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Question

How can we characterize the elementary functions implemented by
comptational unit in neural networks?
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Level Sets

Definition 1 (Level set)

The level set of a function f : D ⊆ Rn → R is one-parametric family of
sets defined as

Lf (c) = {x : f (x) = c} ⊆ D, c ∈ R (1)

Level sets generalize the concept of an inverse function.

Proposition 1

The Level sets of a function f over D ⊆ Rn form a partition of D.
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Affine Functions and Subspace

Definition 2 (Affine Function)

A function f : Rn → Rm is affine, if it can be written as

f (x) = Ax + b, for some A ∈ Rm×n, b ∈ Rm. (2)

Proposition 2

f being affine is equivalent to the condition

f (αx + βy) = αf (x) + βf (y) , ∀α, β : α + β = 1 (3)

Definition 3 (Affine Subspace)

U is an affine subspace of Rn, if U = v + V , where v ∈ Rn and V is a
linear subspace.
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Proof of Proposition 2

Proof.
1 ⇒

f (αx + βy) = A (αx + βy) + b = αAx + βAy + b

= (αAx + αb) + (βAy + βb) = αf (x) + βf (y)
(4)

2 ⇐ Show that L (x) , f (x)− f (0) is linear.

L (αx) = f (αx + (1− α) 0)− f (0)

= αf (x)− αf (0) = αL (x)
(5)

L (x + y) = 2L

(
1

2
x +

1

2
y

)
= 2

(
1

2
f (x) +

1

2
f (y)− f (0)

)
= f (x)− f (0) + f (y)− f (0) = L (x) + L (y)

(6)
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Ridge functions

Definition 4 (Ridge function)

f : Rn → R is a ridge function, if it can be written as

f = σ ◦ f , where f : Rn → R is affine (7)

and σ : R→ R an arbitrary scalar function.

Ridge Function = Affine Function + Scalar Non-Linearity.

Explicit form of a ridge function

f (x) = σ
(

w T x + b
)
, for some w ∈ Rn, f (x) , b ∈ R (8)
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Level Sets of Affine Functions

Proposition 3

The level sets of an affine function f (x) = wT x + b are affine subspaces αw + V , α ∈ R, V =
{

x : wT x = 0
}

Proof.
Let us write x = αw + x0, where x0⊥w.

x ∈ Lf (c)⇔ wT x + b = c ⇔ α‖w‖2 = c − b

⇔ α =
c − b

‖w‖2

(9)

which means that α is constant for all x ∈ Lf (c).

Corollary 1

Lf (c) =
(c − b) w

wT w
+
{

x : wT x = 0
}

(10)
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Level Sets of Ridge Functions

Proposition 4

The level sets of ridge functions f = σ ◦ f are unions of affine subspaces,
specifically

Lf (c) =
⋃

d : σ(d)=c

Lf (d) (11)

Corollary 2

If σ is one-to-one with inverse σ−1 then

Lf (c) = Lf

(
σ−1 (c)

)
(12)

and the level sets of f and f are in one-to-one correspondence.
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Ridge Functions

Pancake Metaphor

each pancake slice = same function value = level sets, also ridge functions
are rich.

Proposition 5

Let f : Rn → R be a ridge function, differentiable at x . Then either
∇f (x) = 0 or ∇f (x)⊥Lf (f (x)).

Proof.

∇f (x) = ∇
(
σ ◦ f

)
(x) = σ′

(
f (x)

)
∇f (x) ∝ w⊥Lf (c)
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Question

Is the class of ridge function rich enough to approximate a sufficiently
large class of function, e.g. C (Rn)?
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Dense Approximations

Definition 5 (Dense Approximation)

A function class H ∈ C (Rn) is a dense approximation of C (Rn) or is dense
in C (Rn) , if and only if ∀f ∈ C (Rn),∀ε > 0,∀K compact,K ∈ Rn :

∃h ∈ H s.t. max
x∈K
|f (x)− h (x)| = ‖f − h‖∞,K < ε

Remark 1

1 uniform approximation on compact (i.e. use of ∞-norm)

