Measure Theory

Lectures by Claudio Landim
Notes by Yao Zhang

Instituto de Matemática Pura e Aplicada, Spring 2018
1 Lecture 1 1

6 Lecture $6 \quad 26$
3
2 Lecture 2
3 Lecture 3 74 Lecture 4135 Lecture 523

7 Lecture 7
8 Lecture 8 32

9 Lecture 935
10 Lecture 10 39

Introduction

These lectures are mainly based on the books Introduction to measure and integration by S. Taylor published by Cambridge University Press.
These notes were live-TeXed, though I edited for typos and added diagrams requiring the TikZ package separately. I used the editor TeXstudio.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the material here should be credited to the lecturer, not to me.

Please email any corrections or suggestions to jaafar_zhang@163.com.

Acknowledgments

Thank you to all of my friends who will send me suggestions and corrections. My notes will be much improved due to your help.

I would like to especially thank the IMPA and Professor Landim who put their courses in website.

Lecture 1

Introduction: a Non-measurable Set

λ satisfies the flowing:
0. $\lambda: \mathcal{P}(\mathbb{R}) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$

1. $\lambda((a, b])=b-a$
2. $A \subseteq \mathbb{R}, A+x=\{x+y: y \in A\}, \forall A, A \subseteq \mathbb{R}, \forall x \in \mathbb{R}:$

$$
\begin{equation*}
\lambda(A+x)=\lambda(A) \tag{1.1}
\end{equation*}
$$

3. $A=\bigcup_{j \geqslant 1} A_{j}, \quad A_{j} \cap A_{k}=\varnothing$:

$$
\begin{equation*}
\lambda(A)=\sum_{k} \lambda\left(A_{k}\right) \tag{1.2}
\end{equation*}
$$

Definition 1.1. $x \sim y, x, y \in \mathbb{R}$ if $y-x \in \mathbb{Q} .[x]=\{y \in \mathbb{R}, y-x \in \mathbb{Q}\}$.

$$
\Lambda=\left.\mathbb{R}\right|_{\sim} \text {, only one point represents the equivalence class of } \Omega \text {, like } \alpha, \beta
$$

Ω is a class of equivalence class, if $\Omega \subseteq R, \Omega \subseteq(0,1)$
Claim 1.1. $\left\{\begin{array}{c}\Omega+q=\Omega+q \\ \Omega+q \cap \Omega+q=\varnothing\end{array} \quad q, p \in \mathbb{Q}\right.$
Proof. Assume that $\Omega+q \cap \Omega+q \neq \varnothing$ then, $x=\alpha+p=\beta+q, \alpha, \beta \in \Omega \Rightarrow \alpha-\beta=q-p \in \mathbb{Q} \Rightarrow$ $\alpha=\beta \Rightarrow[q \neq p, p, q \in \mathbb{Q} \Rightarrow(\Omega+q) \cap(\Omega+p)=\varnothing]$.

Claim 1.2. $\Omega+q \subseteq(-1,2)$, if $-1<q<1$.
then we can get

$$
\begin{equation*}
\sum_{\substack{q \in \mathbb{Q} \\-1<q<1}}(\Omega+q) \subseteq(-1,2) \tag{1.3}
\end{equation*}
$$

Claim 1.3. $E \subseteq F \Rightarrow \lambda(E) \leqslant \lambda(F)$
Proof. $\because E \subseteq F \therefore F=E \cup(F \backslash E), E \cap(F \backslash E)=\varnothing$, then $\lambda(F)=\lambda(E)+\lambda((F \backslash E)) \Rightarrow \lambda(F) \geqslant$ $\lambda(E)$.

Then,

$$
\begin{equation*}
\lambda\left(\sum_{\substack{q \in \mathbb{Q} \\-1<q<1}}(\Omega+q)\right) \leqslant \lambda((-1,2))=3 \tag{1.4}
\end{equation*}
$$

and,

$$
\begin{equation*}
\infty \cdot \lambda((\Omega+q))=\infty \cdot \lambda(\Omega) \leq 3 \Rightarrow \lambda\left(\sum_{\substack{q \in \mathbb{Q} \\-1<q<1}}(\Omega+q)\right)=0 \tag{1.5}
\end{equation*}
$$

Claim 1.4. $(0,1) \subseteq \sum_{\substack{q \in \mathbb{Q} \\-1<q<1}}(\Omega+q)$
Proof. \forall fixed $x \in(0,1), \exists \alpha \in[x] \cap \Omega, \alpha \in(0,1)$, and we know that $\alpha-x=q \in \mathbb{Q},-<q<1 \Rightarrow$ $x=\alpha+q, x \in \Omega+q$
But, we get that:

$$
\begin{equation*}
1=\lambda((0,1)) \leqslant \lambda\left(\sum_{q \in \mathbb{Q}} \Omega+q\right)=0 \tag{1.6}
\end{equation*}
$$

it is impossible.

Lecture 2

Classes of Subsets (Semi-algebras, Algebras and Sigma-algebras) and Set Functions

Definition 2.1. $\mathcal{S} \subseteq \mathcal{P}(\Omega), \mathcal{S}$ is semi-algebra if:

1. $\Omega \subseteq \mathcal{S}$
2. $A, B \in \mathcal{S} \Rightarrow A \bigcap B \in \mathcal{S}$
3. $\forall A \in \mathcal{S} \Rightarrow A^{c}=\sum_{i=1}^{n} E_{j}, \exists E_{1}, \cdots, E_{n} \in \mathcal{S}, E_{i}, E_{j}(i \neq j)$ disjoint sets, n is finite number

Example 2.1. $\Omega=\mathbb{R}, \mathcal{S}=\{\mathbb{R},\{(a, b), a<b, a, b \in \mathbb{R}\},\{(-\infty, b], b \in \mathbb{R}\},\{(a, \infty), a \in \mathbb{R}\}, \varnothing\}$, $(a, b]^{c}=(-\infty, a] \cup[b,+\infty)$

Example 2.2. $\Omega=\mathbb{R}^{2}$
$\mathcal{S}=\left\{\mathbb{R}^{2},\left\{\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right), a_{i}<b_{i}, a_{i}, b_{i} \in \mathbb{R},\left\{\left(-\infty, b_{1}\right] \times\left(-\infty, b_{2}\right], b_{i} \in \mathbb{R}\right\},\left\{\left(a_{1}, \infty\right) \times\left(a_{2}, \infty\right), a_{i} \in \mathbb{R}\right\}, \varnothing\right\}\right.$

Definition 2.2. $a=\mathcal{P}(\Omega)$ is an algebra:

1. $\Omega \in a$
2. $A, B \in a \Rightarrow A \bigcap B \in a$
3. $A \in a \Rightarrow A^{c} \in a$

Remark 2.1. a algebra $\Rightarrow a$ semi-algebra

Definition 2.3. σ-algebra $\mathcal{S} \subseteq \mathcal{P}(\Omega)$:

1. $\Omega \subseteq \mathcal{S}$
2. $A_{j} \in \mathcal{S}, j \leq 1 \Rightarrow \bigcap_{j \geqslant 1} A_{j} \in \mathcal{S}$
3. $A \in \mathcal{S} \Rightarrow A^{c} \in \mathcal{S}$

Remark 2.2. $\Omega, a_{\alpha} \subseteq \mathcal{P}(\Omega), a_{\alpha}$ algebra, $\alpha \in I \Rightarrow a=\bigcap_{\alpha \in I} a_{\alpha}$ is an algebra.
Proof. check the followings

1. $\Omega \in a$
2. $A, B \in a \Rightarrow A \bigcap B \in a$
3. $A \in a \Rightarrow A^{c} \in a$

Remark 2.3. $\Omega, a_{\alpha} \subseteq \mathcal{P}(\Omega), \alpha \in I, a_{\alpha}, \sigma$-algebra $\Rightarrow a=\bigcap_{\alpha \in I} a_{\alpha}$ is a σ-algebra
Proof. check the followings

1. $\Omega \in a$
2. $A_{j}, j \geq 1 \in a \Rightarrow \bigcap_{j \geqslant 1} A_{j} \in a$
3. $A \in a \Rightarrow A^{c} \in a$

Definition 2.4 (minimal algebra generated by $c) . \Omega, c \subseteq \mathcal{P}(\Omega), a(c)$ is an algebra generated by c, and $a=a(c)$:

1. $c \subseteq a$
2. $\forall \mathcal{B}$ is algebra, $\mathcal{B} \subseteq \mathcal{P}(\Omega)$:

$$
\begin{equation*}
c \subseteq \mathcal{B} \Rightarrow a \subseteq \mathcal{B} \tag{2.1}
\end{equation*}
$$

Remark 2.4. $a(c)$ exits, and $a=a(c)=\bigcap_{\alpha} a_{\alpha}, \forall \alpha, c \subseteq a_{\alpha}, a_{\alpha}$ is an algebra.
Definition 2.5 (minimal σ-algebra generated by c). $\Omega, c \subseteq \mathcal{P}(\Omega), a(c)$ is a σ-algebra generated by c, and $a=a(c)$:

1. $c \subseteq a$
2. $\forall \mathcal{B}$ is σ-algebra, $\mathcal{B} \subseteq \mathcal{P}(\Omega)$:

$$
\begin{equation*}
c \subseteq \mathcal{B} \Rightarrow a \subseteq \mathcal{B} \tag{2.2}
\end{equation*}
$$

Remark 2.5. $a(c)$ exits, and $a=a(c)=\bigcap_{\alpha} a_{\alpha}, \forall \alpha, c \subseteq a_{\alpha}, a_{\alpha}$ is an σ-algebra.
Lemma 2.1. Ω, f semi-algebra $f \subseteq \mathcal{P}(\Omega)$, a (f) algebra generated by f then

$$
\begin{equation*}
A \in a(f) \Leftrightarrow \exists E_{j} \in f, 1 \leqslant j \leqslant n, A=\sum_{j=1}^{n} E_{j} \tag{2.3}
\end{equation*}
$$

Proof.
$1 . \Leftarrow$
$A=\sum_{j=1}^{n} E_{j}, E_{j} \in f \in a(f)$
By definition 2.1 and remark $2.6 \Rightarrow A \in a(f)$
2. \Rightarrow
$A \in a(f) \Rightarrow A=\sum_{j=1}^{n} E_{j}, E_{j} \in f$
Then by remark 2.7 , it will be proved easily.

