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Lecture 1

Introduction: a Non-measurable Set

λ satisfies the flowing:

0. λ : P (R)→ R+ ∪ {+∞}

1. λ ((a, b]) = b− a

2. A ⊆ R, A+ x = {x+ y : y ∈ A} , ∀A, A ⊆ R, ∀x ∈ R :

λ (A+ x) = λ (A) (1.1)

3. A =
⋃
j>1

Aj , Aj ∩Ak = ∅ :

λ (A) =
∑
k

λ (Ak) (1.2)

Definition 1.1. x ∼ y, x, y ∈ R if y − x ∈ Q. [x] = {y ∈ R, y − x ∈ Q} .
Λ = R|∼, only one point represents the equivalence class of Ω , like α, β.

Ω is a class of equivalence class, if Ω ⊆ R,Ω ⊆ (0, 1)

Claim 1.1.

{
Ω + q = Ω + q

Ω + q ∩ Ω + q = ∅ q, p ∈ Q

Proof. Assume that Ω + q ∩ Ω + q 6= ∅ then, x = α+ p = β + q, α, β ∈ Ω⇒ α− β = q − p ∈ Q⇒
α = β ⇒ [q 6= p, p, q ∈ Q⇒ (Ω + q) ∩ (Ω + p) = ∅] .

Claim 1.2. Ω + q ⊆ (−1, 2), if −1 < q < 1.

then we can get

∑
q∈Q
−1<q<1

(Ω + q) ⊆ (−1, 2) (1.3)

Claim 1.3. E ⊆ F ⇒ λ (E) 6 λ (F )

Proof. ∵ E ⊆ F ∴ F = E ∪ (F\E) , E ∩ (F\E) = ∅, then λ (F ) = λ (E) + λ ((F\E)) ⇒ λ (F ) >
λ (E).

Then,

λ

 ∑
q∈Q
−1<q<1

(Ω + q)

 6 λ ((−1, 2)) = 3 (1.4)

and ,

∞ · λ ((Ω + q)) =∞ · λ (Ω) ≤ 3⇒ λ

 ∑
q∈Q
−1<q<1

(Ω + q)

 = 0 (1.5)
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Claim 1.4. (0, 1) ⊆
∑

q∈Q
−1<q<1

(Ω + q)

Proof. ∀ fixed x ∈ (0, 1) , ∃α ∈ [x] ∩Ω, α ∈ (0, 1), and we know that α− x = q ∈ Q, − < q < 1 ⇒
x = α+ q, x ∈ Ω + q

But, we get that:

1 = λ ((0, 1)) 6 λ

∑
q∈Q

Ω + q

 = 0 (1.6)

it is impossible.
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Lecture 2

Classes of Subsets (Semi-algebras, Algebras and Sigma-algebras) and Set Functions

Definition 2.1. S ⊆ P (Ω), S is semi-algebra if:

1. Ω ⊆ S

2. A,B ∈ S⇒ A
⋂
B ∈ S

3. ∀A ∈ S⇒ Ac =
n∑
i=1

Ej , ∃E1, · · · , En ∈ S, Ei, Ej (i 6= j) disjoint sets, n is finite number

Example 2.1. Ω = R, S = {R, {(a, b) , a < b, a, b ∈ R} , {(−∞, b] , b ∈ R} , {(a,∞) , a ∈ R} ,∅},
(a, b]c = (−∞, a] ∪ [b,+∞)

Example 2.2. Ω = R2

S =
{
R2 , {(a1, b1)× (a2, b2) , ai < bi, ai, bi ∈ R, {(−∞, b1]× (−∞, b2] , bi ∈ R} , {(a1,∞)× (a2,∞) , ai ∈ R} ,∅}

Definition 2.2. a = P (Ω) is an algebra:

1. Ω ∈ a

2. A,B ∈ a⇒ A
⋂
B ∈ a

3. A ∈ a⇒ Ac ∈ a

Remark 2.1. a algebra ⇒ a semi-algebra

Definition 2.3. σ-algebra S ⊆ P (Ω):

1. Ω ⊆ S

2. Aj ∈ S, j ≤ 1⇒
⋂
j>1

Aj ∈ S

3. A ∈ S⇒ Ac ∈ S

Remark 2.2. Ω, aα ⊆ P (Ω), aα algebra, α ∈ I ⇒ a =
⋂
α∈I

aα is an algebra.

Proof. check the followings

1. Ω ∈ a

2. A,B ∈ a⇒ A
⋂
B ∈ a

3. A ∈ a⇒ Ac ∈ a

Remark 2.3. Ω, aα ⊆ P (Ω) , α ∈ I, aα, σ-algebra ⇒ a =
⋂
α∈I

aα is a σ-algebra

Proof. check the followings

1. Ω ∈ a
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2. Aj , j ≥ 1 ∈ a⇒
⋂
j>1

Aj ∈ a

3. A ∈ a⇒ Ac ∈ a

Definition 2.4 ( minimal algebra generated by c). Ω, c ⊆ P (Ω), a (c) is an algebra generated by c,
and a = a (c):

1. c ⊆ a

2. ∀B is algebra, B ⊆ P (Ω):
c ⊆ B⇒ a ⊆ B (2.1)

Remark 2.4. a (c) exits, and a = a (c) =
⋂
α
aα, ∀α, c ⊆ aα, aα is an algebra.

Definition 2.5 ( minimal σ-algebra generated by c). Ω, c ⊆ P (Ω), a (c) is a σ-algebra generated
by c, and a = a (c):

1. c ⊆ a

2. ∀B is σ-algebra, B ⊆ P (Ω):
c ⊆ B⇒ a ⊆ B (2.2)

Remark 2.5. a (c) exits, and a = a (c) =
⋂
α
aα, ∀α, c ⊆ aα, aα is an σ-algebra.

Lemma 2.1. Ω, f semi-algebra f ⊆ P (Ω), a (f) algebra generated by f then

A ∈ a (f)⇔ ∃Ej ∈ f, 1 6 j 6 n, A =
n∑
j=1

Ej (2.3)

Proof.

1. ⇐

A =
n∑
j=1

Ej , Ej ∈ f ∈ a (f)

By definition 2.1 and remark 2.6 ⇒ A ∈ a (f)

2. ⇒

A ∈ a (f)⇒ A =
n∑
j=1

Ej , Ej ∈ f

Then by remark 2.7, it will be proved easily.

Remark 2.6. E, J ∈ a,E
⋃
F ∈ a,E

⋃
F = (Ec

⋂
F c)c
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Remark 2.7. B =

{
n∑
j=1

Fj , Fj ∈ f

}
, B ⊆ P (Ω) then

1. B algebra

2. B ⊇ f

3. B ⊇ a (f)

Proof. We only prove that B algebra, then check the following

1. Ω ∈ B

2. A,B ∈ B⇒ A ∩B ∈ B

∵ A,B ∈ B, ∴ A =
n∑
j=1

Ej , Ej ∈ f, B =
m∑
k=1

Fk, Fk ∈ f , then

A ∩B =

 n∑
j=1

Ej

 ∩( m∑
k=1

Fk

)

=
n∑
j=1

m∑
k=1

(Ej ∩ Fk)︸ ︷︷ ︸
∈f

∈ B

(2.4)

3. A ∈ B⇒ Ac ∈ B

A =
n∑
j=1

Ej , Ej ∈ f

By definition 2.1:

Ec1 =

l1∑
k1=1

F1,k1 , F1,j ∈ f

· · · = · · ·

Eci =

li∑
ki=1

Fi,ki , Fi,j ∈ f

(2.5)

Then, we get that

Ac =

 l1∑
k1=1

F1,k1

 ∩
 l2∑
k2=1

F2,k2

 ∩ · · · ∩
 ln∑
kn=1

Fn,kn


=

l1∑
k1=1

l2∑
k2=1

· · ·
ln∑

kn=1

(F1,k1 ∩ F2,k2 ∩ Fn,kn)

∈ B

(2.6)
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Definition 2.6. c ⊆ P (Ω) ,∅ ∈ c, µ : c→ R+ ∪ {+∞}. µ is additive if

1. µ (∅) = 0

2. E1, E2, ..., En ∈ c, E =
n∑
j=1

Ej ∈ c⇒ µ (E) =
n∑
j=1

µ (Ek)

Remark 2.8.