2 sup → max (Bolzano-Weierstrass)

3 informally speaking: we can approximate any continuous f to
arbitrary accuracy on K with suitable member of H
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Universal Approximation with Ridge Functions

Definition 6

Gn
σ ,

{
g : g (x) = σ

(
w T x + b

)
for some x ,w ∈ Rn, b ∈ R

}
Gn ,

⋃
σ∈C(R)

Gn
σ universe of continuous ridge functions (13)

Theorem 1 (Vostrecov and Kereines, 1961)

Hn , span {Gn} is dense in C (Rn)

Remark 2

Note that Hn =

{
h : h =

m∑
j=1

gj , gj ∈ Gn

}
, i.e. one can absorb linear

combination weights in functions gj .
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Ridge Function Network

Figure 1: Framework of Ridge Function Network

Thm.1 uses additive combinations of arbitrary (unspecified) ridge function.

Remark 3
1 it would require some adaptivity of the non-linearity (= learning the activation function)

2 it is not inconceivable, but not commonly done
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Question

Can we further specialize the class of ridge function e.g. by choosing one
σ ∈ C (R) such that Gn

σ is dense in C (Rn)?
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Lemma: Dimension Lifting

Theorem 2 ([Pinkus, 1999])

The density of H1
σ

H1
σ , span

{
G1
σ

}
= span {σ (λt + θ) : λ, θ ∈ R} (14)

in C (R) implies the density of

Hn
σ , span {Gn

σ} = span
{
σ
(

w T x + b
)

: x ,w ∈ Rn, b ∈ R
}

(15)

in C (Rn) for any n ≥ 1.

1 informally: we can lift the density property of ridge function families
from C (R) toC (Rn)
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Key Advantage of Ridge Function

Key advantage of ridge functions:

1 Picking out a direction of change: done in linear part ⇒ essentially
equivalent to linear case

2 Non-linear activation: models rate of change in the chosen direction.
Just a C (R) function, dimension independent

3 Continuous activation function can be approximated by expansions
with fixed activation function. Simplification at the cost of increased
representation size.
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Question

What activation functions are commonly used in modern DNNs and
what are the representational powers of resulting networks?
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Rectified Linear Units

Definition 7 (ReLU = rectified linear units)

The activation function of a ReLU is defined as

(x)+ = max {0, x} , ∂(x)+︸ ︷︷ ︸
subdifferential

=


{1}
{0}

[0, 1]

if x > 0
if x < 0
if x = 0

(16)

1 liner function over half-space H
2 zero on complement Hc = Rn −H
3 non-smooth, but simple subgradient
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Rectified Linear Units

Closely related alternative activation function

Definition 8 (Absolute value rectification AVU)

The activation function of an absolute value unit (AVU) is given by

|x | =

{
x
−x

if x > 0
otherwise

, ∂ |x | =


1

[−1, 1]
−1

if x > 0
if x = 0
if x < 0

(17)

1 relation to ReLU activation

(x)+ =
x + |x |

2
and |x | = 2(x) + − x (18)
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Best Practice: Rectification in Computer Vision

What is the Best Multi-Stage Architecture for Object Recognition?

1 The surprising answer is that using a rectifying non-linearity is the
single most important factor in improving the performance of a
recognition system.

2 experimental results

3 uses |x |, but similar results for (x)+
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Rectification in the 19th Century

Theorem 3 ([Shektman, 1982])

Piecewise linear functions are dense in C [0, 1].

Theorem 4 ([Lebesgue, 1898])

A piecewise linear function with m pieces can be written

g (x) = ax + b︸ ︷︷ ︸
linear

+
m−1∑
i=1

ci (x − xi )+ (19)

1 knots: 0 = x0 < x1 < · · · < xm−1 < xm = 1

2 m + 1 parameters, a, b, ci ∈ R
3 ReLU function approximation in 1D.
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Approximation by Rectified Networks

Theorem 5

Networks with one hidden layer of ReLU or absolute value units are
universal function approximators.