Remark 2.6. $E, J \in a, E \bigcup F \in a, E \bigcup F=\left(E^{c} \bigcap F^{c}\right)^{c}$

Remark 2.7. $\mathcal{B}=\left\{\sum_{j=1}^{n} F_{j}, F_{j} \in f\right\}, \mathcal{B} \subseteq \mathcal{P}(\Omega)$ then

1. \mathcal{B} algebra
2. $\mathcal{B} \supseteq f$
3. $\mathcal{B} \supseteq a(f)$

Proof. We only prove that \mathcal{B} algebra, then check the following

1. $\Omega \in \mathcal{B}$
2. $A, B \in \mathcal{B} \Rightarrow A \cap B \in \mathcal{B}$

$$
\begin{align*}
\because A, B \in \mathcal{B}, \therefore A=\sum_{j=1}^{n} E_{j}, E_{j} \in f, B & =\sum_{k=1}^{m} F_{k}, F_{k} \in f, \text { then } \\
A \cap B & =\left(\sum_{j=1}^{n} E_{j}\right) \cap\left(\sum_{k=1}^{m} F_{k}\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{m} \underbrace{\left(E_{j} \cap F_{k}\right)}_{\in f} \tag{2.4}\\
& \in \mathcal{B}
\end{align*}
$$

3. $A \in \mathcal{B} \Rightarrow A^{c} \in \mathcal{B}$
$A=\sum_{j=1}^{n} E_{j}, E_{j} \in f$
By definition 2.1:

$$
\begin{align*}
& E_{1}^{c}=\sum_{k_{1}=1}^{l_{1}} F_{1, k_{1}}, F_{1, j} \in f \\
& \cdots=\cdots \tag{2.5}\\
& E_{i}^{c}=\sum_{k_{i}=1}^{l_{i}} F_{i, k_{i}}, F_{i, j} \in f
\end{align*}
$$

Then, we get that

$$
\begin{align*}
A^{c} & =\left(\sum_{k_{1}=1}^{l_{1}} F_{1, k_{1}}\right) \cap\left(\sum_{k_{2}=1}^{l_{2}} F_{2, k_{2}}\right) \cap \cdots \cap\left(\sum_{k_{n}=1}^{l_{n}} F_{n, k_{n}}\right) \\
& =\sum_{k_{1}=1}^{l_{1}} \sum_{k_{2}=1}^{l_{2}} \cdots \sum_{k_{n}=1}^{l_{n}}\left(F_{1, k_{1}} \cap F_{2, k_{2}} \cap F_{n, k_{n}}\right) \tag{2.6}\\
& \in \mathcal{B}
\end{align*}
$$

Definition 2.6. $c \subseteq \mathcal{P}(\Omega), \varnothing \in c, \mu: c \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$. μ is additive if

1. $\mu(\varnothing)=0$
2. $E_{1}, E_{2}, \ldots, E_{n} \in c, E=\sum_{j=1}^{n} E_{j} \in c \Rightarrow \mu(E)=\sum_{j=1}^{n} \mu\left(E_{k}\right)$

Remark 2.8.

$$
\begin{equation*}
\exists A \in c, \mu(A)<\infty, A=A \cup \varnothing, \mu(A)=\mu(A)+\mu(\varnothing) \Rightarrow \mu(\varnothing)=0 \tag{2.7}
\end{equation*}
$$

Remark 2.9. $c, \mu: c \rightarrow \mathbb{R}_{+} \bigcup+\infty, E \subseteq F, F \backslash E \in c, E, F \in c$

$$
\begin{equation*}
F=E \cup(F \backslash E), \mu(F)=\mu(E)+(F \backslash E) \tag{2.8}
\end{equation*}
$$

1. $\mu(E)=+\infty, \mu(F)=+\infty$
2. $\mu(E)<+\infty, \mu(F \backslash E)=\mu(F)-\mu(E)$
so,

$$
\begin{equation*}
\mu(E) \leqslant \mu(F) \tag{2.9}
\end{equation*}
$$

Example 2.3. Discrete measure: $\Omega, c \subseteq \mathcal{P}(\Omega),\left\{x_{j}, j \geqslant 1\right\}, x_{j} \in \Omega,\left\{p_{j}, j \geqslant 1\right\}, p_{j} \geqslant 0, A \in c$, define that

$$
\begin{equation*}
\mu(A)=\sum_{j \geqslant 1} p_{j} 1\left\{x_{j} \in A\right\} \tag{2.10}
\end{equation*}
$$

then μ is additive
Definition 2.7. $c \in \mathcal{P}(\Omega), \varnothing \in c, \mu: c \rightarrow \mathbb{R}_{+} \bigcup+\infty, \mu$ is σ-additive if

1. $\mu(\varnothing)=0$
2. $E_{j} \in c, j \neq k, E_{j} \bigcap E_{k}=\varnothing, \quad E=\sum_{j \geq 1} E_{j} \in c \Rightarrow \mu(E)=\sum_{j \geq 1} \mu\left(E_{j}\right)$

Example 2.4. $\Omega=(0,1), c=\{(a, b], 0 \leqslant a<b<1\}, \mu: c \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$, define that

$$
\mu(a, b]=\left\{\begin{array}{cc}
+\infty & a=0 \tag{2.11}\\
b-a & a>0
\end{array}\right.
$$

$(a, b]=\sum_{j=1}^{n}\left(a_{j}, b_{j}\right)$, we can get that μ is NOT σ-additive.
If $x_{1}=\frac{1}{2}, x_{j}>x_{j+1}, x_{j} \downarrow \rightarrow 0$, then

$$
\begin{equation*}
\frac{1}{2}=\left(0, \frac{1}{2}\right]=\sum_{j \geqslant 1}\left(x_{j+1}, x_{j}\right]=+\infty \tag{2.12}
\end{equation*}
$$

it is impossible.
Definition 2.8. Any non-negative set function $\mu: C \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ which is σ-additive is called a measure on C.

Lecture 3

Set Functions

Definition 3.1. $c \subseteq \mathcal{P}(\Omega), \mu: c \rightarrow \mathbb{R}_{+} \bigcup+\infty$:

1. $E \in c, \mu$ continuous from below at E, if $\forall\left(E_{n}\right)_{n \geqslant 1}, E_{n} \in c, E_{n} \uparrow E\left(E_{n} \subseteq E_{n+1}, \bigcup_{n \geqslant 1} E_{n}=E\right)$:

$$
\begin{equation*}
\mu\left(E_{n}\right) \rightarrow \mu(E) \tag{3.1}
\end{equation*}
$$

2. $E \in c, \mu$ continuous from above at E, if $\forall\left(E_{n}\right)_{n \geqslant 1}, E_{n} \in c, E_{n} \downarrow E\left(E_{+1} \subseteq E_{n}, \bigcap_{n \geqslant 1} E_{n}=E\right)$, and $\exists n_{0}, \mu\left(E_{n_{0}}\right)<\infty$:

$$
\begin{equation*}
\mu\left(E_{n}\right) \rightarrow \mu(E) \tag{3.2}
\end{equation*}
$$

Remark 3.1. For a sequence E_{1}, E_{2}, \ldots of sets, we put

$$
\begin{equation*}
\lim \sup E_{i}=\bigcap_{n=1}^{\infty}\left(\bigcup_{i=n}^{\infty} E_{i}\right), \lim \inf E_{i}=\bigcup_{n=1}^{\infty}\left(\bigcap_{i=n}^{\infty} E_{i}\right) \tag{3.3}
\end{equation*}
$$

and if $\left\{E_{i}\right\}$ is such that $\lim \sup E=\lim \inf E_{i}$ we say that the sequence converges to the set

$$
\begin{equation*}
E=\limsup E=\liminf E_{i} \tag{3.4}
\end{equation*}
$$

Remark 3.2. 2 need $\exists n_{0}, \mu\left(E_{n_{0}}\right)<\infty$, if not:

$$
\begin{equation*}
E_{n}=[n,+\infty), \mu\left(E_{n}\right)=+\infty, E_{n} \downarrow \varnothing, \lambda(\varnothing)=0 \tag{3.5}
\end{equation*}
$$

Lemma 3.1. $a \subseteq \mathcal{P}(\Omega)$, algebra; $\mu: a \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$, additive;

1. μ is σ-additive $\Rightarrow \mu$ continuous at $E, \forall E \in a$
2. μ is continuous from below $\Rightarrow \mu$ is σ-additive
3. μ is continuous from above at $\varnothing \& \mu$ is finite $\Rightarrow \sigma$-additive