∃A ∈ c, µ (A) <∞, A = A ∪∅, µ (A) = µ (A) + µ (∅)⇒ µ (∅) = 0 (2.7)

Remark 2.9. c, µ : c→ R+
⋃

+∞, E ⊆ F, F\E ∈ c, E, F ∈ c

F = E ∪ (F\E) , µ (F ) = µ (E) + (F\E) (2.8)

1. µ (E) = +∞, µ (F ) = +∞

2. µ (E) < +∞, µ (F\E) = µ (F )− µ (E)

so,
µ (E) 6 µ (F ) (2.9)

Example 2.3. Discrete measure: Ω, c ⊆ P (Ω), {xj , j > 1} , xj ∈ Ω, {pj , j > 1} , pj ,> 0, A ∈ c,
define that

µ (A) =
∑
j>1

pj1 {xj ∈ A} (2.10)

then µ is additive

Definition 2.7. c ∈ P (Ω) ,∅ ∈ c, µ : c→ R+
⋃

+∞, µ is σ-additive if

1. µ (∅) = 0

2. Ej ∈ c, j 6= k,Ej
⋂
Ek = ∅, E =

∑
j≥1

Ej ∈ c⇒ µ (E) =
∑
j≥1

µ (Ej)

Example 2.4. Ω = (0, 1) , c = {(a, b] , 0 6 a < b < 1} , µ : c→ R+ ∪ {+∞}, define that

µ (a, b] =

{
+∞
b− a

a = 0
a > 0

(2.11)

(a, b] =
n∑
j=1

(aj , bj), we can get that µ is NOT σ-additive.

If x1 = 1
2 , xj > xj+1, xj ↓→ 0, then

1

2
=

(
0,

1

2

]
=
∑
j>1

(xj+1, xj ] = +∞ (2.12)

it is impossible.

Definition 2.8. Any non-negative set function µ : C → R+ ∪{+∞} which is σ− additive is called
a measure on C.
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Lecture 3

Set Functions

Definition 3.1. c ⊆ P (Ω), µ : c→ R+
⋃

+∞:

1. E ∈ c, µ continuous from below at E, if ∀(En)n>1, En ∈ c, En ↑ E

(
En ⊆ En+1,

⋃
n>1

En = E

)
:

µ (En)→ µ (E) (3.1)

2. E ∈ c, µ continuous from above at E, if ∀(En)n>1, En ∈ c, En ↓ E

(
E+1 ⊆ En,

⋂
n>1

En = E

)
,

and ∃n0, µ (En0) <∞:
µ (En)→ µ (E) (3.2)

Remark 3.1. For a sequence E1, E2, ... of sets, we put

lim supEi =
∞⋂
n=1

( ∞⋃
i=n

Ei

)
, lim inf Ei =

∞⋃
n=1

( ∞⋂
i=n

Ei

)
(3.3)

and if {Ei} is such that lim supE = lim inf Ei we say that the sequence converges to the set

E = lim supE = lim inf Ei (3.4)

Remark 3.2. 2 need ∃n0, µ (En0) <∞, if not:

En = [n,+∞) , µ (En) = +∞, En ↓ ∅, λ (∅) = 0 (3.5)

Lemma 3.1. a ⊆ P (Ω), algebra; µ : a→ R+ ∪ {+∞}, additive;

1. µ is σ-additive ⇒ µ continuous at E, ∀E ∈ a

2. µ is continuous from below ⇒ µ is σ-additive

3. µ is continuous from above at ∅& µ is finite ⇒ σ-additive

Proof.

1.

(i) µ is σ-additive ⇒ µ conti. from below at E ∈ a. E ∈ a,En ↑ E, En ∈ a:

F1 = E1

F2 = E2\E1

... =
...

Fn = En\En−1

(3.6)
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and we can get that

Fj ∩ Fk = ∅,
n∑
k=1

Fk = En,
⋃
n>1

En =
⋃
n>1

Fn (3.7)

so

µ (E) =
∑
k>1

µ (Fk) = lim
n→∞

n∑
k=1

µ (Fk) = lim
n→∞

µ (En) (3.8)

(ii) µ cont. from above E ∈ a,En ∈ a,En ↓ E,µ (En0) <∞⇒ µ (En) ↓ µ (E)

G1 = En0\En0+1

G2 = En0\En0+2

... =
...

Gk = En0\En0+k

(3.9)

then Gk ↑ En0\E,Gk ∈ a⇒ µ (Gk) ↑ µ (En0\E), so

µ (En0\E) = lim
n→∞

µ (En0\En0+k)

µ (En0\E) = µ (En0)− µ (E)

µ (En0)− µ (E) = lim
k→∞

(µ (En0)− µ (En0+k))

(3.10)

2. µ cont. below, E =
∑
k>1

Ek, E,Ek ∈ a.

Obs.

n∑
k=1

Ek ⊆ E
additive⇒


µ

(
n∑
k=1

Ek

)
6 µ (E)

n∑
k=1

µ (Ek) 6 µ (E)
(3.11)
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then ∑
k>1

µ (Ek) 6 µ (E) (3.12)

Fn =
n∑
k=1

Ek ∈ a, Fn ↑ E,

n∑
k=1

µ (Ek) = µ (Fn) ↑ µ (E)⇒
∑
k>1

µ (Ek) = µ (E) (3.13)

3. µ cont. at ∅, µ (Ω) <∞, E,Ek ∈ a,E =
∑
k>1

Ek.

Fn =
∑
k>m

Ek ∈ a

E\ n−1∑
j=1

Ej

 (3.14)

Fn ↓ ∅, µ (F1) <∞, µ (Fn)→ 0

µ (E) = µ

(
n∑
k=1

Ek ∪
∑
k>n

Ek

)

= µ
n∑
k=1

Ek︸ ︷︷ ︸
→

∑
k>1

µ(En)

+ µ
∑
k>n

Ek︸ ︷︷ ︸
→0

→
∑
k>1

µ (En)

(3.15)

Remark 3.3. Suppose Eα, α ∈ I is a class of subsets of X, and Ei is one set of the class, then

1.
⋂
α∈I

Eα ⊆ Ei ⊆
⋃
α∈I

Eα

2. X −
⋃
α∈I

Eα =
⋂
α∈I

(X − Eα)

3. X −
⋂
α∈I

Eα =
⋃
α∈I

(X − Eα)

Proof.

1. This is immediate from the definition.

2. Suppose x ∈ X −
⋃
α∈I

Eα then x ∈ X and x is not in
⋃
α∈I

Eα, that is x is not in any Eα, α ∈ I

so that x ∈ X − Eα for every α ∈ I, and x ∈
⋂
α∈I

(X − Eα). Conversely if x ∈
⋂
α∈I

(X − Eα),

then for every α ∈ I, x is in X but not in Eα, so x ∈ X but x is not in
⋃
α∈I

Eα, that is

x ∈
⋃
α∈I

(X − Eα).
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3. Similar to 2

Remark 3.3 (2) and (3) are also called as de Morgan’s Law.

Example 3.1. (0, 1) , (a, b] , 0 6 a < b < 1

µ (a, b] =

{
b− a,
+∞,

a > 0
a = 0

(3.16)

µ is additive but NOT σ-additive

Proof. En ↓ ∅, µ (En0) <∞, En = (an,1, bn,1] ∪ · · · ∪ (an,kn , bn,kn ] , an,j < an,j+1.{
an,1 = 0,
an0 > 0,

∀n
some n0

Theorem 3.1 (Extension). f ⊆ P (Ω) semi-algebra, µ : f → R+ ∪ {∞} σ-additive, then ∃ν :

ν : a (f)→ R+ ∪ {∞} (3.17)

such that:

1. ν σ-additive

2. ν (A) = µ (A) , ∀A ∈ f

3. µ1, µ2, a (f)→ R+
⋃
{+∞} , then µ1 (A) = µ2 (A) ,∀A ∈ s⇒ µ1 (E) = µ2 (E) ,∀E ∈ a (f)

Proof. A ∈ a(f)⇒ A =
n∑
j=1

Ej , Ej ∈ f by Lemma 2.1.

ν (A)
add
=

n∑
j=1

ν (Ej)
ext
=

n∑
j=1

µ (Ej) (3.18)

we define that

ν (A) =

n∑
j=1

µ (Ej) (3.19)

we want to show that ν (A) =
n∑
j=1

µ (Ej) is well-defined:

1. ν is unique

A =
n∑
j=1

Ej , Ej ∈ f

=

m∑
k=1

Fk, Fk ∈ f
(3.20)

then we will prove that

ν (A) =
n∑
j=1

µ (Ej)

=
m∑
k=1

µ (Fk)

(3.21)
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∵ Ej ⊆ A =

m∑
k=1

F k ⇒ Ej = Ej ∩

(
m∑
k=1

F k

)
=

m∑
k=1

(Ej ∩ Fk)︸ ︷︷ ︸
∈f

(3.22)

∴ µ (Ej) = µ

(
m∑
k=1

(Ej ∩ Fk)

)
(3.23)

then

ν (A) =

n∑
j=1

µ (Ej) =

n∑
j=1

m∑
k=1

µ (Ej ∩ Fk) =

m∑
k=1

µ (Fk) (3.24)

2. ν is an additive, ν (A) =
n∑
j=1

µ (Ej)

Assume that 
A =

n∑
j=1

Ej , Ej ∈ f

B =
m∑
k=1

Fk, Fk ∈ f
,A ∩B = ∅ (3.25)

We will show that
ν (A ∪B) = ν (A) + ν (B) (3.26)

∵ A ∪B =
n∑
j=1

Ej +
m∑
k=1

Fk (3.27)

therefore

ν (A ∪B) = µ

 n∑
j=1

Ej +

m∑
k=1

Fk


=

n∑
j=1

µ (Ej) +
m∑
k=1

µ (Fk)