Proof.

Sketch:

1 Universally approximate C (K ) functions(K, compact) by polygonal
lines

2 Represent polygonal lines by (linear function +) linear combinations
of (·)+ or (·)− functions

3 Apply dimension lifting lemma ?? to show density of the linear span
of resulting ridge function families Gn

(·) and Gn
|·|

Yao Zhang Approximation Theory Dec 7, 2019 22 / 46



ReLU Network

Theorem allows for the use of restricted set of ridge functions (e.g. ReLU).

Figure 2: ReLU Network

1 no adaptivity of the non-linearity required (fixed)

2 possibly at the price of increasing hidden layer width (m)
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Question

What is the minimal non-linearity required to obtain universal
function approximators?
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Hinging Hyperplanes

Another piecewise linear set of functions [Breiman, 1993]

Definition 9 (Hinge function)

If g : Rn → R can be written with parameters w1,w2 ∈ Rn and b1, b2 ∈ R
as below it is called a hinge function

g (x) = max
(

w T
1 x + b1,w

T
2 x + b2

)
(20)

1 two hyperplanes, ”glued” together at the face
(w1 − w2)T x + (b1 − b2) = 0

2 easy to fit single hinging hyperplane (iterative algorithm)

3 representational power: 2 max (f , g) = f + g + |f − g |
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Hinging Hyperplanes

Definition 10 (k-Hinge Functions)

g (x) = max
(
w T

1 x + b1, . . . ,w
T
k x + bk

)
(21)

Theorem 6 ([Wang et.al 2005])

Every continuous piecewise linear function from Rn → R can be written as a
signed sum of k−Hinges with k 6 dn + 1e∑

i

θi gi (x) θi ∈ {±1} (22)

note: the representation is exact, not an approximation

re-discovery of k-Hinges: Maxout [Goodfellow et.al 2013]

note: depth vs. width tradeoff for | · |-based representation: every k hinge:

can be expressed via
⌈

ln(k+2)
ln(2)

⌉
levels of nesting [[Wang et.al 2005]]

Yao Zhang Approximation Theory Dec 7, 2019 26 / 46



Polyhedral Functions

Convex and continuous PWLs (piecewise linear function). These are also knowns
as polyhedral functions.

Definition 11 (Polyhedral Set)

S is polyhedral, if it is a finite intersection of closed half-spaces

S =
{

x ∈ Rn : w T
j x + bj > 0, j = 1, ..., r

}
(23)

Definition 12 (Epigraph of a Function)

The epigraph of a function is defined as follows:

epi (f ) ,
{

(x , t) ∈ Rn+1 : f (x) 6 t
}

(24)

Definition 13 (Polyhedral Function)

f is polyhedral, if epi(f ) is a polyhedral set.
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Max-Representation of Polyhedral Functions

Proposition 6

For every polyhedral f , there exists A ⊂ Rn+1, |A| = m such that

f (x) = max
(w ,b)∈A

{
w T x + b

}
(25)

1 polyhedral function = k-Hinges

2 linear functions in A describe supporting hyperplanes of epi(f )

3 cf. more general, (proper) convex case: Fechel duality

f (x) = sup
w∈Rn

{
w T x − f ∗ (w)

}
(26)
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Continuous Piecewise Linear Functions

Theorem 7 ([Wang et.al 2005])

Every continuous piecewise linear function f can be written as the
difference of two polyhedral functions.

1 explicitly: there exist finite A+, A− such that

f (x) = max
(w ,b)∈A+

{
w T x + b

}
− max

(w ,b)∈A−

{
w T x + b

}
(27)

2 Maxout: max (non-linearity) applied to groups of (linear) functions
[Goodfellow et.al 2013]
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2× Maxout = Allout

Theorem 8 ([Goodfellow et.al 2013])

Maxout networks with two maxout units are universal function
approximators.

Proof.

Sketch:

1 Thm. 7: linear network with two maxout units and a linear output
unit (subtraction) can represent any continuous PWL function.

