function.

1 can be extended to also predict variances or dispersions

2 can be extended to multidimensional outputs

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 10 / 31

Example: Logistic Regression

Example 4 (Logistic regression)

Y = {0, 1},P = [0, 1], σ = 1
1+e−x , then:

E [y |x] = p (1|x) = σ
(
wT x

)
=

1

1 + e−wT x
(17)

Link function: logit

σ−1 (t) = log

(
t

1− t

)
, t ∈ (0, 1) (18)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 11 / 31

Example: Multinomial Logistic Regression

Example 5

Y = [1 : m],P(Y)can be represented via soft-max

p (y |x) =
ezy

m∑
i=1

ezi

, z , wT
i x , i = 1, ...,m (19)

1 over-parametrized model: set w1 = 0, s.t. z1 = 0 (w.l.o.g)

2 generalizes (binary) logistic regression

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 12 / 31

Generalized Linear Units

In neural networks:

non-linear functions replace linear functions

output layer units implement inverse link function

Example 6 (Normal model)

Linear output layer

E [y |x] = F (x) = W L
(
F L−1 ◦ · · · ◦ F 1

)
(x) + bL (20)

Example 7 (Logistic model)

Sigmoid output layer
E [y |x] = σ

(
F (x)

)
(21)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 13 / 31

Log-Likelihood

Use conditional probability distribution to define generalized loss between
target value y ∈ Y and a distribution over Y.

Definition 6 (Negative log-loss)

Canonical way of defining a generalized loss functions: negative of a
log-likelihood function

` (y , θ, x) = − log p (y |x , θ) (22)

1 non-linearity of output layer is ”absorbed” in loss function

2 i.e. ` depends on F

3 provides a ”template” for generalized loss/risk functions

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 14 / 31

Cross-Entropy Loss

Let us look at the (implied) risk function for the logistic function

Definition 7 (Cross-entropy Loss)

Use shorthand z , F (x) ∈ R then the cross entropy loss over a binary response
variable y ∈ {0, 1} is defined as

− log p (y |z) = − log σ ((2y − 1) z)

= ζ ((1− 2y) z)
(23)

where ζ = log(1 + e(·)) is the soft-plus function.

Figure 1: rectifier and softplus functions

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 15 / 31

Multinomial Log-Likelihood

Definition 8 (Multinomial cross-entropy loss)

Assume multinomial response variable y ∈ [1 : m]. Use shorthand:

z , F (x) ∈ Rm (24)

then with the soft-max activation function

`
(
y ,F (x)

)
= − log p

(
y |F (x)

)
= − log

 ezy

m∑
i=1

ezi

= −zy + log

m∑
i=1

ezi

︸ ︷︷ ︸
log−partition

= log

1 +
∑
i 6=y

e(zi−zy)

 (25)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 16 / 31

Gradient Descent

Learning in neural networks = gradient-based optimization (with very few
exceptions).

Definition 9 (Gradient)

Gradient of objective with regard to parameters θ

∇θ =

(
∂R
∂θ1

, ...,
∂R
∂θd

)T

(26)

Definition 10 (Steepest descent and stochastic gradient decent)

Steepest descent and stochastic gradient decent

θ (t + 1)← θ (t)− η∇θR (S) (27)
1 here t = 0, 1, 2, ... is an iteration index

2 S =all training data ⇒ steepest descent

3 S = mini batch of data ⇒ SGD

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 17 / 31

Gradient Computation via Backpropagation

Computational challenge: how to compute ∇θR?
Exploit compositional structure of network = backpropagation
Basic steps:

1 perform a forward pass (for given training input x) to compute
activations for all units

2 compute gradient of R w.r.t. output layer activations (for given
target y)

3 iteratively propagate activation gradient information from outputs to
inputs

4 compute local gradients of activations w.r.t weights

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 18 / 31

Backpropagation in Plain English

1 How do changes in the output layer activities change the objective?

depends on choice of objective

2 How does the activity of a parent unit influence the activity of each of
its child units (in DAG)?

layer structure ⇒ concurrently between subsequent layers

3 Propagate influence information through reverse DAG

details are implied by chain rule of differentiation

4 What is the effect of a change of an incoming weight on the activity
of a unit?

can only change activities (given x) by modifying weights

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 19 / 31

Chain Rule

Compositional of functions ⇒ use of chain rule

Proposition 1 (Chain Rule)

(f ◦ g)′ =
(
f ′ ◦ g

)
· g ′ (28)

or equivalently with formal variables

d (f ◦ g)

dx
|x=x0 =

df

dz
|z=g(x0) ·

dg

dx
|x=x0 (29)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 20 / 31

Jacobi Matrix

Vector-valued function (map) F : Rn → Rm: each component function
has gradient ∇Fi ∈ Rn, i ∈ [1 : m]

Definition 11 (Jacobi matrix)

JF ,

∇TF1
∇TF2

...
∇TFm

 =

∂F1
∂x1

∂F1
∂x2

· · · ∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

· · · ∂F2
∂xn

...
...