= ν (A) + ν (B)

(3.28)

3. ν (A) = µ (A) , A ∈ f by Eq 3.19

4. ν is uniqueness, we want to show that:

Suppose that µ1, µ2 : a (f)→ R+ ∪ {+∞} , ∀A ∈ f, µ1, µ2 additive, then

µ1 (A) = µ2 (A)⇒ µ1 (B) = µ2 (B) , ∀B ∈ a (f) (3.29)

∵ B ∈ a (f) ,∴ B =
n∑
j=1

µ1 (Ej), Ej ∈ f

µ1 (B) =

n∑
j=1

µ1 (Ej) =

n∑
j=1

µ2 (Ej) = µ2 (B) (3.30)
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Now we proof the extension of σ-additive, ie: µ− σ additive, f semi-algebra, ν − σ additive, a(f) is
a algebra generated by f. we want to show that

A =
∑
j>1

Aj , A,Aj ∈ a (f)⇒ ν (A) =
∑
j>1

ν (Aj) (3.31)

by representation of an algebra:

A =
m∑
j=1

Ej , Ej ∈ f ; Ak =

mk∑
l=1

Ek,l, Ek,l ∈ f (3.32)

by Eq 3.19:

ν (A) =

m∑
j=1

ν (Ej), ν (Ak) =

mk∑
l=1

ν (Ek,l) (3.33)

∵ Ej = Ej ∩A = Ej ∩

∑
k>1

Ak

 = Ej ∩

∑
k>1

mk∑
l=1

Ek,l

 =
∑
k>1

mk∑
l=1

(Ej ∩ Ek,l) (3.34)

therefore

ν (A) =
n∑
j=1

µ (Ej)

=
n∑
j=1

∑
k>1

mk∑
l=1

µ (Ej ∩ Ek,l)

=
∑
k>1

mk∑
l=1

µ (Ek,l)︸ ︷︷ ︸
⊆Ak

(3.35)

Eq 3.35 holds because:

Ek,l = Ek,l ∩A =

n∑
j=1

(Ek,l ∩ Ej) (3.36)

and

µ (Ek,l) =
n∑
j=1

µ (Ek,l ∩ Ej) (3.37)

so we can get that

ν (A) =
∑
k>1

ν (Ak) (3.38)
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Lecture 4

Caratheodory Theorem

Theorem 4.1 (Caratheodory Theorem).

σ − add µ : f → R+ ∪ {+∞} f ⊆ P (Ω) , f is semialgebra
↓ ↓

σ − add ν : a (f)→ R+ ∪ {+∞} a (f) algebra generated by f
↓ ↓

σ − add π : F (a)→ R+ ∪ {+∞} F (a) is σ − algebra generated by algebra a

(4.1)

The big picture of the proof:

1. Define the π∗ outer measure:
π∗ = inf

{Ei}

∑
i>1

ν (Ei) (4.2)

2. M σ-algebra, M ⊇ F (a)

3.
π∗ : M→ R+ ∪ {+∞} (4.3)

is σ-additive, and
π∗|a = ν (4.4)

4. (uniqueness) µ1, µ2 : F (a)→ R+
⋃
{+∞}, Ω is σ-finite(µ1), if Ej ↑ Ω, µ1 (Ej) <∞,∀j, Ej ∈ a

and µ1|a = µ2|a then implies that
µ1 = µ2 (4.5)

Finally, we define π (E) = π∗ (E) , ∀E ∈ F (a) ⊆M.

Now, let
π∗ : P (Ω)→ R+ ∪ {+∞} (4.6)

We will prove π∗ is an outer measure.

And we will construct a family of subsets M

M ⊆ P (Ω) (4.7)

we will also prove M satisfies the following:

1. M is a σ−algebra

2. M ⊇ a

3. π∗|M σ−additive

4. π∗|a = ν

Next, we will define π∗ and M .
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Step 1

Definition 4.1 (π∗). π∗ : P (Ω) → R+ ∪ {+∞}, A ∈ Ω, {Ei, i > 1} , Ei ∈ a,A ⊆
⋃
Ei, {Ei} is a

covering of A, then we define that

π∗ = inf
{Ei},A

∑
i>1

ν (Ei) (4.8)

where ν : a (f)→ R+ ∪ {+∞} , is σ-additive.

Definition 4.2 (Outer measure). µ : c→ R+ ∪ {+∞} , c ⊆ P (Ω) ,∅ ∈ c, µ is a outer measure if

1. µ (∅) = 0

2. (monotone) E ⊆ F, E, F ∈ c ⇒ µ (E) 6 µ (F )

3. (subadditive) E,Ei ∈ c, E ⊆
⋃
i
Ei ⇒ µ (E) 6

∑
i
µ (Ei)

Theorem 4.2. π∗ in 4.1 is a outer measure.

Proof. We will check the conditions in Def 4.2.

1. check π∗ (∅) = 0

(a) Ei = ∅,∅ ⊆
⋃
i>1

Ei then

π∗ (∅) = inf
{Ei},∅

∑
i>1

ν (Ei) 6
∑
i>1

ν (Ei) = 0 (4.9)

(b) Ei ∈ a, {Ei} ,∅ ⊆
⋃
i>1

Ei, then

∑
i>1

ν (Ei) > 0⇒ π∗ (∅) > 0 (4.10)

2. check E ⊆ F, π∗ (E) 6 π∗ (F )

Let’s take any covering of F :{Ei} , Ei ∈ a, F ⊆
⋃
i>1

Ei is also a covering of E, then

π∗ (E) = inf
{Ei},E

∑
i>1

ν (Ei) 6 π∗ (F ) = inf
{Ei},F

∑
i>1

ν (Ei) (4.11)

3. check E ⊆
⋃
i>1

Ei, π∗ (E) 6
∑
i>1

π∗ (Ei)

(a) π∗ (Ei) =∞ then

π∗ (E) 6
∑
i>1

π∗ (Ei) (4.12)
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(b) π∗ (Ei) <∞, then

π∗ (Ei) = inf
{Hik}, Ei

∑
k>1

ν (Hik) (4.13)

then there ∃ {Hik} ∈ a,Ei ⊆
⋃
k>1

Hik such that

π∗ (Ei) = inf
{Hik}, Ei

∑
k>1

ν (Hik) 6
∑
k>1

ν (Hik) 6 π∗ (Ei) +
ε

2i
(4.14)

{Hik} is a covering of E, then

π∗ (E) 6
∑
i,k

ν (Hik) 6
∑
i>1

(
π∗ (Ei) +

ε

2i

)
6
∑
i>1

π∗ (Ei) + ε (4.15)

so
π∗ (E) 6

∑
i>1

π∗ (Ei) (4.16)

Step 2

Definition 4.3 (Measurable set M). A set called measurable set M if A ∈ M ∀E ∈ Ω, we have
that

π∗ (E) = π∗
(
E
⋂
A
)

+ π∗
(
E
⋂
Ac
)

(4.17)

Theorem 4.3. If M definited as Def 4.3, then

1. M ⊇ a

2. M is a σ−algebra

Remark 4.1.

E ⊆ (E ∩A) ∪ (E ∩Ac)⇒ π∗ (E) 6 π∗ (E ∩A) + π∗ (E ∩Ac) (4.18)

so we only to check ≥ in Eq 4.17

Proof. π∗ is an outer measurable by Thm 4.1, then by subadditive of outer measure.

Now we proof Thm 4.3.

Proof.

1. a ∈M

Suppose that A ∈ a, E ∈ Ω, we will show that

π∗ (E) > π∗ (E ∩A) + π∗ (E ∩Ac) (4.19)

assume that π∗ (E) <∞, given ε, ∃ {Ei} , E, such that Ei ∈ a,E ⊆
⋃
i>1

Ei, then

π∗ (E) 6
∑
i>1

ν (Ei) 6 π∗ (E) + ε (4.20)
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Ei ∩A ∈ a,E ∩A ⊆
⋃
i>1

(Ei
⋂
A), so

π∗ (E ∩A) 6
∑
i>1

ν
(
Ei
⋂
A
)

π∗ (E ∩Ac) 6
∑
i>1

ν
(
Ei
⋂
Ac
) (4.21)

so

π∗ (E ∩A) + π∗ (E ∩Ac) 6
∑
i>1

ν
(
Ei
⋂
A
)

+
∑
i>1

ν
(
Ei
⋂
Ac
)
≤
∑
i>1

ν (Ei) 6 π∗ (E) + ε

(4.22)

2. M is σ-algebra.

We need to show that

(a) Ω ∈M

It is clearly that:
π∗ (E) = π∗ (E ∩ Ω) + π∗ (E ∩ Ωc) (4.23)

(b) A ∈M⇒ Ac ∈M

∵ π∗ (E) = π∗ (E ∩A) + π∗ (E ∩Ac) (4.24)

(c) Ai ∈M⇒
⋃
i>1

Ai ⊆M

Finite union is closed: A,B ∈ F ⇒ A
⋃
B ∈M. Let’s take E ⊆ Ω. We will proof that

π∗ (E) > π∗
(
E ∩

(
A
⋃
B
))

+ π∗
(
E ∩

(
A
⋃
B
)c)

(4.25)

∵ A ∈M,

∴ π∗ (E) = π∗
(
E
⋂
A
)

+ π∗
(
E
⋂
AC
)

(4.26)

∵ B ∈M

∴ π∗ (E\A) = π∗ (E\A ∩B) + π∗ (E\A ∩Bc)

= π∗ (E\A ∩B) + π∗
(
E\
(
A
⋃
B
)) (4.27)

then
π∗ (E) = π∗ (E ∩A) + π∗ (E\A ∩B) + π∗ (E\ (A ∪B)) (4.28)

We want to show

π∗ (E ∩A) + π∗ (E\A ∩B) > π∗ (E ∩ (A ∪B)) (4.29)

By π∗ is subadditive, we only to show that

E ∩ (A ∪B) ⊆ (E ∩A) ∪ (E\A ∩B) (4.30)

this is because

E ∩ (A ∪B) = {[E ∩ (A ∪B)] ∩A}︸ ︷︷ ︸
⊆E∩A

⋃
{[E ∩ (A ∪B)] ∩Ac}︸ ︷︷ ︸
⊆(E∩Ac)∩B=(E\A)

⋂
B

(4.31)
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Then Eq 4.25 holds. So M is closed by finite(countable) union.

