Introduction to Neural Networks

Yao Zhang

The guy is a populace

Mostly based on Thomas Hofmann's lecture in ETH

https://zhims.github.io/

Dec 5, 2019

Yao Zhang

Dec 5, 2019 1 / 14

- Neurons: basic functional & structural units of nerous system
- Cells connected by nervous fibers
- Signaling via electrical impulses
- Human brain:
 - $\bullet~\sim 100$ billion neurons
 - \sim 100 trillion connections
 - very (!) large scale system

• Neurons:

all-or-none principle = action potential (spike)

- Anatomy: Soma, dendrite, axon
- Functional: many inputs ($\sim 10^3 10^5$), one output

• Synapses: plasticity (strengthening & weakening)

- Scientific challenge: decipher brain connectivity
- Small scale connectivity vs. overall "wiring" (white matter pathways)
- Network analysis: Rich club(2001) $\downarrow\downarrow$

Boolean Abstraction

• Boolean logic view of neurons

$$f: \{0,1\}^n \to \{0,1\}$$
 (1)

• Neural network = logical circuit

The response of any neuron is factually equivalent to a proposition which proposed its adequate stimulus

N/	-			
V D D	_ /	<u>n n</u>	n	
1.40	_	ıа		

• Abstract neuron: implements real-valued function

$$f: \mathbb{R}^n \to R \subseteq \mathbb{R} \tag{2}$$

- interpret real-valued output as firing rate or probability (ignoring temporal dynamics)
- neuron = computational unit
- Each unit is (implicitly) parametrized by some $heta \in \mathbb{R}^d$

$$f: \mathbb{R}^n \left(\times \mathbb{R}^d \right) \to \mathbb{R}.$$
(3)

Parameterization

Typical choice: weighted average + non-linearity

$$f(x) = \sigma\left(\sum_{i=1}^{n} w_i x_i + b\right)$$
(4)

- parameterization $\theta = (b, w_1, ..., w_n)$
- weights $\{w_i\}$ = synaptic strengths, bias b = threshold
- e.g. sigmoid activation function σ : $\mathbb{R} \to \mathbb{R}$ (soft threshold)

$$\sigma\left(z\right) = \frac{1}{1 + e^{-z}} \tag{5}$$

- Simplify connectivity structure: loop-free Directed Acyclic Network (DAG)
- Activity propagation = feedforward network
- Nested functions = compositionality

$$g(x_1, x_2, x_3) = f_5(f_4(f_1(x_1), f_2(x_2)), f_2(x_2), f_3(x_3))$$
(6)

- Basic idea: define complex functions in terms of compositions of simple(r) functions
- Powerful as a biological principle: common biological substrate
- Powerful as an engineering principle: universal model toolbox
- Simple & intuitive weighted-based parameterization (\Rightarrow learning)
- Traditionally (ML, approximation theory): shallow networks Deep learning: higher degrees of nesting = depth

Multi-Layer Perception

- DAGs model space (too) large \Rightarrow simplification
- Arrange neurons in densely inter-connected layers
- Inputs = input layer
 Outputs = output layer
 Intermediate = hidden layers
- Also called: MLP (Multi-Layer Perceptron)

Yao	Zhan	σ
		ь

• Layers I = 0, ..., L of dimensionality m^{I}

- $l = 0, m^0 = n$: input
- $I = L, m^L = m$: output
- Transfer map F^{I} between layer I 1 and I

$$F' = \sigma' \circ \overline{F}', \ \overline{F}'(x) = W'x + b' \in \mathbb{R}^{m'}$$

- σ^l: element-wise non-linearity of layer l
 F^l: linear function in layer l (pre-activations)
 W^L ∈ ℝ^{m^l×m^{l-1}}: weight matrix, b^l ∈ ℝ^{m_l}: biases
- Overall function by composition of maps

$$F = F^L \circ \dots \circ F^1 \tag{8}$$

(7

- Given parameterized map F : ℝⁿ (× ℝ^d) → ℝ^m, (e.g. realized by a neural network)
- Partial derivatives w.r.t. parameter $\theta \in \left\{ w_{ij}^{l}, b_{i}^{l} \right\}$,

$$\delta_{\theta} = \frac{\partial F}{\partial \theta}, \quad \delta_{\theta} : \ \mathbb{R}^n \to \mathbb{R}^m$$
(9)

- same signature as F
- inputs $x \in \mathbb{R}^n$ are usually "clamped" (implicitly given)
- $\delta_{\theta} \in \mathbb{R}^m$ then is a vector in output space
- how to compute these? backpropagation

- Given an input-output example(x, y)
- Loss function: $\ell_y : \mathbb{R}^m \to \mathbb{R}$

• e.g.
$$\ell_{y}(\nu) = \frac{1}{2} ||y - \nu||^{2}, \nu = F(x)$$
: model prediction

Derivatives w.r.t. parameter: provide update directions

$$\frac{\partial \ell}{\partial \theta} = \langle \nabla \ell_y, \delta_\theta \rangle \tag{10}$$

- follows from chain rule
- e.g. $\nabla \ell_y = \nu y$

• Incremental adaptation step: $\theta \leftarrow \theta - \eta \ell_y (F(x))$

• η : step size or learning rate

Thank you all of you! -Yao

Yao Zhang

Dec 5, 2019 14 / 14