Introduction to Neural Networks

Yao Zhang

The guy is a populace

Mostly based on Thomas Hofmann's lecture in ETH
https://zhims.github.io/

Dec 5, 2019

Biological Neural Networks

- Neurons: basic functional \& structural units of nerous system
- Cells connected by nervous fibers
- Signaling via electrical impulses
- Human brain:
- ~ 100 billion neurons
- ~ 100 trillion connections
- very (!) large scale system

Biological Neural Networks

- Neurons:
all-or-none principle $=$ action potential $($ spike $)$

(a) Neurons
- Anatomy: Soma, dendrite, axon
- Functional: many inputs ($\sim 10^{3}-10^{5}$), one output
(b) Anaomy
- Synapses: plasticity (strengthening \& weakening)
(c) Synapses

Connectome

- Scientific challenge: decipher brain connectivity
- Small scale connectivity vs. overall "wiring" (white matter pathways)
- Network analysis: Rich club(2001) $\downarrow \downarrow$

Boolean Abstraction

- Boolean logic view of neurons

$$
\begin{equation*}
f:\{0,1\}^{n} \rightarrow\{0,1\} \tag{1}
\end{equation*}
$$

- Neural network $=$ logical circuit

The response of any neuron is factually equivalent to a proposition which proposed its adequate stimulus

Mathematical Abstraction

- Abstract neuron: implements real-valued function

$$
\begin{equation*}
f: \mathbb{R}^{n} \rightarrow R \subseteq \mathbb{R} \tag{2}
\end{equation*}
$$

- interpret real-valued output as firing rate or probability (ignoring temporal dynamics)
- neuron $=$ computational unit
- Each unit is (implicitly) parametrized by some $\theta \in \mathbb{R}^{d}$

$$
\begin{equation*}
f: \mathbb{R}^{n}\left(\times \mathbb{R}^{d}\right) \rightarrow \mathbb{R} \tag{3}
\end{equation*}
$$

Parameterization

Typical choice: weighted average + non-linearity

$$
\begin{equation*}
f(x)=\sigma\left(\sum_{i=1}^{n} w_{i} x_{i}+b\right) \tag{4}
\end{equation*}
$$

- parameterization $\theta=\left(b, w_{1}, \ldots, w_{n}\right)$
- weights $\left\{w_{i}\right\}=$ synaptic strengths, bias $b=$ threshold
- e.g. sigmoid activation function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ (soft threshold)

$$
\begin{equation*}
\sigma(z)=\frac{1}{1+e^{-z}} \tag{5}
\end{equation*}
$$

Mathematical Abstraction

- Simplify connectivity structure: loop-free Directed Acyclic Network (DAG)
- Activity propagation $=$ feedforward network
- Nested functions = compositionality

$$
\begin{equation*}
g\left(x_{1}, x_{2}, x_{3}\right)=f_{5}\left(f_{4}\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right), f_{2}\left(x_{2}\right), f_{3}\left(x_{3}\right)\right) \tag{6}
\end{equation*}
$$

Compositionality

- Basic idea: define complex functions in terms of compositions of simple(r) functions
- Powerful as a biological principle: common biological substrate
- Powerful as an engineering principle: universal model toolbox
- Simple \& intuitive weighted-based parameterization (\Rightarrow learning)
- Traditionally (ML, approximation theory): shallow networks Deep learning: higher degrees of nesting $=$ depth

Multi-Layer Perception

- DAGs model space (too) large \Rightarrow simplification
- Arrange neurons in densely inter-connected layers
- Inputs = input layer

Outputs = output layer
Intermediate $=$ hidden layers

- Also called: MLP (Multi-Layer Perceptron)

Map/Matrix Notation

- Layers $I=0, \ldots, L$ of dimensionality m^{\prime}
- $I=0, m^{0}=n$: input
- $I=L, m^{L}=m$: output
- Transfer map F^{\prime} between layer $I-1$ and $/$

$$
\begin{equation*}
F^{\prime}=\sigma^{\prime} \circ \bar{F}^{\prime}, \quad \bar{F}^{\prime}(x)=W^{\prime} x+b^{\prime} \in \mathbb{R}^{m^{\prime}} \tag{7}
\end{equation*}
$$

- σ^{\prime} : element-wise non-linearity of layer I
- \bar{F}^{\prime} : linear function in layer $/$ (pre-activations)
- $W^{L} \in \mathbb{R}^{m^{\prime} \times m^{\prime-1}}$: weight matrix, $b^{\prime} \in \mathbb{R}^{m_{l}}$: biases
- Overall function by composition of maps

$$
\begin{equation*}
F=F^{L} \circ \cdots \circ F^{1} \tag{8}
\end{equation*}
$$

Partial Derivatives

- Given parameterized map $F: \mathbb{R}^{n}\left(\times \mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{m}$, (e.g. realized by a neural network)
- Partial derivatives w.r.t. parameter $\theta \in\left\{w_{i j}^{\prime}, b_{i}^{\prime}\right\}$,

$$
\begin{equation*}
\delta_{\theta}=\frac{\partial F}{\partial \theta}, \quad \delta_{\theta}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \tag{9}
\end{equation*}
$$

- same signature as F
- inputs $x \in \mathbb{R}^{n}$ are usually "clamped" (implicitly given)
- $\delta_{\theta} \in \mathbb{R}^{m}$ then is a vector in output space
- how to compute these? backpropagation

Gradient-based Learning

- Given an input-output example (x, y)
- Loss function: $\ell_{y}: \mathbb{R}^{m} \rightarrow \mathbb{R}$
- e.g. $\ell_{y}(\nu)=\frac{1}{2}\|y-\nu\|^{2}, \nu=F(x)$: model prediction
- Derivatives w.r.t. parameter: provide update directions

$$
\begin{equation*}
\frac{\partial \ell}{\partial \theta}=\left\langle\nabla \ell_{y}, \delta_{\theta}\right\rangle \tag{10}
\end{equation*}
$$

- follows from chain rule
- e.g. $\nabla \ell_{y}=\nu-y$
- Incremental adaptation step: $\theta \leftarrow \theta-\eta \ell_{y}(F(x))$
- η : step size or learning rate

Last But Not Least

Thank you all of you! -Yao