Proof.
1.
(i) μ is σ-additive $\Rightarrow \mu$ conti. from below at $E \in a . E \in a, E_{n} \uparrow E, E_{n} \in a$:

$$
\begin{align*}
F_{1} & =E_{1} \\
F_{2} & =E_{2} \backslash E_{1} \\
\vdots & =\vdots \tag{3.6}\\
F_{n} & =E_{n} \backslash E_{n-1}
\end{align*}
$$

and we can get that

$$
\begin{equation*}
F_{j} \cap F_{k}=\varnothing, \quad \sum_{k=1}^{n} F_{k}=E_{n}, \quad \bigcup_{n \geqslant 1} E_{n}=\bigcup_{n \geqslant 1} F_{n} \tag{3.7}
\end{equation*}
$$

so

$$
\begin{equation*}
\mu(E)=\sum_{k \geqslant 1} \mu\left(F_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mu\left(F_{k}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right) \tag{3.8}
\end{equation*}
$$

(ii) μ cont. from above $E \in a, E_{n} \in a, E_{n} \downarrow E, \mu\left(E_{n_{0}}\right)<\infty \Rightarrow \mu\left(E_{n}\right) \downarrow \mu(E)$

$$
\begin{align*}
G_{1} & =E_{n_{0}} \backslash E_{n_{0}+1} \\
G_{2} & =E_{n_{0}} \backslash E_{n_{0}+2} \\
\vdots & =\vdots \tag{3.9}\\
G_{k} & =E_{n_{0}} \backslash E_{n_{0}+k}
\end{align*}
$$

then $G_{k} \uparrow E_{n_{0}} \backslash E, G_{k} \in a \Rightarrow \mu\left(G_{k}\right) \uparrow \mu\left(E_{n_{0}} \backslash E\right)$, so

$$
\begin{align*}
\mu\left(E_{n_{0}} \backslash E\right) & =\lim _{n \rightarrow \infty} \mu\left(E_{n_{0}} \backslash E_{n_{0}+k}\right) \\
\mu\left(E_{n_{0}} \backslash E\right) & =\mu\left(E_{n_{0}}\right)-\mu(E) \tag{3.10}\\
\mu\left(E_{n_{0}}\right)-\mu(E) & =\lim _{k \rightarrow \infty}\left(\mu\left(E_{n_{0}}\right)-\mu\left(E_{n_{0}+k}\right)\right)
\end{align*}
$$

2. μ cont. below, $E=\sum_{k \geqslant 1} E_{k}, E, E_{k} \in a$.

Obs.

$$
\sum_{k=1}^{n} E_{k} \subseteq E \stackrel{\text { additive }}{\Rightarrow}\left\{\begin{array}{l}
\mu\left(\sum_{k=1}^{n} E_{k}\right) \leqslant \mu(E) \tag{3.11}\\
\sum_{k=1}^{n} \mu\left(E_{k}\right) \leqslant \mu(E)
\end{array}\right.
$$

then

$$
\begin{align*}
& \sum_{k \geqslant 1} \mu\left(E_{k}\right) \leqslant \mu(E) \tag{3.12}\\
& F_{n}=\sum_{k=1}^{n} E_{k} \in a, F_{n} \uparrow E, \\
& \sum_{k=1}^{n} \mu\left(E_{k}\right)=\mu\left(F_{n}\right) \uparrow \mu(E) \Rightarrow \sum_{k \geqslant 1} \mu\left(E_{k}\right)=\mu(E) \tag{3.13}
\end{align*}
$$

3. μ cont. at $\varnothing, \mu(\Omega)<\infty, E, E_{k} \in a, E=\sum_{k \geqslant 1} E_{k}$.

$$
\begin{equation*}
F_{n}=\sum_{k \geqslant m} E_{k} \in a \quad\left(E \backslash \sum_{j=1}^{n-1} E_{j}\right) \tag{3.14}
\end{equation*}
$$

$$
\begin{align*}
& F_{n} \downarrow \varnothing, \mu\left(F_{1}\right)<\infty, \mu\left(F_{n}\right) \rightarrow 0 \\
& \qquad \begin{aligned}
\mu(E) & =\mu\left(\sum_{k=1}^{n} E_{k} \cup \sum_{k>n} E_{k}\right) \\
& =\underbrace{\mu \sum_{k=1}^{n} E_{k}}_{\rightarrow \sum_{k \geqslant 1} \mu\left(E_{n}\right)}+\underbrace{\mu \sum_{k>n} E_{k}}_{\rightarrow 0} \\
& \rightarrow \sum_{k \geqslant 1} \mu\left(E_{n}\right)
\end{aligned}
\end{align*}
$$

Remark 3.3. Suppose $E_{\alpha}, \alpha \in I$ is a class of subsets of X, and E_{i} is one set of the class, then

1. $\bigcap_{\alpha \in I} E_{\alpha} \subseteq E_{i} \subseteq \bigcup_{\alpha \in I} E_{\alpha}$
2. $X-\bigcup_{\alpha \in I} E_{\alpha}=\bigcap_{\alpha \in I}\left(X-E_{\alpha}\right)$
3. $X-\bigcap_{\alpha \in I} E_{\alpha}=\bigcup_{\alpha \in I}\left(X-E_{\alpha}\right)$

Proof.

1. This is immediate from the definition.
2. Suppose $x \in X-\bigcup_{\alpha \in I} E_{\alpha}$ then $x \in X$ and x is not in $\bigcup_{\alpha \in I} E_{\alpha}$, that is x is not in any $E_{\alpha}, \alpha \in I$ so that $x \in X-E_{\alpha}$ for every $\alpha \in I$, and $x \in \bigcap_{\alpha \in I}\left(X-E_{\alpha}\right)$. Conversely if $x \in \bigcap_{\alpha \in I}\left(X-E_{\alpha}\right)$, then for every $\alpha \in I, x$ is in X but not in E_{α}, so $x \in X$ but x is not in $\bigcup_{\alpha \in I}^{\alpha \in I} E_{\alpha}$, that is $x \in \bigcup_{\alpha \in I}\left(X-E_{\alpha}\right)$.
3. Similar to 2

Remark 3.3 (2) and (3) are also called as de Morgan's Law.

Example 3.1. $(0,1),(a, b], 0 \leqslant a<b<1$

$$
\mu(a, b]=\left\{\begin{array}{cc}
b-a, & a>0 \tag{3.16}\\
+\infty, & a=0
\end{array}\right.
$$

μ is additive but NOT σ-additive
Proof. $E_{n} \downarrow \varnothing, \mu\left(E_{n_{0}}\right)<\infty, E_{n}=\left(a_{n, 1}, b_{n, 1}\right] \cup \cdots \cup\left(a_{n, k_{n}}, b_{n, k_{n}}\right], a_{n, j}<a_{n, j+1}$.
$\left\{\begin{array}{l}a_{n, 1}=0, \quad \forall n \\ a_{n_{0}}>0, \text { some } n_{0}\end{array}\right.$
Theorem 3.1 (Extension). $f \subseteq \mathcal{P}(\Omega)$ semi-algebra, $\mu: f \rightarrow \mathbb{R}_{+} \cup\{\infty\} \sigma$-additive, then $\exists \nu$:

$$
\begin{equation*}
\nu: a(f) \rightarrow \mathbb{R}_{+} \cup\{\infty\} \tag{3.17}
\end{equation*}
$$

such that:

1. $\nu \sigma$-additive
2. $\nu(A)=\mu(A), \forall A \in f$
3. $\mu_{1}, \mu_{2}, a(f) \rightarrow \mathbb{R}_{+} \bigcup\{+\infty\}$, then $\mu_{1}(A)=\mu_{2}(A), \forall A \in s \Rightarrow \mu_{1}(E)=\mu_{2}(E), \forall E \in a(f)$

Proof. $A \in a(f) \Rightarrow A=\sum_{j=1}^{n} E_{j}, E_{j} \in f$ by Lemma 2.1.

$$
\begin{equation*}
\nu(A) \stackrel{\text { add }}{=} \sum_{j=1}^{n} \nu\left(E_{j}\right) \stackrel{e x t}{=} \sum_{j=1}^{n} \mu\left(E_{j}\right) \tag{3.18}
\end{equation*}
$$

we define that

$$
\begin{equation*}
\nu(A)=\sum_{j=1}^{n} \mu\left(E_{j}\right) \tag{3.19}
\end{equation*}
$$

we want to show that $\nu(A)=\sum_{j=1}^{n} \mu\left(E_{j}\right)$ is well-defined:

1. ν is unique

$$
\begin{align*}
A & =\sum_{j=1}^{n} E_{j}, E_{j} \in f \\
& =\sum_{k=1}^{m} F_{k}, F_{k} \in f \tag{3.20}
\end{align*}
$$

then we will prove that

$$
\begin{align*}
\nu(A) & =\sum_{j=1}^{n} \mu\left(E_{j}\right) \tag{3.21}\\
& =\sum_{k=1}^{m} \mu\left(F_{k}\right)
\end{align*}
$$

$$
\begin{gather*}
\because E_{j} \subseteq A=\sum_{k=1}^{m} F_{k} \Rightarrow E_{j}=E_{j} \cap\left(\sum_{k=1}^{m} F_{k}\right)=\sum_{k=1}^{m} \underbrace{\left(E_{j} \cap F_{k}\right)}_{\in f} \tag{3.22}\\
\therefore \mu\left(E_{j}\right)=\mu\left(\sum_{k=1}^{m}\left(E_{j} \cap F_{k}\right)\right) \tag{3.23}
\end{gather*}
$$

then

$$
\begin{equation*}
\nu(A)=\sum_{j=1}^{n} \mu\left(E_{j}\right)=\sum_{j=1}^{n} \sum_{k=1}^{m} \mu\left(E_{j} \cap F_{k}\right)=\sum_{k=1}^{m} \mu\left(F_{k}\right) \tag{3.24}
\end{equation*}
$$