Now, we will show that countable infinite union is also closed. Ai ∈M, we want to show
A =

⋃
j>1

Aj ∈M, take E ⊆ Ω,

π∗ (E) > π∗ (E ∩A) + π∗ (E ∩Ac) (4.32)

by Eq. 4.25, ∀ n we know that

π∗ (E) = π∗

E ∩
 n⋃
j=1

Aj

+ π∗

E ∩
 n⋃
j=1

Ac
j


≥ π∗

E ∩
 n⋃
j=1

Aj

+ π∗ (E\A)

(4.33)

≥ holds in Eq 4.33 because (E\A) ⊆

(
E\

(
n⋃
j=1

Aj

))
.

Now, we define

F1 = A1

F2 = A1\A2

F3 = A1\ (A2 ∪A3)

...

Fn = A1\ (A2 ∪ · · · ∪An−1)
...

(4.34)

It is clear that
n⋃
i=1

Ai =

n⋃
j=1

Fj (4.35)

where Fj ∩ Fk = ∅, Fj ∈M.

Then Eq 4.33 can be written as

π∗ (E) > π∗

E ∩ n∑
j=1

Fj

+ π∗ (E\A) (4.36)

By Remark 4.2, we have

π∗ (E) > π∗

E ∩
 n∑
j=1

Fj

+ π∗ (E\A)

=

n∑
j=1

π∗ (E ∩ Fj) + π∗ (E\A)

(4.37)
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∵ n is any number in Remark 4.2 , ∴ π∗

(
E ∩

∞∑
j=1

Fj

)
=
∞∑
j=1

π∗ (E ∩ Fj), by π∗ is

subadditive

π∗ (E) > π∗

E ∩∑
j

Fj

+ π∗ (E\A)

=
∑
j>1

π∗ (E ∩ Fj) + π∗ (E\A)

> π∗

⋃
j>1

(E ∩ Fj)

+ π∗ (E\A)

=> π∗

E ∩
⋃
j>1

Fj

+ π∗ (E\A)

= π∗ (E ∩A) + π∗ (E\A)

(4.38)

So M is a σ−algebra.

Remark 4.2. ∀n, we have that

π∗

E ∩ n∑
j=1

Fj

 =
n∑
j=1

π∗ (E ∩ Fj) (4.39)

where Fj defined as Eq 4.34.

Proof. By induction

1. n = 1, Eq 4.39 holds

2. Support n holds then we will proof n+ 1 holds. Fk ∈M, Fn+1 ∈M, we have that

π∗

E ∩ n+1∑
j=1

Fj

 = π∗

E ∩ n+1∑
j=1

Fj

 ∩ Fn+1

+ π∗

E ∩ n+1∑
j=1

Fj

 ∩ F c
n+1


= π∗ (E ∩ Fn+1) + π∗

E ∩ n∑
j=1

Fj


︸ ︷︷ ︸

by assumption =
n∑
j=1

π∗(E∩Fj)

=

n+1∑
j=1

π∗ (E ∩ Fj)

(4.40)

18



By Thm 4.3 we have that M ⊇ F(a).

Step 3

Theorem 4.4. π∗ : M→ R+ ∪ {+∞} is σ− additive, then

π∗ (A) = ν (A) , ∀A ∈ a (4.41)

Remark 4.3. Eq 4.41 is also
π∗|a = v (4.42)

Eq 4.2 holds because Thm 4.3, a ∈M.

Proof. (Thm 4.4)

1. π∗ (A) = ν (A) , ∀A ∈ a

(a) check π∗ (A) 6 ν (A)

Let’s A︸︷︷︸
E1

, ∅︸︷︷︸
E2

, ∅︸︷︷︸
E3

, · · ·︸︷︷︸
Ej

π∗ (A) = inf
{Ei},A

∑
i

ν (Ei) 6
∑
i

ν (Ei) = ν (A) (4.43)

(b) check π∗ (A) > ν (A)

Let’s take

F1 = E1

F2 = E2\E1

F3 = E3\ (E1 ∪ E2)

...

Fn = En\ (E1 ∪ E2 ∪ · · · ∪ En−1)
...

(4.44)

Fj ∈ a,
⋃
j
Fj =

⋃
j
Ej , Fj ∩ Fk = ∅, A ⊆

⋃
j>1

Fj , so A =
∑
j
Fj ∩A ∈ a.

Because ν is σ−additive we have that

ν (A) =
∑
j>1

ν (Fj ∩A) (4.45)

∵ Fj ⊆ Ej
ν (A) =

∑
j>1

ν (Fj ∩A) 6
∑
j>1

ν (Ej) (4.46)

so
ν (A) 6 inf

{Ei},A

∑
j>1

ν (Ej) = π∗ (A) (4.47)
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Then, we can get
π∗ (A) = ν (A) , ∀A ∈ a (4.48)

2. π∗|M is σ−additive

Suppose that Aj ∈M, Aj ∩Ak = ∅, we want to proof that

π∗
(∑

Aj

)
=
∑
j>1

π∗ (Aj) (4.49)

(a) check π∗ (
∑
Aj) 6

∑
j>1

π∗ (Aj) by π∗ is an outer measure, π∗ is subadditive

(b) check π∗ (
∑
Aj) >

∑
j>1

π∗ (Aj)

by π∗ is an outer measure, π∗ is monotone

π∗

∑
j>1

Aj

 > π∗

 n∑
j=1

Aj

 (4.50)

by Remark 4.2, we have that

π∗

 n∑
j=1

Aj

 =

n∑
j=1

π∗ (Aj), ∀n (4.51)

so

π∗

∑
j>1

Aj

 >
∑
j>1

π∗ (Aj) (4.52)

Step 4

Definition 4.4. Ω is σ-finite(µ1) if Ej ↑ Ω, µ1 (Ej) <∞, ∀j, Ej ∈ a.

Theorem 4.5 (Uniqueness). Suppose that µ1, µ2 : F (a) → R+ ∪ {+∞} ,Ω is σ-finite(µ1), if
µ1|a = µ2|a, then

µ1 = µ2, on F(a) (4.53)

Definition 4.5. Ω, G ⊆ P (Ω) ,G is a monotone class if

1.
Aj ∈ G, j > 1, Aj ⊆ Aj+1 ⇒ A =

⋃
j>1

Aj = lim
j→∞

Aj ∈ G (4.54)

2.
Bj ∈ G, j > 1, Bj ⊇ Bj+1 ⇒ B =

⋂
j>1

Bj = lim
j→∞

Bj ∈ G (4.55)
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Theorem 4.6. Gα is a monotone class, α ∈ I, then the followings hold

1.
⋂
α∈I

Gα is a monotone class

2. c ⊆ P (Ω)⇒ G (c) =
⋂
α∈I

Gα , i.e. monotone classes generated by class c

Lemma 4.1. a ⊆ P (Ω) is an algebra, µ (a) is monotone class generated by algebra a, F (a) is a
σ−algebra generated by algebra a, then

µ (a) = F (a) (4.56)

Proof. It will proof in the next lecture.

Proof. (Thm 4.5) µ1, µ2 : F (a)→ R+∪{+∞}, µ1 (A) = µ2 (A) , ∀A ∈ a, Ω σ-finite, Ω =
⋃
j>1

Ej , Ej ∈

a, µj (Ej) <∞, then µ1 = µ2 on F(a).

Fix En, we denote that

Bn = {E ∈ F (a) , µ1 (E ∩ En) = µ2 (E ∩ En)} (4.57)

We claim that

1. Bn ⊇ a

2. Bn is a monotone class

We proof Bn is a monotone class.