. . .
...

∂Fm
∂x1

∂Fm
∂x2

· · · ∂Fm
∂xn

 ∈ Rm×n (30)

derivative of outputs with regard to inputs, i.e. (JF)ij = ∂Fi
∂xj
.

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 21 / 31

Jacobin Matrix Chain Rule

Vector-valued functions G : Rn → Rq, H : Rq → Rm,F , H ◦ G .
Componentwise rule

∂Fi

∂xj
|x=x0 =

∂(H ◦ G)i

∂xj
|x=x0 =

q∑
k=1

∂Hi

∂zk
|z=G(x0) ·

∂Gk

∂xj
|x=x0 (31)

Lemma 1 (Jacobi matrix chain rule)

JH◦G |x=x0 = JH |z=G(x0) · JG |x=x0 (32)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 22 / 31

Function Composition

Special case: composition of a map with a function

G : Rn → Rm, h : Rm → R, h ◦ G : Rn → R (33)

x ∈ Rn, use more intuitive variable notation

x
G7→ y

h7→ z ∈ R (34)

Then

∇T
x z = ∇T

y z · JG ,
∂z

∂xi
=
∑

j

∂yj

∂xi

∂z

∂yj
(35)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 23 / 31

Warning: Notation!

We have a lot of indices!

index of a layer: put as a superscript

index of a dimension of a vector: put as a subscript

shorthand for layer activations

x l ,
(
F l ◦ · · · ◦ F 1

)
(x) ∈ Rml

x l
i ∈ R : activation of i − th unit in layer l

(36)

index of a data point, omitted where possible, rectangular brackets
(x [i] , y [i])

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 24 / 31

Deep Function Compositions

Composition of multiple maps with a final cost function

F = F L ◦ · · · ◦ F 1 : Rn → Rm

x = x0
F 1

7→ x1
F 2

7→ x2 7→ · · · F L

7→ xL = ν 7→ ` (y , ν)
(37)

Proposition 2 (Activity Backpropagation)

eL , ∇T
ν R, e l , ∇T

x lR = eL · JF L · · · JF l+1 = e l+1 · JF l+1 (38)

Compute activity gradients is backward order via successive multiplication
with Jacobians. Backpropagation of error terms e l .
Linear nrtwork in reversed direction with ”activities” e l .

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 25 / 31

Jacobian Matrix: Ridge Functions

How does a Jacobian matrix for a ridge function look like?

x l = F l
(
x l−1

)
= σ

(
W lx l−1 + bl

)
(39)

Hence (assuming differentiability of σ):

∂x l
i

∂x l−1
j

= σ′
(〈

w l
i , x

l−1
〉

+ bl
i

)
w l

ij , w̃ l
ij (40)

and thus simply
JF l = W̃ l (41)

1 for ReLU w̃ l
ij ∈

{
0,w l

ij

}
⇒ W̃ l = sparsified matrix

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 26 / 31

Loss Function (Negative) Gradients

Quadratic loss

−∇ν` (y , ν) = −∇ν
1

2
‖y − ν‖2 = y − ν (42)

Multivariate logistic loss

−∂` (y , ν)

∂zy
=

∂

∂zy

[
zy∗ − log

∑
i

ezi

]

= δyy∗ − ezy∑
i
ezi

= δyy∗ − p (y |x)

(43)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 27 / 31

From Activations to Weights

How can we get from gradients w.r.t. activations to gradients w.r.t.
weights? Easily!
Need to apply chain rule one more time- locally:

∂`

∂w l
ij

=
∂`

∂x l
i

·
∂x l

i

∂w l
ij

=
∂`

∂x l
i︸︷︷︸

backprop

·σ′
(〈

w l
i , x

l−1
〉

+ bl
i

)
︸ ︷︷ ︸

sensitivity of i−th unit

· x l−1
j︸︷︷︸

j−th unit activity

∂`

∂bl
i

=
∂`

∂x l
i

·
∂x l

i

∂bl
i

=
∂`

∂x l
i

· σ′
(〈

w l
i , x

l−1
〉

+ bl
i

)
· 1

(44)

each weight/bias influences exactly one unit

can ”reshape” gradient into matrix/tensor form

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 28 / 31

Specialized Programming Languages: Theano

Symbolic representation of mathematical expressions.

Access to full computation graph (stability, optimization).

Symbolic differentiation.

[Bergstra 2015]

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 29 / 31

reference

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J.
Turian, D. Warde-Farley and Y. Bengio (2010)

Theano: A CPU and GPU Math Compiler in Python

9th Annual Python In Science Conference (SciPy 2010)

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 30 / 31

Last But Not Least

Thank you all of you! –Yao

Yao Zhang Loss Functions & Backpropagation Dec 1, 2019 31 / 31