2. ν is an additive, $\nu(A)=\sum_{j=1}^{n} \mu\left(E_{j}\right)$

Assume that

$$
\left\{\begin{array}{l}
A=\sum_{j=1}^{n} E_{j}, E_{j} \in f \tag{3.25}\\
B=\sum_{k=1}^{m} F_{k}, F_{k} \in f
\end{array}, A \cap B=\varnothing\right.
$$

We will show that

$$
\begin{align*}
& \nu(A \cup B)=\nu(A)+\nu(B) \tag{3.26}\\
& \because A \cup B=\sum_{j=1}^{n} E_{j}+\sum_{k=1}^{m} F_{k} \tag{3.27}
\end{align*}
$$

therefore

$$
\begin{aligned}
\nu(A \cup B) & =\mu\left(\sum_{j=1}^{n} E_{j}+\sum_{k=1}^{m} F_{k}\right) \\
& =\sum_{j=1}^{n} \mu\left(E_{j}\right)+\sum_{k=1}^{m} \mu\left(F_{k}\right) \\
& =\nu(A)+\nu(B)
\end{aligned}
$$

3. $\nu(A)=\mu(A), A \in f$ by Eq 3.19
4. ν is uniqueness, we want to show that:

Suppose that $\mu_{1}, \mu_{2}: a(f) \rightarrow R_{+} \cup\{+\infty\}, \forall A \in f, \mu_{1}, \mu_{2}$ additive, then

$$
\begin{equation*}
\mu_{1}(A)=\mu_{2}(A) \Rightarrow \mu_{1}(B)=\mu_{2}(B), \forall B \in a(f) \tag{3.29}
\end{equation*}
$$

$\because B \in a(f), \therefore B=\sum_{j=1}^{n} \mu_{1}\left(E_{j}\right), E_{j} \in f$

$$
\begin{equation*}
\mu_{1}(B)=\sum_{j=1}^{n} \mu_{1}\left(E_{j}\right)=\sum_{j=1}^{n} \mu_{2}\left(E_{j}\right)=\mu_{2}(B) \tag{3.30}
\end{equation*}
$$

Now we proof the extension of σ-additive, ie: $\mu-\sigma$ additive, f semi-algebra, $\nu-\sigma$ additive, $a(f)$ is a algebra generated by f. we want to show that

$$
\begin{equation*}
A=\sum_{j \geqslant 1} A_{j}, A, A_{j} \in a(f) \Rightarrow \nu(A)=\sum_{j \geqslant 1} \nu\left(A_{j}\right) \tag{3.31}
\end{equation*}
$$

by representation of an algebra:

$$
\begin{equation*}
A=\sum_{j=1}^{m} E_{j}, E_{j} \in f ; \quad A_{k}=\sum_{l=1}^{m_{k}} E_{k, l}, E_{k, l} \in f \tag{3.32}
\end{equation*}
$$

by Eq 3.19:

$$
\begin{gather*}
\nu(A)=\sum_{j=1}^{m} \nu\left(E_{j}\right), \quad \nu\left(A_{k}\right)=\sum_{l=1}^{m_{k}} \nu\left(E_{k, l}\right) \tag{3.33}\\
\because E_{j}=E_{j} \cap A=E_{j} \cap\left(\sum_{k \geqslant 1} A_{k}\right)=E_{j} \cap\left(\sum_{k \geqslant 1} \sum_{l=1}^{m_{k}} E_{k, l}\right)=\sum_{k \geqslant 1} \sum_{l=1}^{m_{k}}\left(E_{j} \cap E_{k, l}\right) \tag{3.34}
\end{gather*}
$$

therefore

$$
\begin{align*}
\nu(A) & =\sum_{j=1}^{n} \mu\left(E_{j}\right) \\
& =\sum_{j=1}^{n} \sum_{k \geqslant 1} \sum_{l=1}^{m_{k}} \mu\left(E_{j} \cap E_{k, l}\right) \tag{3.35}\\
& =\sum_{k \geqslant 1} \underbrace{\sum_{l=1}^{m_{k}} \mu\left(E_{k, l}\right)}_{\subseteq A_{k}}
\end{align*}
$$

Eq 3.35 holds because:

$$
\begin{equation*}
E_{k, l}=E_{k, l} \cap A=\sum_{j=1}^{n}\left(E_{k, l} \cap E_{j}\right) \tag{3.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu\left(E_{k, l}\right)=\sum_{j=1}^{n} \mu\left(E_{k, l} \cap E_{j}\right) \tag{3.37}
\end{equation*}
$$

so we can get that

$$
\begin{equation*}
\nu(A)=\sum_{k \geqslant 1} \nu\left(A_{k}\right) \tag{3.38}
\end{equation*}
$$

Lecture 4

Caratheodory Theorem

Theorem 4.1 (Caratheodory Theorem).

$$
\begin{array}{ccc}
\sigma-\text { add } & \mu: f \rightarrow \mathbb{R}_{+} \cup\{+\infty\} & f \subseteq \mathcal{P}(\Omega), f \text { is semialgebra } \\
\downarrow & \downarrow & \\
\sigma-\text { add } & \nu: a(f) \rightarrow \mathbb{R}_{+} \cup\{+\infty\} & a(f) \text { algebra generated by } f \tag{4.1}\\
\downarrow & \downarrow & \\
\sigma-\text { add } & \pi: \mathcal{F}(a) \rightarrow \mathbb{R}_{+} \cup\{+\infty\} & \mathcal{F}(a) \\
\text { is } \sigma-\text { algebra generated by algebra a }
\end{array}
$$

The big picture of the proof:

1. Define the π^{*} outer measure:

$$
\begin{equation*}
\pi^{*}=\inf _{\left\{E_{i}\right\}} \sum_{i \geqslant 1} \nu\left(E_{i}\right) \tag{4.2}
\end{equation*}
$$

2. $\mathcal{M} \sigma$-algebra, $\mathcal{M} \supseteq \mathcal{F}(a)$
3.

$$
\begin{equation*}
\pi^{*}: \mathcal{M} \rightarrow \mathbb{R}_{+} \cup\{+\infty\} \tag{4.3}
\end{equation*}
$$

is σ-additive, and

$$
\begin{equation*}
\left.\pi^{*}\right|_{a}=\nu \tag{4.4}
\end{equation*}
$$

4. (uniqueness) $\mu_{1}, \mu_{2}: \mathcal{F}(a) \rightarrow \mathbb{R}_{+} \bigcup\{+\infty\}, \Omega$ is σ-finite $\left(\mu_{1}\right)$, if $E_{j} \uparrow \Omega, \mu_{1}\left(E_{j}\right)<\infty, \forall j, E_{j} \in a$ and $\left.\mu_{1}\right|_{a}=\left.\mu_{2}\right|_{a}$ then implies that

$$
\begin{equation*}
\mu_{1}=\mu_{2} \tag{4.5}
\end{equation*}
$$

Finally, we define $\pi(E)=\pi^{*}(E), \forall E \in \mathcal{F}(a) \subseteq \mathcal{M}$.
Now, let

$$
\begin{equation*}
\pi^{*}: \mathcal{P}(\Omega) \rightarrow \mathbb{R}_{+} \cup\{+\infty\} \tag{4.6}
\end{equation*}
$$

We will prove π^{*} is an outer measure.
And we will construct a family of subsets \mathcal{M}

$$
\begin{equation*}
\mathcal{M} \subseteq \mathcal{P}(\Omega) \tag{4.7}
\end{equation*}
$$

we will also prove \mathcal{M} satisfies the following:

1. \mathcal{M} is a σ-algebra
2. $\mathcal{M} \supseteq a$
3. $\left.\pi^{*}\right|_{\mathcal{M}} \sigma$-additive
4. $\left.\pi^{*}\right|_{a}=\nu$

Next, we will define π^{*} and \mathcal{M}.

Step 1
Definition $4.1\left(\pi^{*}\right) . \pi^{*}: \mathcal{P}(\Omega) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, A \in \Omega,\left\{E_{i}, i \geqslant 1\right\}, E_{i} \in a, A \subseteq \cup E_{i},\left\{E_{i}\right\}$ is a covering of A, then we define that

$$
\begin{equation*}
\pi^{*}=\inf _{\left\{E_{i}\right\}, A} \sum_{i \geqslant 1} \nu\left(E_{i}\right) \tag{4.8}
\end{equation*}
$$

where $\nu: a(f) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$, is σ-additive.
Definition 4.2 (Outer measure). $\mu: c \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, c \subseteq P(\Omega), \varnothing \in c, \mu$ is a outer measure if

1. $\mu(\varnothing)=0$
2. (monotone) $E \subseteq F, E, F \in c \Rightarrow \mu(E) \leqslant \mu(F)$
3. (subadditive) $E, E_{i} \in c, E \subseteq \bigcup_{i} E_{i} \Rightarrow \mu(E) \leqslant \sum_{i} \mu\left(E_{i}\right)$

Theorem 4.2. π^{*} in 4.1 is a outer measure.
Proof. We will check the conditions in Def 4.2.