1. ∀Aj ∈ Bn, Aj ↑ A =
⋃
j>1

Aj , then

µ1 (Aj ∩ En) = µ2 (Aj ∩ En) (4.58)

By Remark 3.1

µ1 (Aj ∩ En)→ µ1 (A ∩ En) , µ2 (Aj ∩ En)→ µ2 (A ∩ En) (4.59)

2. ∀Bj ∈ Bn, Bj ↓ B =
⋂
j>1

Bj , then

µ1 (Bj ∩ En) = µ2 (Bj ∩ En) (4.60)

By Remark 3.1

µ1 (Bj ∩ En)→ µ1 (B ∩ En) , µ2 (Bj ∩ En)→ µ2 (B ∩ En) (4.61)

So we can get that
Bn ⊇M (a) (4.62)

where M (a) is a monotone class generated by a. Then by Lemma 4.1

M (a) = F (a) (4.63)

21



And by Eq 4.57,
Bn (a) ⊆ F (a) (4.64)

so
Bn (a) = F (a) (4.65)

Finally, µ1 (A) = µ2 (A) ,∀A ∈ F (a), by Bn = F(a), then A ∈ Bn. Bj ↑ Ω, apply Lemma 3.1 again,
we have

µ1 (A) = µ2 (A) (4.66)
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Lecture 5

Monotone Classes

Definition 5.1. Given Ω, define M (a) ⊆ P(Ω) is a monotone class is

1. Aj ∈M, Aj ↑ A

(
Aj ⊆ Aj ,

⋃
j>1

Aj = A

)
⇒ A ∈M

2. Aj ∈M, Aj ↓ A

(
Aj ⊇ Aj ,

⋂
j>1

Aj = A

)
⇒ A ∈M

Remark 5.1.

1. F is σ-filed(σ-algebra) ⇒ F is a monotone class

2. Mα ⊆ P (Ω) , (α ∈ I) is monotone class, then M =
⋂
α∈I

Mα is a monotone class.

Notation 5.1. (Smallest monotone class contain c) M(c) is a monotone class generated by c if

c ⊆M(Ω),M (c) =
⋂
α∈I

Mα (5.1)

Definition 5.2. E ⊆M(a), the set G(E) is defined as below

G (E) = {F ∈M (a) , E\F,E ∩ F, F\E ∈M (a)} (5.2)

Lemma 5.1.

1. If E ∈ a⇒ G(E) ⊇M(a)

2. If E ∈M(a)⇒ G(E) ⊇M(a)

Proof.

1. E ∈ a, we want to show that

(a) G(E) ⊇ a

Take H ∈ a ⊆M(a), then

E\H︸ ︷︷ ︸
∈ a

, E ∩H︸ ︷︷ ︸
∈ a

, H\E︸ ︷︷ ︸
∈ a

∈ G (a) (5.3)

so H ∈ G (E), then a ⊆ G (E)

(b) G(E) is a monotone class

Suppose that Hk ↑ H, Hk ∈ G (E),

∵ E\Hk ∈M (a) , E\Hk → E\H,∴ E\H ∈M (a) (5.4)
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∵ E ∩Hk ∈M (a) , E ∩Hk → E ∩H,∴ E ∩H ∈M (a) (5.5)

∵ Hk\E ∈M (a) , Hk\E → H\E,∴ H\E ∈M (a) (5.6)

By Eq 5.6, H ∈M(a), and by the definition 5.2, H ∈ G(E). So G(E) is a monotone class.
We also get that G(E) ⊇M(a).

2. E ∈M(a), we want to show that

(a) G(E) is a monotone class

E ∈M(a), suppose Hk ∈ G (E) , Hk ↑ H

∵ E\Hk ∈M (a) , E\Hk ↓ E\H ∴ E\H ∈M (a) (5.7)

Similarity:
E ∩H ∈M (a) (5.8)

H\E ∈M (a) (5.9)

then we can get H ∈ G (E), so G (E) is a monotone class.

(b) G(E) ⊇ a

We need to show H ∈ a⇒ H ∈ G(E).

By Lemma 5.1.1, we can get that

G(H) ⊇M(a) (5.10)

∵ E ∈ M(a),∴ E ∈ G(H), by the Def 5.2, H\E,H ∩ E,E\H ∈ M (a), so we can get
a ∈ G (E)

Theorem 5.1. a is a algebra, a ⊆ P(Ω). F(a) is a σ-algebra generated by a, M(a) is a monotone
class generated by a, then

F(a) = M(a) (5.11)

Proof. By remark 5.1, F(a) is a monotone class, by Notation 5.1 F(a) ⊇ a and F(a) ⊇M(a).

So we have to show that
F(a) ⊆M(a) (5.12)

We will show that

1. M(a) is a algebra

(a) Ω ∈M (a) by Ω ⊆ a

(b) E ∈M(a)⇒ Ec ∈M(a)

By Lemma 5.1.1, let E = Ω, then M(a) ⊆ G(Ω). ∵ E ∈M(a), so E ∈ G(Ω) . By Definition
5.2, G (Ω) = {E ∈M (a) , Ec, E,∅ ∈M (a)}
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(c) E,F ∈M (a)⇒ E ∩ F ∈M (a)

By Lemma 5.1.2, G (E) ⊇M (a), so F ∈ G(E).

By Def 5.2 F ∈ G (E) = {F ∈M (a) , F\E,F ∩ E,E\F ∈M (a)}, so E
⋂
F ∈M(a)

2. M(a) is a σ-algebra i.e. Aj ∈M (a) , j > 1 ⇒
⋃
j>1

Aj ∈M (a)

By M(a) is a algebra, so
n⋃
j=1

Aj ∈M (a).

n⋃
j=1

Aj ↑
⋃
j>1

Aj and M(a)is a monotone class, so
⋃
j>1

Aj ∈M (a).

So F(a) ⊆M(a).

Above all,
F(a) = M(a) (5.13)
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Lecture 6

The Lebesgue Measure I

Definition 6.1. S ⊆ P(R), we define S as below:

S = {∅,R, (a, b] , (a,∞) , (−∞, b]} (6.1)

Remark 6.1. S as above, then S is a semialgebra

Proof. by Def 2.1.

Definition 6.2. µ : S→ R+
⋃
{+∞}, additive, and

µ (∅) = 0, µ ((a, b]) = b− a, µ ((−∞, b]) = +∞, µ (R) = +∞ (6.2)

Theorem 6.1. µ is additive on a semialgebra S and defined as Def 6.2, then µ is σ−additive, i.e.

A =
∑
j>1

Aj ⇒ µ (A) =
∑
j>1

µ (Aj), A,Aj ∈ S (6.3)

Remark 6.2. It is difficult to prove Thm 6.1 (a, b]∪ (c, d] is not in the semialgebra S. But, S→ a(S)
with respect to µ→ ν.

Proof.

1.

∵ A =
∑
j>1

Aj ⊇
n∑
j=1

Aj (6.4)

By ν is additive ⇒ ν is monotone & subadditive,

∴ ν (A) > ν

 n∑
j=1

Aj

 =

n∑
j=1

ν (Aj), ∀n (6.5)

so
∴ ν (A) >

∑
j>1

ν (Aj) (6.6)

2. (a) Assume that A = (a, b] , Aj = (aj , bj ] , A =
∑
j>1

Aj , we want to show that

ν (A) = b− a 6
∑
j>1

(bj − aj) =
∑
j>1

ν (Aj) (6.7)
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For any given ε > 0, we have that

[a+ ε, b] ⊆ (a, b] =
∑
j>1

(aj , bj ] ⊆
⋃
j>1

(
aj , bj +

ε

2j

)
(6.8)

By a set K is compact i.e. K is closed and bounded ⇒ Any open cover for K has a finite
subcover

[a+ ε, b] ⊆
⋃
k>1

(
ajk, bjk +

ε

2jk

)
(6.9)

By ν is additive ⇒ ν is monotone & subadditive, we have

b− a− ε 6 ν ([a+ ε, b]) = ν

(
m⋃
k=1

(
ajk, bjk +

ε

2jk

))
6

m∑
k=1

ν
(
ajk, bjk +

ε

2jk

)
(6.10)

so we can get that

b− a− ε 6
m∑
k=1

(
bjk − ajk +

ε

2jk

)
6
∑
j>1

(
bj − aj +

ε

2j

)
=
∑
j>1

(b− a) + ε (6.11)

so Eq. 6.7 holds.

(b) General case A ∈ S, En = (−n, n] ↑ R.

A ∩ En =
∑
j>1

Aj ∩ En.

By ν is additive on a semi-algebra

ν (A ∩ En) =
∑
j>1

ν (Aj ∩ En) 6
∑
j>1

ν (Aj) (6.12)

By Remark 6.3, let n→∞, we have

ν (A) = lim
n→∞

ν (A ∩ En) 6
∑
j>1

ν (Aj) (6.13)

Remark 6.3. En = (−n, n] ↑ R, ν is additive on a semi-algebra then

ν (A) = lim
n→∞

ν (A ∩ En) (6.14)

Proof.