2 Continuous PWL functions are dense in C (Rn)

1 Most minimalistic use of non-linearity
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Minimalistic 2 × Maxout Network

In practice: more than 2 Maxout units.
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Question

What do we know about deep ReLU networks? (Little)
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Linear Combinations of Rectified Units

Question:

By linearly combining m rectified units, into how many (R (m)) cells is Rn

maximally partitioned?

Figure 3: An example: 5 lines 14 cells
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Linear Combinations of Rectified Units

Question: By linearly combining m rectified units, into how many (R (m))
cells is Rn maximally partitioned?

Theorem 9 ([ Zaslavsky, 1975])

R (m) 6
min{m,n}∑

i=0

(
m
i

)
(28)

1 note that for m ≤ n,R(m) = 2m (exponential growth)
2 for given n, asymptotically, R(m) ∈ Ω(mn),

i.e. there is a polynomial slow-down, which is induced by the limitation
of the input space dimension
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Deep Combinations of Rectified Units

Question: Process n inputs through L ReLU layers with widths
m1, . . . ,mL ∈ O (m) Into how many (R (m, L)) cells can Rn be maximally
partitioned?

Theorem 10 ([Guido el.al 2014])

R (m, L) ∈ Ω

((m

n

)n(L−1)
mn

)
(29)

1 Essentially: for any fixed n, exponential growth can be ensured by
making layers sufficiently wide (m > n) and increasing the level of
functional nesting (i.e. depth L)
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Question

What about classical (smooth) activation functions?
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Sigmoid Functions

What are ”good” activation functions?
Sigmoid activation function: logistic function (or tanh)

Figure 4: sigmoid function

σ (t) =
1

1 + e−t
=

et

1 + et
∈ (0, 1)

σ−1 (µ) = ln

(
µ

1− µ

)
tanh (t) = 2σ (2t)− 1 ∈ (−1, 1)

(30)
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Approximation Theorem

Theorem 11 ([Leshno et.al 1991])

Let σ ∈ C∞ (R), not a ploynomial, then H1
σ is dense in C (R)

Corollary 3 ([Leshno et.al 1991])

Multi layer Perceptions(MLPs) with one hidden layer and any non-polynomial,
smooth activation function are universal function approximators.

Proposition 7 ([Leshno et.al 1991])

Multi layer Perceptions(MLPs) with one hidden layer and any polynomial,
activation function are not universal function approximators.

Remark 4
Smoothness requirement can be substantially weakened.
See previous results on rectified activation functions.
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Approximation theorem

To prove Thms in page 38, also need:

Theorem 12 ([Corominas et.al 1954, Donoghue,1969])

If σ is C∞ on (a, b) and it is not a polynomial, then there exists a point
θ0 ∈ (a, b) such that σk (θ0) 6= 0 ∀k
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Question

What can we say about the size of the representation (networks)?
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Sigmoid MLP: Approximation Guarantees

Theorem 13 ([Barron, 1993])

∀f : Rn → R with absolutely continuous Fourier transform and for every m
there is a function of the form f̃m such that:∫

Br

(
f (x)− f̃ (x)

)2
µ (dx) 6 O

(
1

m

)
(31)

where Br = {x ∈ Rn : ‖x‖ 6 r} and µ is any probability measure on Br .

Remark 5

1 most remarkably, the residual bound does not depend on the input
dimensional n

2 proof uses iterative process of adding units
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Sigmoid MLP: Approximation Guarantees

We will now state and discuss without proof (a simplified) version of the
famous result of [Barron, 1993], which relates the residual to the number
of sigmoidal neurons in the (single) hidden layer. Consider a multi-layer
perceptron, where:

f̃m (x) =
m∑

j=1

αjσ
(

w T
j x + bj

)
+ β (32)

where σ is a bounded (measurable) and monotonic function such that

σ (t)
t→∞→ 1 and σ (t)

t→−∞→ 0. ([Barron, 1993] version of ”sigmoid”)
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Last But Not Least

Thank you all of you! –Yao
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