1. check $\pi^{*}(\varnothing)=0$
(a) $E_{i}=\varnothing, \varnothing \subseteq \bigcup_{i \geqslant 1} E_{i}$ then

$$
\begin{equation*}
\pi^{*}(\varnothing)=\inf _{\left\{E_{i}\right\}, \varnothing} \sum_{i \geqslant 1} \nu\left(E_{i}\right) \leqslant \sum_{i \geqslant 1} \nu\left(E_{i}\right)=0 \tag{4.9}
\end{equation*}
$$

(b) $E_{i} \in a,\left\{E_{i}\right\}, \varnothing \subseteq \bigcup_{i \geqslant 1} E_{i}$, then

$$
\begin{equation*}
\sum_{i \geqslant 1} \nu\left(E_{i}\right) \geqslant 0 \Rightarrow \pi^{*}(\varnothing) \geqslant 0 \tag{4.10}
\end{equation*}
$$

2. check $E \subseteq F, \pi^{*}(E) \leqslant \pi^{*}(F)$

Let's take any covering of $F:\left\{E_{i}\right\}, E_{i} \in a, F \subseteq \bigcup_{i \geqslant 1} E_{i}$ is also a covering of E, then

$$
\begin{equation*}
\pi^{*}(E)=\inf _{\left\{E_{i}\right\}, E} \sum_{i \geqslant 1} \nu\left(E_{i}\right) \leqslant \pi^{*}(F)=\inf _{\left\{E_{i}\right\}, F} \sum_{i \geqslant 1} \nu\left(E_{i}\right) \tag{4.11}
\end{equation*}
$$

3. check $E \subseteq \bigcup_{i \geqslant 1} E_{i}, \quad \pi^{*}(E) \leqslant \sum_{i \geqslant 1} \pi^{*}\left(E_{i}\right)$
(a) $\pi^{*}\left(E_{i}\right)=\infty$ then

$$
\begin{equation*}
\pi^{*}(E) \leqslant \sum_{i \geqslant 1} \pi^{*}\left(E_{i}\right) \tag{4.12}
\end{equation*}
$$

(b) $\pi^{*}\left(E_{i}\right)<\infty$, then

$$
\begin{equation*}
\pi^{*}\left(E_{i}\right)=\inf _{\left\{H_{i k}\right\}, E_{i}} \sum_{k \geqslant 1} \nu\left(H_{i k}\right) \tag{4.13}
\end{equation*}
$$

then there $\exists\left\{H_{i k}\right\} \in a, E_{i} \subseteq \bigcup_{k \geqslant 1} H_{i k}$ such that

$$
\begin{equation*}
\pi^{*}\left(E_{i}\right)=\inf _{\left\{H_{i k}\right\}, E_{i}} \sum_{k \geqslant 1} \nu\left(H_{i k}\right) \leqslant \sum_{k \geqslant 1} \nu\left(H_{i k}\right) \leqslant \pi^{*}\left(E_{i}\right)+\frac{\varepsilon}{2^{i}} \tag{4.14}
\end{equation*}
$$

$\left\{H_{i k}\right\}$ is a covering of E , then

$$
\begin{equation*}
\pi^{*}(E) \leqslant \sum_{i, k} \nu\left(H_{i k}\right) \leqslant \sum_{i \geqslant 1}\left(\pi^{*}\left(E_{i}\right)+\frac{\varepsilon}{2^{i}}\right) \leqslant \sum_{i \geqslant 1} \pi^{*}\left(E_{i}\right)+\varepsilon \tag{4.15}
\end{equation*}
$$

so

$$
\begin{equation*}
\pi^{*}(E) \leqslant \sum_{i \geqslant 1} \pi^{*}\left(E_{i}\right) \tag{4.16}
\end{equation*}
$$

Step 2
Definition 4.3 (Measurable set \mathcal{M}). A set called measurable set \mathcal{M} if $A \in \mathcal{M} \forall E \in \Omega$, we have that

$$
\begin{equation*}
\pi^{*}(E)=\pi^{*}(E \bigcap A)+\pi^{*}\left(E \bigcap A^{c}\right) \tag{4.17}
\end{equation*}
$$

Theorem 4.3. If \mathcal{M} definited as Def 4.3, then

1. $\mathcal{M} \supseteq a$
2. \mathcal{M} is a σ-algebra

Remark 4.1.

$$
\begin{equation*}
E \subseteq(E \cap A) \cup\left(E \cap A^{c}\right) \Rightarrow \pi^{*}(E) \leqslant \pi^{*}(E \cap A)+\pi^{*}\left(E \cap A^{c}\right) \tag{4.18}
\end{equation*}
$$

so we only to check \geq in Eq 4.17
Proof. π^{*} is an outer measurable by Thm 4.1, then by subadditive of outer measure.
Now we proof Thm 4.3.
Proof.

1. $a \in \mathcal{M}$

Suppose that $A \in a, E \in \Omega$, we will show that

$$
\begin{equation*}
\pi^{*}(E) \geqslant \pi^{*}(E \cap A)+\pi^{*}\left(E \cap A^{c}\right) \tag{4.19}
\end{equation*}
$$

assume that $\pi^{*}(E)<\infty$, given $\varepsilon, \exists\left\{E_{i}\right\}, E$, such that $E_{i} \in a, E \subseteq \bigcup_{i \geqslant 1} E_{i}$, then

$$
\begin{equation*}
\pi^{*}(E) \leqslant \sum_{i \geqslant 1} \nu\left(E_{i}\right) \leqslant \pi^{*}(E)+\varepsilon \tag{4.20}
\end{equation*}
$$

$E_{i} \cap A \in a, E \cap A \subseteq \bigcup_{i \geqslant 1}\left(E_{i} \bigcap A\right)$, so

$$
\begin{align*}
\pi^{*}(E \cap A) & \leqslant \sum_{i \geqslant 1} \nu\left(E_{i} \bigcap A\right) \\
\pi^{*}\left(E \cap A^{c}\right) & \leqslant \sum_{i \geqslant 1} \nu\left(E_{i} \bigcap A^{c}\right) \tag{4.21}
\end{align*}
$$

so

$$
\begin{equation*}
\pi^{*}(E \cap A)+\pi^{*}\left(E \cap A^{c}\right) \leqslant \sum_{i \geqslant 1} \nu\left(E_{i} \bigcap A\right)+\sum_{i \geqslant 1} \nu\left(E_{i} \bigcap A^{c}\right) \leq \sum_{i \geqslant 1} \nu\left(E_{i}\right) \leqslant \pi^{*}(E)+\varepsilon \tag{4.22}
\end{equation*}
$$

2. \mathcal{M} is σ-algebra.

We need to show that
(a) $\Omega \in \mathcal{M}$

It is clearly that:

$$
\begin{equation*}
\pi^{*}(E)=\pi^{*}(E \cap \Omega)+\pi^{*}\left(E \cap \Omega^{c}\right) \tag{4.23}
\end{equation*}
$$

(b) $A \in \mathcal{M} \Rightarrow A^{c} \in \mathcal{M}$

$$
\begin{equation*}
\because \pi^{*}(E)=\pi^{*}(E \cap A)+\pi^{*}\left(E \cap A^{c}\right) \tag{4.24}
\end{equation*}
$$

(c) $A_{i} \in \mathcal{M} \Rightarrow \bigcup_{i \geqslant 1} A_{i} \subseteq \mathcal{M}$

Finite union is closed: $A, B \in \mathcal{F} \Rightarrow A \bigcup B \in M$. Let's take $E \subseteq \Omega$. We will proof that

$$
\begin{equation*}
\pi^{*}(E) \geqslant \pi^{*}(E \cap(A \bigcup B))+\pi^{*}\left(E \cap(A \bigcup B)^{c}\right) \tag{4.25}
\end{equation*}
$$

$\because A \in \mathcal{M}$,

$$
\begin{equation*}
\therefore \pi^{*}(E)=\pi^{*}(E \bigcap A)+\pi^{*}\left(E \bigcap A^{C}\right) \tag{4.26}
\end{equation*}
$$

$\because B \in \mathcal{M}$

$$
\begin{align*}
\therefore \quad \pi^{*}(E \backslash A) & =\pi^{*}(E \backslash A \cap B)+\pi^{*}\left(E \backslash A \cap B^{c}\right) \\
& =\pi^{*}(E \backslash A \cap B)+\pi^{*}(E \backslash(A \bigcup B)) \tag{4.27}
\end{align*}
$$

then

$$
\begin{equation*}
\pi^{*}(E)=\pi^{*}(E \cap A)+\pi^{*}(E \backslash A \cap B)+\pi^{*}(E \backslash(A \cup B)) \tag{4.28}
\end{equation*}
$$

We want to show

$$
\begin{equation*}
\pi^{*}(E \cap A)+\pi^{*}(E \backslash A \cap B) \geqslant \pi^{*}(E \cap(A \cup B)) \tag{4.29}
\end{equation*}
$$

By π^{*} is subadditive, we only to show that

$$
\begin{equation*}
E \cap(A \cup B) \subseteq(E \cap A) \cup(E \backslash A \cap B) \tag{4.30}
\end{equation*}
$$

this is because

$$
\begin{equation*}
E \cap(A \cup B)=\underbrace{\{[E \cap(A \cup B)] \cap A\}}_{\subseteq E \cap A} \bigcup \underbrace{\left\{[E \cap(A \cup B)] \cap A^{c}\right\}}_{\subseteq\left(E \cap A^{c}\right) \cap B=(E \backslash A) \cap B} \tag{4.31}
\end{equation*}
$$