∵ En ↑ R,∴ A ∩ E ↑,∴ lim
n→∞

(A ∩ En) =
⋃
n>1

(A ∩ En) = A ∩

(⋃
n>1

En

)
= A (6.15)

ν is additive,

ν (A) = ν

(⋃
n>1

A ∩ En

)
= ν

(
lim
n→∞

A ∩ En
)
why
= lim

n→∞
ν (A ∩ En) (6.16)

why , because we will check via Def 6.1 except A = (a, b]
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1. A = ∅

2. A = R

3. A = (a,∞)

(a) left hand of why in Eq. 6.16

∵ A ∩ En = (a,+∞) ∩ (−n, n) =

{
(a, n)

(−n, n)
a > −n
a < −n (6.17)

∴ lim
n→∞

(A ∩ En) = (−∞,+∞) = R (6.18)

by Def 6.2

µ
(

lim
n→∞

(A ∩ En)
)

= µ (R) = +∞ (6.19)

(b) right hand of why in Eq. 6.16

∵ ν (A ∩ En) = ν

({
(a, n)

(−n, n)
a > −n
a < −n

)
=

{
n− a

2n
a > −n
a < −n (6.20)

∴ lim
n→∞

ν (A ∩ En) = lim
n→∞

{
n− a

2n
a > −n
a < −n = +∞ (6.21)

So Eq 6.16 holds.

4. A = (−∞, b]
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Lecture 7

The Lebesgue Measure II

S = {∅,R, (a, b] , (a,∞) , (−∞, b]} , µ : a (S)→ R+ ∪ {+∞} ,

µ ((a, b]) = b− a (7.1)

Theorem 7.1. µ is σ-additive on a(S)

Remark 7.1. Ek ∈ (−N,N ], µ is finite and µ is continuous from below at ∅ (i.e. Ek ∈ a,Ek ↓
∅⇒ µ (Ek)→ 0), by Lemma 3.1 can imply Thm 7.1 hold.

Proof. Now we want to show that Ek ↓ ∅, Ek ∈ a,Ek ∈ (−N,N ], then

µ (Ek)→ 0 (7.2)

If not, ∃δ > 0, ∃Ek ↓ ∅, Ek ∈ a,Ek ∈ (−N,N ] , such that

µ (Ek) > 2δ > 0 (7.3)

If ∃ a compact set {Gk} , s.t. Gk ⊇ Gk+1, Gk ⊆ Ek, but

∅ 6=
⋂
k>1

Gk ⊆
⋂
k>1

Ek = ∅ (7.4)

Then, we will find a sequence of compact sets {Gk} by induction.

Our goal is : Ek ⊆ (−N,N ] , µ (En) > 2δ, (Fk)16k6MGk = Fk. Fk satisfy the flowing three conditions:

1. Fk ⊆ Ek, 1 6 k 6 n− 1

2. Fk+1 ⊆ Fk, 1 6 k 6 n− 1

3. µ (En\Fn) 6 δ
2 + δ

4 + · · ·+ δ
2n = δ

Now,

1. by E1 ∈ a, then E1 can be written as

E1 =

n1∑
j=1

(a1,j , b1,j ] (7.5)

define F1 as

F1 =

n1∑
j=1

(a1,j + ε1, b1,j ] ∈ a (7.6)

µ (E1\F1) = m1ε1.

We will pick a small enough ε to meet µ (E1\F1) 6 δ
2 , i.e. m1ε1 6 δ

2 , and b1,j − a1,j >

ε1, i.e. min
j
{b1,j − a1,j} > ε1, so we choose 0 < ε1 6 min

{
δ

2m1
, min
16j6m1

{b1,j − a1,j}
}

.
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2. We will show µ (E2 ∩ F1) have a lower positive bound , i e. E2 ∩ F1 6= ∅

2δ 6 µ (E2) = µ (E2 ∩ F1) + µ (E2\F1)︸ ︷︷ ︸
6µ(E1\F1)6 δ

2

⇒ µ (E2 ∩ F1) > 2δ − δ

2
> 0 (7.7)

by E2 ∩ F1 6= ∅, E2 ∩ F1 ∈ a, then E2 ∩ F1 can be written as

E2 ∩ F1 =

m2∑
j=1

(a2,j , b2,j ] (7.8)

Define F2 :

F2 =

m2∑
j=1

(a2,j + ε2, b2,j ] (7.9)

choose a small enough ε2 satisfies that

F2 ⊆ F2 ⊆ E2 ∩ F1 (7.10)

then F2 ⊆ F1, F2 ⊆ E2, and F2 ⊆ F1 ⇒ F2 ⊆ F1, then we get that

F2 ⊆ F2 ⊆ E2

F2 ⊆ F1

µ (E2\F2) 6
δ

2
+
δ

4

(7.11)

3. assume the Fn satisfies the three conditions as our goal above

2δ 6 µ (En+1) = µ (En+1 ∩ Fn) + µ (En+1\Fn)︸ ︷︷ ︸
µ(En\F )6δ

⇒ µ (En+1 ∩ Fn) > δ > 0 (7.12)

by En+1 ∩ Fn 6= ∅ and En+1 ∩ Fn ∈ a then

En+1 ∩ Fn =

kn+1∑
j=1

(an+1,j , bn+1,j ] (7.13)

then we define Fn+1 as

Fn+1 =

kn+1∑
j=1

(an+1,j + εn+1, bn+1,j ] (7.14)

choose a small enough εn+1 satisfies that

Fn+1 ⊆ Fn+1 ⊆ En+1 ∩ Fn (7.15)

then Fn+1 ⊆ En+1, Fn+1 ⊆ Fn, and Fn+1 ⊆ Fn, let εn+1 = δ
kn+1·2n+1 , then µ ((En+1 ∩ Fn) \Fn+1) 6

δ
2n+1 .
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Then

µ (En+1\Fn+1) = µ ((En+1 ∩ Fn) \Fn+1) + µ ((En+1\Fn) \Fn+1)︸ ︷︷ ︸
6 µ (En+1\Fn)︸ ︷︷ ︸

6µ(En\Fn)6 δ2+···+ δ
2n

≤ δ

2n+1
+
δ

2
+
δ

4
+ · · ·+ δ

2n
= δ

(
1−

(
1

2

)n+1
) (7.16)

define Gk = Fk, then Gk+1 = Fk+1 ⊆ Fk = Gk Gk : satisfies that

(a) Gk+1 ⊆ Gk
(b) Gk compact

(c) Gk 6= ∅

Why Gk 6= ∅ because:

2δ 6 µ (Ek) = µ (Ek\Fk) + µ (Ek ∩ Fk) 6 δ + µ (Fk)⇒ µ (Fk) ≥ δ (7.17)

Then Fk 6= ∅⇒ Gk = Fk 6= ∅.

But
∅ 6=

⋂
k>1

Gk ⊆
⋂
k>1

Ek = ∅ (7.18)

Above all, Ek ∈ (−N,N ], µ is finite and µ is continuous from below at ∅, then Lebesgue µ is
σ-additive on a(S).
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Lecture 8

Complete Measures

Definition 8.1. F ⊆ P(Ω) is σ-algebra, µ : F → R+
⋃
∞ is additive. (µ,F) is complete if : A ∈ F

such that µ(A) = 0, ∀E ⊆ A then E ∈ F.

Remark 8.1. In Def 8.1, by monotone µ (E) = 0.

Next, our goal is: F ⊇ F, and µ : F → R+ ∪ {+∞}:
{
µ|F = µ,(
µ,F

)
is complete

Definition 8.2. F = {A ∪N, where A ∈ F and N ⊆ E ∈ F, such that µ (E) = 0}

Claim 8.1. F is a σ-algebra.

Proof. We will check :

1. Ω ∈ F, ∵ Ω = Ω ∪∅,∅ ⊆ ∅ ∈ F

2. A ∈ F ⇒ Ac ∈ F

∵ A ⊆ F, A = E ∪N where E ∈ F, N ⊆ H ∈ F such that µ (H) = 0

Ac = (E ∪N)c

= [(E ∪N)c ∩H]︸ ︷︷ ︸
⊆H

∪ [(E ∪N)c ∩Hc]︸ ︷︷ ︸
Ec ∩N c ∩Hc︸ ︷︷ ︸
⊆Ec∩Hc∈F

(8.1)

by Def 8.2, Ac ∈ F.

3. Aj = Ej ∪Hj where Ej ∈ F, Hj ⊆Wj where wj ∈ F, µ (Wj) = 0 then
⋃
j>1

Aj ∈ F

∵
⋃
j>1

Aj =
⋃
j>1

(Ej ∪Hj)

=
⋃
j>1

Ej︸ ︷︷ ︸
F

∪
⋃
j>1

Hj︸ ︷︷ ︸
⊆

⋃
j>1

Wj,W

(8.2)

and µ (W ) = µ

(⋃
j>1

Wj

)
6
∑
j>1

µ (Wj) = 0

We want to define µ on F :

∵ µ (A ∪N)︸ ︷︷ ︸
>µ(A)=µ(A)

6 µ (A ∪ E) 6 µ (A) + µ (E)︸ ︷︷ ︸
=µ(A)+µ(E)=µ(A)

(8.3)

So we give the following definition.
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Definition 8.3. µ (A ∪N) = µ (A)

Proof. By the Def 8.3

1. check µ is well defined

Assume that A ∪ N = B ∪M, where A,B ∈ F, N ⊆ E ∈ F where µ (E) = 0, M ⊆ F ∈
F where µ (F ) = 0. We need to show that µ (A) = µ (B).

