
Introduction to Neural Networks

Yao Zhang

The guy is a populace

Mostly based on Thomas Hofmann’s lecture in ETH

https://zhims.github.io/

Dec 5, 2019

Yao Zhang Introduction Dec 5, 2019 1 / 14

https://zhims.github.io/


Biological Neural Networks

Neurons: basic functional
& structural units of nerous system

Cells connected by nervous fibers

Signaling via electrical impulses

Human brain:

∼ 100 billion neurons
∼ 100 trillion connections
very (!) large scale system

Yao Zhang Introduction Dec 5, 2019 2 / 14



Biological Neural Networks

(a) Neurons

(b) Anaomy

(c) Synapses

Neurons:
all-or-none principle = action potential (spike)

Anatomy: Soma, dendrite, axon

Functional:
many inputs (∼ 103 − 105), one output

Synapses: plasticity (strengthening & weakening)

Yao Zhang Introduction Dec 5, 2019 3 / 14



Connectome

Scientific challenge: decipher brain connectivity

Small scale connectivity vs. overall ”wiring” (white matter pathways)

Network analysis: Rich club(2001) �

Yao Zhang Introduction Dec 5, 2019 4 / 14



Boolean Abstraction

Boolean logic view of neurons

f : {0, 1}n → {0, 1} (1)

Neural network = logical circuit
The response of any neuron is factually equivalent to a proposition which proposed its adequate stimulus

Yao Zhang Introduction Dec 5, 2019 5 / 14



Mathematical Abstraction

Abstract neuron: implements real-valued function

f : Rn → R ⊆ R (2)

interpret real-valued output as firing rate or probability (ignoring
temporal dynamics)
neuron = computational unit

Each unit is (implicitly) parametrized by some θ ∈ Rd

f : Rn
(
× Rd

)
→ R. (3)

Yao Zhang Introduction Dec 5, 2019 6 / 14



Parameterization

Typical choice: weighted average + non-linearity

f (x) = σ

(
n∑

i=1

wixi + b

)
(4)

parameterization θ = (b,w1, ...,wn)

weights {wi} = synaptic strengths, bias b = threshold

e.g. sigmoid activation function σ : R→ R (soft threshold)

σ (z) =
1

1 + e−z
(5)

Yao Zhang Introduction Dec 5, 2019 7 / 14



Mathematical Abstraction

Simplify connectivity structure: loop-free
Directed Acyclic Network (DAG)

Activity propagation = feedforward network

Nested functions = compositionality

g (x1, x2, x3) = f5 (f4 (f1 (x1) , f2 (x2)) , f2 (x2) , f3 (x3)) (6)

Yao Zhang Introduction Dec 5, 2019 8 / 14



Compositionality

Basic idea: define complex functions in terms of compositions of
simple(r) functions

Powerful as a biological principle: common biological substrate

Powerful as an engineering principle: universal model toolbox

Simple & intuitive weighted-based parameterization (⇒ learning)

Traditionally (ML, approximation theory): shallow networks
Deep learning: higher degrees of nesting = depth

Yao Zhang Introduction Dec 5, 2019 9 / 14



Multi-Layer Perception

DAGs model space (too) large ⇒ simplification

Arrange neurons in densely inter-connected layers

Inputs = input layer
Outputs = output layer
Intermediate = hidden layers

Also called: MLP (Multi-Layer Perceptron)

Yao Zhang Introduction Dec 5, 2019 10 / 14



Map/Matrix Notation

Layers l = 0, ..., L of dimensionality ml

l = 0,m0 = n : input
l = L,mL = m : output

Transfer map F l between layer l − 1 and l

F l = σl ◦ F l
, F

l
(x) = W lx + bl ∈ Rml

(7)

σl : element-wise non-linearity of layer l

F
l

: linear function in layer l (pre-activations)

W L ∈ Rml×ml−1

: weight matrix, bl ∈ Rml : biases

Overall function by composition of maps

F = F L ◦ · · · ◦ F 1 (8)

Yao Zhang Introduction Dec 5, 2019 11 / 14



Partial Derivatives

Given parameterized map F : Rn
(
× Rd

)
→ Rm, (e.g. realized by a

neural network)

Partial derivatives w.r.t. parameter θ ∈
{
w l
ij , b

l
i

}
,

δθ =
∂F

∂θ
, δθ : Rn → Rm (9)

same signature as F
inputs x ∈ Rn are usually ”clamped” (implicitly given)
δθ ∈ Rm then is a vector in output space
how to compute these? backpropagation

Yao Zhang Introduction Dec 5, 2019 12 / 14



Gradient-based Learning

Given an input-output example(x , y)

Loss function: `y : Rm → R
e.g. `y (ν) = 1

2‖y − ν‖
2
, ν = F (x): model prediction

Derivatives w.r.t. parameter: provide update directions

∂`

∂θ
= 〈∇`y , δθ〉 (10)

follows from chain rule
e.g. ∇`y = ν − y

Incremental adaptation step: θ ← θ − η`y (F (x))

η: step size or learning rate

Yao Zhang Introduction Dec 5, 2019 13 / 14



Last But Not Least

Thank you all of you! –Yao

Yao Zhang Introduction Dec 5, 2019 14 / 14