Then Eq 4.25 holds. So \mathcal{M} is closed by finite(countable) union.
Now, we will show that countable infinite union is also closed. $A_{i} \in \mathcal{M}$, we want to show $A=\bigcup_{j \geqslant 1} A_{j} \in \mathcal{M}$, take $E \subseteq \Omega$,

$$
\begin{equation*}
\pi^{*}(E) \geqslant \pi^{*}(E \cap A)+\pi^{*}\left(E \cap A^{c}\right) \tag{4.32}
\end{equation*}
$$

by Eq. $4.25, \forall n$ we know that

$$
\begin{aligned}
& \pi^{*}(E)=\pi^{*}\left(E \cap\left(\bigcup_{j=1}^{n} A_{j}\right)\right)+\pi^{*}\left(E \cap\left(\bigcup_{j=1}^{n} A_{j}^{c}\right)\right) \\
& \geq \pi^{*}\left(E \cap\left(\bigcup_{j=1}^{n} A_{j}\right)\right)+\pi^{*}(E \backslash A) \\
& \geq \text { holds in } \operatorname{Eq} 4.33 \text { because }(E \backslash A) \subseteq\left(E \backslash\left(\bigcup_{j=1}^{n} A_{j}\right)\right) .
\end{aligned}
$$

Now, we define

$$
\begin{align*}
& F_{1}=A_{1} \\
& F_{2}=A_{1} \backslash A_{2} \\
& F_{3}=A_{1} \backslash\left(A_{2} \cup A_{3}\right) \\
& \quad \vdots \tag{4.34}\\
& F_{n}=A_{1} \backslash\left(A_{2} \cup \cdots \cup A_{n-1}\right)
\end{align*}
$$

It is clear that

$$
\begin{equation*}
\bigcup_{i=1}^{n} A_{i}=\bigcup_{j=1}^{n} F_{j} \tag{4.35}
\end{equation*}
$$

where $F_{j} \cap F_{k}=\varnothing, F_{j} \in \mathcal{M}$.
Then Eq 4.33 can be written as

$$
\begin{equation*}
\pi^{*}(E) \geqslant \pi^{*}\left(E \cap \sum_{j=1}^{n} F_{j}\right)+\pi^{*}(E \backslash A) \tag{4.36}
\end{equation*}
$$

By Remark 4.2, we have

$$
\begin{align*}
\pi^{*}(E) & \geqslant \pi^{*}\left(E \cap\left(\sum_{j=1}^{n} F_{j}\right)\right)+\pi^{*}(E \backslash A) \tag{4.37}\\
& =\sum_{j=1}^{n} \pi^{*}\left(E \cap F_{j}\right)+\pi^{*}(E \backslash A)
\end{align*}
$$

$\because n$ is any number in Remark $4.2, \therefore \pi^{*}\left(E \cap \sum_{j=1}^{\infty} F_{j}\right)=\sum_{j=1}^{\infty} \pi^{*}\left(E \cap F_{j}\right)$, by π^{*} is subadditive

$$
\begin{align*}
\pi^{*}(E) & \geqslant \pi^{*}\left(E \cap \sum_{j} F_{j}\right)+\pi^{*}(E \backslash A) \\
& =\sum_{j \geqslant 1} \pi^{*}\left(E \cap F_{j}\right)+\pi^{*}(E \backslash A) \\
& \geqslant \pi^{*}\left(\bigcup_{j \geqslant 1}\left(E \cap F_{j}\right)\right)+\pi^{*}(E \backslash A) \tag{4.38}\\
& =\geqslant \pi^{*}\left(E \cap\left(\bigcup_{j \geqslant 1} F_{j}\right)\right)+\pi^{*}(E \backslash A) \\
& =\pi^{*}(E \cap A)+\pi^{*}(E \backslash A)
\end{align*}
$$

So \mathcal{M} is a σ-algebra.

Remark 4.2. $\forall n$, we have that

$$
\begin{equation*}
\pi^{*}\left(E \cap \sum_{j=1}^{n} F_{j}\right)=\sum_{j=1}^{n} \pi^{*}\left(E \cap F_{j}\right) \tag{4.39}
\end{equation*}
$$

where F_{j} defined as Eq 4.34.
Proof. By induction

1. $n=1, \mathrm{Eq} 4.39$ holds
2. Support n holds then we will proof $n+1$ holds. $F_{k} \in \mathcal{M}, F_{n+1} \in \mathcal{M}$, we have that

$$
\begin{align*}
\pi^{*}\left(E \cap \sum_{j=1}^{n+1} F_{j}\right) & =\pi^{*}\left(\left(E \cap \sum_{j=1}^{n+1} F_{j}\right) \cap F_{n+1}\right)+\pi^{*}\left(\left(E \cap \sum_{j=1}^{n+1} F_{j}\right) \cap F_{n+1}^{c}\right) \\
& =\pi^{*}\left(E \cap F_{n+1}\right)+\underbrace{\pi^{*}=\sum_{j=1}^{n} \pi^{*}\left(E \cap F_{j}\right)}_{\text {by assumption }} \tag{4.40}\\
& =\sum_{j=1}^{n+1} \pi^{*}\left(E \cap F_{j=1}^{n} F_{j}\right)
\end{align*}
$$

By Thm 4.3 we have that $\mathcal{M} \supseteq \mathcal{F}(a)$.
Step 3

Theorem 4.4. $\pi^{*}: \mathcal{M} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ is $\sigma-$ additive, then

$$
\begin{equation*}
\pi^{*}(A)=\nu(A), \quad \forall A \in a \tag{4.41}
\end{equation*}
$$

Remark 4.3. Eq 4.41 is also

$$
\begin{equation*}
\left.\pi^{*}\right|_{a}=v \tag{4.42}
\end{equation*}
$$

Eq 4.2 holds because Thm 4.3, $a \in \mathcal{M}$.
Proof. (Thm 4.4)

1. $\pi^{*}(A)=\nu(A), \forall A \in a$
(a) check $\pi^{*}(A) \leqslant \nu(A)$

$$
\begin{align*}
& \text { Let's } \underbrace{A}_{E_{1}}, \underbrace{\varnothing}_{E_{2}}, \underbrace{\varnothing}_{E_{3}}, \underbrace{\cdots}_{E_{j}} \\
& \pi^{*}(A)=\inf _{\left\{E_{i}\right\}, A} \sum_{i} \nu\left(E_{i}\right) \leqslant \sum_{i} \nu\left(E_{i}\right)=\nu(A) \tag{4.43}
\end{align*}
$$

(b) check $\pi^{*}(A) \geqslant \nu(A)$

Let's take

$$
\begin{gather*}
F_{1}=E_{1} \\
F_{2}=E_{2} \backslash E_{1} \\
F_{3}=E_{3} \backslash\left(E_{1} \cup E_{2}\right) \\
\vdots \tag{4.44}\\
F_{n}=E_{n} \backslash\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n-1}\right) \\
\vdots \\
F_{j} \in a, \bigcup_{j} F_{j}=\bigcup_{j} E_{j}, F_{j} \cap F_{k}=\varnothing, A \subseteq \bigcup_{j \geqslant 1} F_{j}, \text { so } A=\sum_{j} F_{j} \cap A \in a .
\end{gather*}
$$

Because ν is σ-additive we have that

$$
\begin{equation*}
\nu(A)=\sum_{j \geqslant 1} \nu\left(F_{j} \cap A\right) \tag{4.45}
\end{equation*}
$$

$\because F_{j} \subseteq E_{j}$

$$
\begin{equation*}
\nu(A)=\sum_{j \geqslant 1} \nu\left(F_{j} \cap A\right) \leqslant \sum_{j \geqslant 1} \nu\left(E_{j}\right) \tag{4.46}
\end{equation*}
$$

so

$$
\begin{equation*}
\nu(A) \leqslant \inf _{\left\{E_{i}\right\}, A} \sum_{j \geqslant 1} \nu\left(E_{j}\right)=\pi^{*}(A) \tag{4.47}
\end{equation*}
$$

Then, we can get

$$
\begin{equation*}
\pi^{*}(A)=\nu(A), \forall A \in a \tag{4.48}
\end{equation*}
$$

2. $\left.\pi^{*}\right|_{\mathcal{M}}$ is σ-additive

Suppose that $A_{j} \in \mathcal{M}, A_{j} \cap A_{k}=\varnothing$, we want to proof that

$$
\begin{equation*}
\pi^{*}\left(\sum A_{j}\right)=\sum_{j \geqslant 1} \pi^{*}\left(A_{j}\right) \tag{4.49}
\end{equation*}
$$

(a) check $\pi^{*}\left(\sum A_{j}\right) \leqslant \sum_{j \geqslant 1} \pi^{*}\left(A_{j}\right)$ by π^{*} is an outer measure, π^{*} is subadditive
(b) check $\pi^{*}\left(\sum A_{j}\right) \geqslant \sum_{j \geqslant 1} \pi^{*}\left(A_{j}\right)$
by π^{*} is an outer measure, π^{*} is monotone

$$
\begin{equation*}
\pi^{*}\left(\sum_{j \geqslant 1} A_{j}\right) \geqslant \pi^{*}\left(\sum_{j=1}^{n} A_{j}\right) \tag{4.50}
\end{equation*}
$$

by Remark 4.2, we have that

$$
\begin{equation*}
\pi^{*}\left(\sum_{j=1}^{n} A_{j}\right)=\sum_{j=1}^{n} \pi^{*}\left(A_{j}\right), \quad \forall n \tag{4.51}
\end{equation*}
$$

so

$$
\begin{equation*}
\pi^{*}\left(\sum_{j \geqslant 1} A_{j}\right) \geqslant \sum_{j \geqslant 1} \pi^{*}\left(A_{j}\right) \tag{4.52}
\end{equation*}
$$