∵ A ⊆ A ∪N = B ∪M ⊆ B ∪M (8.4)

by µ is σ−additive, then µ is monotone,

µ (A) 6 µ (B ∪ F ) 6 µ (B) + µ (F ) = µ (B) (8.5)

similarly, µ (B) 6 µ (A).

2. check µ|F = µ

by A ∈ F, A = A
⋃
∅ then µ (A ∪∅) = µ (A)

3. check µ is σ−additive i.e. Aj ∈ F, A =
∑
j>1

Aj ⇒ µ (A) =
∑
j>1

µ (Aj)

∵ Aj ∈ F,∴ Aj = Ej ∪Nj where Ej ∈ F, Nj ⊆ Hj ⊆ F where µ (Hj) = 0 (8.6)

∴ A =
∑
j>1

Aj =
∑
j>1

Ej ∪
∑
j>1

Nj

∴ µ (A) = µ

∑
j>1

Ej

 =
∑
j>1

µ (Ej) =
∑
j>1

µ (Aj) (8.7)

4. check
(
µ,F

)
is complete, i.e. F is µ-complete.

Assume that A ⊆ E ∈ F where µ (E) = 0. We have to show that A ∈ F.

∵ E ∈ F ∴ E = B ∪N where B ∈ F, N ⊆ H ∈ F where µ (H) = 0

A = ∅ ∪A, ∅ ∈ F,A ⊆ E ⊆ B ∪N ⊆ B︸︷︷︸
∈F

∪ H︸︷︷︸
∈F

∈ F, so µ (B ∪N) 6 µ (B) + µ (N) = 0 by

µ (E) = µ (B) = 0, µ (A) 6 µ (B)⇒ µ (A) = 0, so A ∈ F

5. check µ is unique. µ : F → R+
⋃
{+∞},

And, extension Fµ = {E ∪N, where E ∈ F, N ⊆ H ∈ F, where µ (H) = 0}, µ : Fµ → R+ ∪
{+∞}.

Assume that ν : Fµ → R+ ∪ {+∞}, and ν (A) = µ (A) ,∀A ∈ F. Then we want show that
ν (B) = µ (B) ,∀B ∈ Fµ.

Let B ∈ Fµ, B = E ∪ N where E ∈ F, N ⊆ H ∈ F, where µ (H) = 0, ν (H) = µ (H) =
µ (H) = 0.

fix B, µ (B) = µ (E) =︸︷︷︸
by E ∈F

v (E) 6 ν (B)

ν (B) = ν (E ∪N) 6 ν (E ∪H) 6 ν (E) + ν (H) = ν (E) = µ (B), then

ν (B) = µ (B) (8.8)
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π∗ : M→ R+ ∪ {+∞}.

Claim 8.2. M is π∗-complete.

Proof. π∗-complete, i.e. A ⊆ B,B ⊆M, π∗ (B) = 0⇒ A ∈M

We have to show ∀E ⊆ Ω, π∗ (E) > π∗ (E ∩A) + π∗ (E ∩Ac)

1. ∵ E ∩A ⊆ A ⊆ B ∴ π∗ (E ∩A) 6 π∗ (B) = 0

2. π∗ (E ∩Ac) 6 π∗ (E)

So, A ∈M
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Lecture 9

Approximation Theorems

Goal: π∗ (A) <∞, A ∈M, F ∈ F, where F is σ − algebra,A ⊆ F, π∗ (A) = π∗ (F ).

Theorem 9.1. a ⊆ P(Ω), where a is an algebra, F is a σ−algebra generated by a, F(a) = F, we
have µ : F → R+, where µ is a measure, and µ|a = v, A ⊆ F, µ(A) <∞,∀ε > 0, there

∃ E ∈ a, s.t. µ (E\A) + µ (A\E) < ε (9.1)

Proof. A ∈ F, µ(A) <∞, by Thm 4.1, then

µ (A) = π∗ (A) = inf
{Aj}⊇A,Aj∈a

∑
ν (Ai) (9.2)

but µ here is π in Thm 4.1.

∀ε,∃ {Ai} Ai ∈ a, A ⊆ ∪Ai, s.t.

π∗ (A) 6
∑
j>1

ν (Ai) 6 π∗ (A) + ε (9.3)

so
∃ m0, s.t.

∑
i>m0

ν (Ai) 6 ε (9.4)

Let E =
m0⋃
i=1

Ai ∈ a, then we need to proof the following:

π∗ (E\A) 6 ε, π∗ (A\E) 6 ε (9.5)

By Thm 4.2, π∗ (A) is an out-measure, π∗ (A) is monotone and by Tmm 4.4, π∗ (A) is σ-additive.

∴ π∗ (E\A) = π∗

(
n0⋃
i=1

Ai\A

)

6 π∗

(⋃
i>1

Ai\A

)

= π∗

(⋃
i>1

Ai

)
− π∗ (A) by π∗ (A) = µ (A) <∞

6
∑
i>1

π∗ (Ai)− π∗ (A)

=
∑
i>1

ν (Ai)− π∗ (A) by π∗|F = µ, µ|a = v, Ai ∈ a ∴ π∗ (Ai) = ν (Ai)

≤ ε

(9.6)
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On the other hand,

π∗ (A\E) = π∗

(
A\

n0⋃
i=1

Ai

)
6 π∗

⋃
i>1

Ai\
n0⋃
j=1

Aj

 6 π∗

 n0⋃
j>n0+1

Aj

 6
∑
j>m0

 n0⋃
j>n0+1

Aj

 6 ε (9.7)

Remark 9.1. Ω is σ−finite(µ) ( i.e. Ω =
⋃
i>1

Ei where Ei ∈ a, µ (Ei) < ∞), µ : F → R+ ∪

{+∞} , A ∈ F,∀ε > 0,∃E ∈ a, such that

µ (E\A) + µ (A\E) < ε. (9.8)

Ω is topological space (open, closed sets), B is Borel σ-algebra set (the smallest σ set which contains
all open, closed sets in Ω).

Definition 9.1 (Regular Measure). µ : F → R+ ∪ {∞} where B ⊆ F, is a measure. Then µ is a
regular measure if: ∀A ∈ F,∀ε > 0, there ∃F ⊆ A ⊆ G, where F ∈ B closed, G ∈ B open, such that:

µ (G\F ) 6 ε (9.9)

Remark 9.2. µ <∞ is not necessary.

Remark 9.3. µ (G\A) 6 ε and µ (A\F ) 6 ε.

Remark 9.4. B ⊆ F, µ is regular ⇒ F ⊆ Bµ

Proof. A ∈ F, n ≥ 1, by µ is regular, then ∃Fn, Gn ∈ B, Fn ⊆ B, such that µ (Fn\Gn) 6 1
n .

Let’s define F =
⋃
n>1

Fn ∈ B, G =
⋂
n>1

Gn ∈ B, then F ⊆ Fn ⊆ A ⊆ Gn ⊆ G, i.e. F ⊆ A ⊆ G. By

Gn\

⋃
k>1

Fk

 = Gn ∩

⋃
k>1

Fk

c

= Gn ∩

⋂
k>1

F c
k

 =
⋂
k>1

(Gn ∩ F c
k ) =

⋂
k>1

(Gn\Fk) ⊆ Gn\Fn (9.10)

then

µ (G\F ) 6 µ

Gn\
⋃
k>1

Fk

 6 µ (Gn\Fn) 6
1

n
→ 0 (9.11)

Finally,

A = F︸︷︷︸
∈B

∪ (A\F )︸ ︷︷ ︸
⊆G\F∈B

∈ B⇒ A ∈ B (9.12)
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Theorem 9.2. L is a σ-algebra generated by a(S), where S is a set which defined as in Lecture 7,
i.e. S = {∅,R, (a, b] , (a,∞) , (−∞, b]} . µ : L→ R+ ∪ {∞}, is Lebesgue measure, then µ is regular
measure. (if A ∈ L, there ∃F closed, G open, F ⊆ A ⊆ G such that µ (G\F ) 6 ε).

Proof.

1. goal: A ∈ L, ε > 0, there exists G open, such that A ⊆ G, µ (G\A) 6 ε.

Denote En = [−n, n], An = A ∩En, then µ (An) <∞. By the construction of Caratheodory
Thm 4.1, there ∃{Bn,k}k>1, Bn,k ∈ a,An ⊆

⋃
k>1

Bn,k, such that

µ (An) 6
∑
k>1

µ (Bn,k) 6 µ (An) +
ε

2n
(9.13)

By Bn,k ∈ a, ∴ Bn,k =
ln,k∑
j=1

In,k,j ⊆ Gn,k, where In,k,j = (an,k,j , bn,k,j ].