Step 4
Definition 4.4. Ω is σ-finite $\left(\mu_{1}\right)$ if $E_{j} \uparrow \Omega, \mu_{1}\left(E_{j}\right)<\infty, \forall j, E_{j} \in a$.
Theorem 4.5 (Uniqueness). Suppose that $\mu_{1}, \mu_{2}: \mathcal{F}(a) \rightarrow R_{+} \cup\{+\infty\}, \Omega$ is σ-finite $\left(\mu_{1}\right)$, if $\left.\mu_{1}\right|_{a}=\left.\mu_{2}\right|_{a}$, then

$$
\begin{equation*}
\mu_{1}=\mu_{2}, \quad \text { on } \mathcal{F}(a) \tag{4.53}
\end{equation*}
$$

Definition 4.5. $\Omega, \mathcal{G} \subseteq \mathcal{P}(\Omega), \mathcal{G}$ is a monotone class if
1.

$$
\begin{equation*}
A_{j} \in \mathcal{G}, j \geqslant 1, A_{j} \subseteq A_{j+1} \Rightarrow A=\bigcup_{j \geqslant 1} A_{j}=\lim _{j \rightarrow \infty} A_{j} \in \mathcal{G} \tag{4.54}
\end{equation*}
$$

2.

$$
\begin{equation*}
B_{j} \in \mathcal{G}, j \geqslant 1, B_{j} \supseteq B_{j+1} \Rightarrow B=\bigcap_{j \geqslant 1} B_{j}=\lim _{j \rightarrow \infty} B_{j} \in \mathcal{G} \tag{4.55}
\end{equation*}
$$

Theorem 4.6. \mathcal{G}_{α} is a monotone class, $\alpha \in I$, then the followings hold

1. $\bigcap_{\alpha \in I} \mathcal{G}_{\alpha}$ is a monotone class
2. $c \subseteq \mathcal{P}(\Omega) \Rightarrow \mathcal{G}(c)=\bigcap_{\alpha \in I} \mathcal{G}_{\alpha}$, i.e. monotone classes generated by class c

Lemma 4.1. $a \subseteq \mathcal{P}(\Omega)$ is an algebra, $\mu(a)$ is monotone class generated by algebra $a, \mathcal{F}(a)$ is a σ-algebra generated by algebra a, then

$$
\begin{equation*}
\mu(a)=\mathcal{F}(a) \tag{4.56}
\end{equation*}
$$

Proof. It will proof in the next lecture.
Proof. (Thm 4.5) $\mu_{1}, \mu_{2}: \mathcal{F}(a) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, \mu_{1}(A)=\mu_{2}(A), \forall A \in a, \Omega \sigma$-finite, $\Omega=\bigcup_{j \geqslant 1} E_{j}, E_{j} \in$ $a, \mu_{j}\left(E_{j}\right)<\infty$, then $\mu_{1}=\mu_{2}$ on $\mathcal{F}(a)$.
Fix E_{n}, we denote that

$$
\begin{equation*}
\mathcal{B}_{n}=\left\{E \in \mathcal{F}(a), \mu_{1}\left(E \cap E_{n}\right)=\mu_{2}\left(E \cap E_{n}\right)\right\} \tag{4.57}
\end{equation*}
$$

We claim that

1. $\mathcal{B}_{n} \supseteq a$
2. \mathcal{B}_{n} is a monotone class

We proof \mathcal{B}_{n} is a monotone class.

1. $\forall A_{j} \in \mathcal{B}_{n}, A_{j} \uparrow A=\bigcup_{j \geqslant 1} A_{j}$, then

$$
\begin{equation*}
\mu_{1}\left(A_{j} \cap E_{n}\right)=\mu_{2}\left(A_{j} \cap E_{n}\right) \tag{4.58}
\end{equation*}
$$

By Remark 3.1

$$
\begin{equation*}
\mu_{1}\left(A_{j} \cap E_{n}\right) \rightarrow \mu_{1}\left(A \cap E_{n}\right), \mu_{2}\left(A_{j} \cap E_{n}\right) \rightarrow \mu_{2}\left(A \cap E_{n}\right) \tag{4.59}
\end{equation*}
$$

2. $\forall B_{j} \in \mathcal{B}_{n}, B_{j} \downarrow B=\bigcap_{j \geqslant 1} B_{j}$, then

$$
\begin{equation*}
\mu_{1}\left(B_{j} \cap E_{n}\right)=\mu_{2}\left(B_{j} \cap E_{n}\right) \tag{4.60}
\end{equation*}
$$

By Remark 3.1

$$
\begin{equation*}
\mu_{1}\left(B_{j} \cap E_{n}\right) \rightarrow \mu_{1}\left(B \cap E_{n}\right), \mu_{2}\left(B_{j} \cap E_{n}\right) \rightarrow \mu_{2}\left(B \cap E_{n}\right) \tag{4.61}
\end{equation*}
$$

So we can get that

$$
\begin{equation*}
\mathcal{B}_{n} \supseteq \mathcal{M}(a) \tag{4.62}
\end{equation*}
$$

where $\mathcal{M}(a)$ is a monotone class generated by a. Then by Lemma 4.1

$$
\begin{equation*}
\mathcal{M}(a)=\mathcal{F}(a) \tag{4.63}
\end{equation*}
$$

And by Eq 4.57,

$$
\begin{equation*}
\mathcal{B}_{n}(a) \subseteq \mathcal{F}(a) \tag{4.64}
\end{equation*}
$$

so

$$
\begin{equation*}
\mathcal{B}_{n}(a)=\mathcal{F}(a) \tag{4.65}
\end{equation*}
$$

Finally, $\mu_{1}(A)=\mu_{2}(A), \forall A \in \mathcal{F}(a)$, by $\mathcal{B}_{n}=\mathcal{F}(a)$, then $A \in \mathcal{B}_{n} . B_{j} \uparrow \Omega$, apply Lemma 3.1 again, we have

$$
\begin{equation*}
\mu_{1}(A)=\mu_{2}(A) \tag{4.66}
\end{equation*}
$$

Lecture 5

Monotone Classes

Definition 5.1. Given Ω, define $\mathcal{M}(a) \subseteq \mathcal{P}(\Omega)$ is a monotone class is

1. $A_{j} \in \mathcal{M}, A_{j} \uparrow A\left(A_{j} \subseteq A_{j}, \bigcup_{j \geqslant 1} A_{j}=A\right) \Rightarrow A \in \mathcal{M}$
2. $A_{j} \in \mathcal{M}, A_{j} \downarrow A\left(A_{j} \supseteq A_{j}, \bigcap_{j \geqslant 1} A_{j}=A\right) \Rightarrow A \in \mathcal{M}$

Remark 5.1.

1. \mathcal{F} is σ-filed $(\sigma$-algebra $) \Rightarrow \mathcal{F}$ is a monotone class
2. $\mathcal{M}_{\alpha} \subseteq P(\Omega),(\alpha \in I)$ is monotone class, then $\mathcal{M}=\bigcap_{\alpha \in I} \mathcal{M}_{\alpha}$ is a monotone class.

Notation 5.1. (Smallest monotone class contain $c) \mathcal{M}(c)$ is a monotone class generated by c if

$$
\begin{equation*}
c \subseteq \mathcal{M}(\Omega), \mathcal{M}(c)=\bigcap_{\alpha \in I} \mathcal{M}_{\alpha} \tag{5.1}
\end{equation*}
$$

Definition 5.2. $E \subseteq \mathcal{M}(a)$, the set $\mathcal{G}(E)$ is defined as below

$$
\begin{equation*}
\mathcal{G}(E)=\{F \in \mathcal{M}(a), E \backslash F, E \cap F, F \backslash E \in \mathcal{M}(a)\} \tag{5.2}
\end{equation*}
$$

Lemma 5.1.

1. If $E \in a \Rightarrow \mathcal{G}(E) \supseteq \mathcal{M}(a)$
2. If $E \in \mathcal{M}(a) \Rightarrow \mathcal{G}(E) \supseteq \mathcal{M}(a)$

Proof.