Then we denote cn,k,j = bn,k,j + δn,k,j︸ ︷︷ ︸
>0

, Jn,k,j = (an,k,j , cn,k,j), then Bn,k ⊆ Gn,k =
ln,k⋃
j=1

Jn,k,j ,

then

µ (Gn,k) 6

ln,k∑
j=1

µ (In,k,j) + δn,k,j =

ln,k∑
j=1

µ (In,k,j)︸ ︷︷ ︸
µ(Bn,k)

+

ln,k∑
j=1

δn,k,j︸ ︷︷ ︸
6 ε

2n2k

(9.14)

∵ Bn,k ⊆ Gn,k, and Gn,k open set ∴ µ (Gn,k) 6 µ (Bn,k) + ε
2n2k

. ∵ An ⊆
⋃
k>1

Bn,k, Bn,k ⊆

Gn,k ∴ An ⊆
⋃
k>1

Gn,k = Gn.

On the other hand,

µ (Gn) 6
∑
k>1

µ (Gn,k) 6
∑
k>1

µ (Bn,k) +
ε

2n
6 µ (An) +

2ε

2n
(9.15)

∵ An ⊆ Gn open, and µ (Gn) 6 µ (An) + 2ε
2n .

Then define G =
⋃
n>1

Gn, open and A =
⋃
n>1

An, A ⊆ G.

∵
⋃
n>1

Gn\
⋃
k>1

Ak =
⋃
n>1

Gn ∩

⋃
k>1

Ak

c

=
⋃
n>1

Gn ∩

⋂
k>1

Ack


=
⋂
k>1

(⋃
n>1

Gn
⋂
Ack

)
⊆

(⋃
n>1

Gn
⋂
Acn

)
=
⋃
n>1

Gn\An

(9.16)
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∴ µ (G\A) = µ

⋃
n>1

Gn\
⋃
k>1

Ak


6 µ

(⋃
n>1

Gn\An

)
by Eq. 9.16

6
∑
n>1

µ (Gn\An)

=
∑
n>1

[µ (Gn)− µ (An)] by µ (An) <∞

≤ 2ε

(9.17)

2. goal: A ∈ L, ε > 0, there exists F closed , such that F ⊆ A, µ (A\F ) 6 ε.

By above 1, ∃H, Ac ⊆ H, H open set, µ (H\Ac) 6 ε, then F = Hc ⊆ A, F closed .

Finally,

µ (A\F ) = µ (A ∩ F c) = µ (A ∩H) = µ (H ∩ (Ac)c) = µ (H\Ac) 6 ε. (9.18)

Remark 9.5. Fσ: countable union closed sets, Gσ: countable injection open sets. ∀A ∈ L there
∃R ∈ Fσ and S ∈ Gσ, such that

R ⊆ A ⊆ S, µ (S\R) = 0. (9.19)

38



Lecture 10

Integration: Measurable and Simple Functions

We now assume given (Ω,F, µ) where Ω is a space, F a σ−field of subsets of Ω and µ a measure on
F.

Before defining such an operator I, we examine the sort of properties I should have before we would
be justified in calling it an integral. Suppose that A is a class of functions f : Ω→ R, and I : A→ R
defines a real number for every f ∈ A. Then we want I to satisfy:

1. f ∈ A, f (x) > 0, all x ∈ Ω⇒ I (f) > 0, that is I preserves positivity

2. f, g ∈ A, α ∈ R⇒ αf + g ∈ A and

I (αf + g) = αI (f) + I (g) (10.1)

that is I is linear on A.

3. I is continuous on A in some sense, at least we would want to have I (fn)→ 0 as n→∞ for
any sequence decreasing with fn (x)→ 0 for all x in Ω.

These conditions are satisfied by the elementary integration process, but the Riemann integral does
not satisfy the following strengthened form of 3.

• 3′ If {fn} is an increasing sequence of functions in A, and

fn (x)→ f (x) for all x ∈ Ω (10.2)

then f ∈ A and F (fn)→ F (f) as n→∞

(a) Riemann integral (b) Lebesgue integration

Figure 1: Integration

1. Riemann integral ∫
f ≈

∑
f (xj) |Ij | (10.3)

2. Lebesgue integration

I (f) ≈
∑

ykµ (Ak) =
∑
k

ykµ
(
f−1 (Jk)

)
(10.4)

where Ak = f−1 (Jk).
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In defining measurability we will want to consider functions

f : Ω→ R ∪ {−∞,∞} = R (10.5)

It is possible to define the class of Borel sets B in R in terms of this topology. However, we adopt
the simple procedure of defining the class

B = {A ∪B,A ∈ B, B ⊆ {−∞,∞}} (10.6)

Proposition 10.1. B is aσ-algebra.

Definition 10.1. A function f : Ω→ R is said to be F−measurable if and only if

f−1 (A) ∈ F (10.7)

for all A ∈ B.

If there is only one σ−field F under discussion we may say that f is a measurable function.

Remark 10.1.
F ⊆ G (10.8)

Lemma 10.1. (Ω,F, µ) f : Ω→ R, f is measurable each of the following conditions is necessary
and sufficient:

1. f−1 ((−∞, x]) ∈ F, ∀x ∈ R, i.e. {ω ∈ Ω, f (ω) 6 x} ∈ F

2. f−1 ((−∞, x)) ∈ F, ∀x ∈ R, i.e. {ω ∈ Ω, f (ω) < x} ∈ F

3. f−1 ([x,∞)) ∈ F, ∀x ∈ R, i.e. {ω ∈ Ω, f (ω) ≥ x} ∈ F

4. f−1 ((x,∞)) ∈ F, ∀x ∈ R, i.e. {ω ∈ Ω, f (ω) > x} ∈ F

Proof. We only proof (1) in Lemma 10.1

1. ⇒ (−∞, x] ∈ B

2. ⇐ If we suppose that the condition is satisfied, and put

C =
{
A ∈ B, f−1 (A) ∈ F

}
(10.9)

then

(a) C is a σ-algebra

(b) C ⊇ G = {(−∞, x] , x ∈ R}

by a&b ,
C ⊇ F (G) ⊇ B (10.10)

then C is a σ-algebra.

• R ∈ C, f−1
(
R
)

=
{
ω ∈ Ω, f (ω) ∈ R

}
= Ω ∈ F

• A ∈ C⇒ Ac ∈ C, f−1 (A) ∈ F, so f−1 (Ac) ∈ f−1(A)c ∈ F
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• Aj ∈ C⇒
⋃
j>1

Aj ∈ C, then

f−1

⋃
j>1

Aj

 =
⋃
j

f−1 (Aj)︸ ︷︷ ︸
∈F

∈ F (10.11)

Given (Ω,F, µ) as above. If Ω =
n⋃
i=1

Ei and the sets Ei are disjoint (Ej ∩ Ek = ∅, j 6= k), then

E1, E2, ..., En are said to form a (finite) dissection of Ω. They are said to form an C-dissection if, in
addition Ei ∈ F(i = 1, 2, ..., n).

Definition 10.2 (Simple Function). A function f : Ω→ R is called F-simple if it can be expressed
as

f =

n∑
j=1

cj 1Ej , cj ∈ R (10.12)

where 1Ej ,Ω→ R,

ω 7→ 1Ej (ω) =

{
1,
0,

ω ∈ Ej
ω /∈ Ej

(10.13)

and
n∑
j=1

Ej = Ω, E0 = Ω\

(
n∑
j=1

Ej

)
∈ F.

If there is only one σ−field F under discussion we will talk of simple function rather than F-simple
functions.

f−1 (A) =
∑
k,ck

Ek ∈ F, A ∈ B, f : Ω→ R+, f =
n∑
j=1

cj1Ej , Ej ∈ F, {E1, ..., En} partition of Ω.

I (f) =
n∑
j=1

cjµ (Ej) (10.14)

where cj > 0.

If f =
m∑
k=1

dk1Fk .

Proposition 10.2. Ej◦ ∩ Fk◦ 6= ∅, then

n∑
j=1

cjµ (Ej) =

n∑
k=1

dkµ (Fk) (10.15)
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Proof.

µ (Ej) = µ

(
Ej ∩

(
m∑
k=1

Fk

))

= µ

(
m∑
k=1

(Ej ∩ Fk)

)

= µ (Ej) =

m∑
k=1

µ (Ej ∩ Fk)

(10.16)

then

n∑
j=1

cjµ (Ej) =

n∑
j=1

m∑
k=1

cjµ (Ej ∩ Fk)

=

n∑
j=1

m∑
k=1

dkµ (Ej ∩ Fk)

=
m∑
k=1

dkµ (Fk)

(10.17)

Proposition 10.3.

1. f : Ω→ R+ measurable then there exists (fn)n>1, fn simple functions, such that fn > 0, fn ↑
f

2. I (f) = lim
n

I (fn)

3. f : Ω → R measurable, f+ = max (f, 0) , f− = max (−f, 0) , f+, f− measurable then
f = f+ − f−, then

I (f) = I
(
f+
)
− I

(
f−
)

(10.18)

Example 10.1. Ω = (0, 1] , B, λ, E = Q ∩ Ω, f = 1Ec , i.e. f simple, then

I (f) = λ (Ec) = 1 (10.19)
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