1. $E \in a$, we want to show that
(a) $\mathcal{G}(E) \supseteq a$

Take $H \in a \subseteq \mathcal{M}(a)$, then

$$
\begin{equation*}
\underbrace{E \backslash H}_{\in a}, \underbrace{E \cap H}_{\in a}, \underbrace{H \backslash E}_{\in a} \in \mathcal{G}(a) \tag{5.3}
\end{equation*}
$$

so $H \in \mathcal{G}(E)$, then $a \subseteq \mathcal{G}(E)$
(b) $\mathcal{G}(E)$ is a monotone class

Suppose that $H_{k} \uparrow H, H_{k} \in \mathcal{G}(E)$,

$$
\begin{equation*}
\because E \backslash H_{k} \in \mathcal{M}(a), E \backslash H_{k} \rightarrow E \backslash H, \therefore E \backslash H \in \mathcal{M}(a) \tag{5.4}
\end{equation*}
$$

$$
\begin{align*}
\because & E \cap H_{k} \in \mathcal{M}(a), E \cap H_{k} \rightarrow E \cap H, \therefore E \cap H \in \mathcal{M}(a) \tag{5.5}\\
& \because H_{k} \backslash E \in \mathcal{M}(a), H_{k} \backslash E \rightarrow H \backslash E, \therefore H \backslash E \in \mathcal{M}(a) \tag{5.6}
\end{align*}
$$

By Eq 5.6, $H \in \mathcal{M}(a)$, and by the definition $5.2, H \in \mathcal{G}(E)$. So $\mathcal{G}(E)$ is a monotone class. We also get that $\mathcal{G}(E) \supseteq \mathcal{M}(a)$.
2. $E \in \mathcal{M}(a)$, we want to show that
(a) $\mathcal{G}(E)$ is a monotone class
$E \in \mathcal{M}(a)$, suppose $H_{k} \in \mathcal{G}(E), H_{k} \uparrow H$

$$
\begin{equation*}
\because E \backslash H_{k} \in \mathcal{M}(a), E \backslash H_{k} \downarrow E \backslash H \quad \therefore E \backslash H \in \mathcal{M}(a) \tag{5.7}
\end{equation*}
$$

Similarity:

$$
\begin{gather*}
E \cap H \in \mathcal{M}(a) \tag{5.8}\\
H \backslash E \in \mathcal{M}(a) \tag{5.9}
\end{gather*}
$$

then we can get $H \in \mathcal{G}(E)$, so $\mathcal{G}(E)$ is a monotone class.
(b) $\mathcal{G}(E) \supseteq a$

We need to show $H \in a \Rightarrow H \in \mathcal{G}(E)$.
By Lemma 5.1.1, we can get that

$$
\begin{equation*}
\mathcal{G}(H) \supseteq \mathcal{M}(a) \tag{5.10}
\end{equation*}
$$

$\because E \in \mathcal{M}(a), \therefore E \in \mathcal{G}(H)$, by the $\operatorname{Def} 5.2, H \backslash E, H \cap E, E \backslash H \in \mathcal{M}(a)$, so we can get $a \in \mathcal{G}(E)$

Theorem 5.1. a is a algebra, $a \subseteq \mathcal{P}(\Omega) . \mathcal{F}(a)$ is a σ-algebra generated by $a, \mathcal{M}(a)$ is a monotone class generated by a, then

$$
\begin{equation*}
\mathcal{F}(a)=\mathcal{M}(a) \tag{5.11}
\end{equation*}
$$

Proof. By remark 5.1, $\mathcal{F}(a)$ is a monotone class, by Notation $5.1 \mathcal{F}(a) \supseteq a$ and $\mathcal{F}(a) \supseteq \mathcal{M}(a)$.
So we have to show that

$$
\begin{equation*}
\mathcal{F}(a) \subseteq \mathcal{M}(a) \tag{5.12}
\end{equation*}
$$

We will show that

1. $\mathcal{M}(a)$ is a algebra
(a) $\Omega \in \mathcal{M}(a)$ by $\Omega \subseteq a$
(b) $E \in \mathcal{M}(a) \Rightarrow E^{c} \in \mathcal{M}(a)$

By Lemma 5.1.1, let $E=\Omega$, then $\mathcal{M}(a) \subseteq \mathcal{G}(\Omega) . \because E \in \mathcal{M}(a)$, so $E \in \mathcal{G}(\Omega)$. By Definition 5.2, $\mathcal{G}(\Omega)=\left\{E \in \mathcal{M}(a), E^{c}, E, \varnothing \in \mathcal{M}(a)\right\}$
(c) $E, F \in \mathcal{M}(a) \Rightarrow E \cap F \in \mathcal{M}(a)$

By Lemma 5.1.2, $\mathcal{G}(E) \supseteq \mathcal{M}(a)$, so $F \in \mathcal{G}(E)$.
By Def $5.2 F \in \mathcal{G}(E)=\{F \in \mathcal{M}(a), F \backslash E, F \cap E, E \backslash F \in \mathcal{M}(a)\}$, so $E \bigcap F \in \mathcal{M}(a)$
2. $\mathcal{M}(a)$ is a σ-algebra i.e. $A_{j} \in \mathcal{M}(a), j \geqslant 1 \Rightarrow \bigcup_{j \geqslant 1} A_{j} \in \mathcal{M}(a)$

By $\mathcal{M}(a)$ is a algebra, so $\bigcup_{j=1}^{n} A_{j} \in \mathcal{M}(a)$.
$\bigcup_{j=1}^{n} A_{j} \uparrow \bigcup_{j \geqslant 1} A_{j}$ and $\mathcal{M}(a)$ is a monotone class, so $\bigcup_{j \geqslant 1} A_{j} \in \mathcal{M}(a)$.
So $\mathcal{F}(a) \subseteq \mathcal{M}(a)$.
Above all,

$$
\begin{equation*}
\mathcal{F}(a)=\mathcal{M}(a) \tag{5.13}
\end{equation*}
$$

Lecture 6

The Lebesgue Measure I

Definition 6.1. $\mathcal{S} \subseteq \mathcal{P}(\mathbb{R})$, we define \mathcal{S} as below:

$$
\begin{equation*}
\mathcal{S}=\{\varnothing, \mathbb{R},(a, b],(a, \infty),(-\infty, b]\} \tag{6.1}
\end{equation*}
$$

Remark 6.1. \mathcal{S} as above, then \mathcal{S} is a semialgebra
Proof. by Def 2.1.
Definition 6.2. $\mu: \mathcal{S} \rightarrow \mathbb{R}_{+} \bigcup\{+\infty\}$, additive, and

$$
\begin{equation*}
\mu(\varnothing)=0, \mu((a, b])=b-a, \mu((-\infty, b])=+\infty, \mu(\mathbb{R})=+\infty \tag{6.2}
\end{equation*}
$$

Theorem 6.1. μ is additive on a semialgebra \mathcal{S} and defined as Def 6.2, then μ is σ-additive, i.e.

$$
\begin{equation*}
A=\sum_{j \geqslant 1} A_{j} \Rightarrow \mu(A)=\sum_{j \geqslant 1} \mu\left(A_{j}\right), \quad A, A_{j} \in \mathcal{S} \tag{6.3}
\end{equation*}
$$

Remark 6.2. It is difficult to prove $\operatorname{Thm} 6.1(a, b] \cup(c, d]$ is not in the semialgebra \mathcal{S}. But, $\mathcal{S} \rightarrow a(\mathcal{S})$ with respect to $\mu \rightarrow \nu$.
Proof.
1.

$$
\begin{equation*}
\because A=\sum_{j \geqslant 1} A_{j} \supseteq \sum_{j=1}^{n} A_{j} \tag{6.4}
\end{equation*}
$$

By ν is additive $\Rightarrow \nu$ is monotone \& subadditive,

$$
\begin{equation*}
\therefore \nu(A) \geqslant \nu\left(\sum_{j=1}^{n} A_{j}\right)=\sum_{j=1}^{n} \nu\left(A_{j}\right), \quad \forall n \tag{6.5}
\end{equation*}
$$

so

$$
\begin{equation*}
\therefore \nu(A) \geqslant \sum_{j \geqslant 1} \nu\left(A_{j}\right) \tag{6.6}
\end{equation*}
$$

2. (a) Assume that $A=(a, b], A_{j}=\left(a_{j}, b_{j}\right], A=\sum_{j \geqslant 1} A_{j}$, we want to show that

$$
\begin{equation*}
\nu(A)=b-a \leqslant \sum_{j \geqslant 1}\left(b_{j}-a_{j}\right)=\sum_{j \geqslant 1} \nu\left(A_{j}\right) \tag{6.7}
\end{equation*}
$$

For any given $\epsilon>0$, we have that

$$
\begin{equation*}
[a+\varepsilon, b] \subseteq(a, b]=\sum_{j \geqslant 1}\left(a_{j}, b_{j}\right] \subseteq \bigcup_{j \geqslant 1}\left(a_{j}, b_{j}+\frac{\varepsilon}{2^{j}}\right) \tag{6.8}
\end{equation*}
$$

By a set K is compact i.e. K is closed and bounded \Rightarrow Any open cover for K has a finite subcover

$$
\begin{equation*}
[a+\varepsilon, b] \subseteq \bigcup_{k \geqslant 1}\left(a_{j k}, b_{j k}+\frac{\varepsilon}{2^{j k}}\right) \tag{6.9}
\end{equation*}
$$

By ν is additive $\Rightarrow \nu$ is monotone \& subadditive, we have

$$
\begin{equation*}
b-a-\varepsilon \leqslant \nu([a+\varepsilon, b])=\nu\left(\bigcup_{k=1}^{m}\left(a_{j k}, b_{j k}+\frac{\varepsilon}{2^{j k}}\right)\right) \leqslant \sum_{k=1}^{m} \nu\left(a_{j k}, b_{j k}+\frac{\varepsilon}{2^{j k}}\right) \tag{6.10}
\end{equation*}
$$

so we can get that

$$
\begin{equation*}
b-a-\varepsilon \leqslant \sum_{k=1}^{m}\left(b_{j k}-a_{j k}+\frac{\varepsilon}{2^{j k}}\right) \leqslant \sum_{j \geqslant 1}\left(b_{j}-a_{j}+\frac{\varepsilon}{2^{j}}\right)=\sum_{j \geqslant 1}(b-a)+\varepsilon \tag{6.11}
\end{equation*}
$$

so Eq. 6.7 holds.
(b) General case $A \in \mathcal{S}, E_{n}=(-n, n] \uparrow \mathbb{R}$.
$A \cap E_{n}=\sum_{j \geqslant 1} A_{j} \cap E_{n}$.
By ν is additive on a semi-algebra

$$
\begin{equation*}
\nu\left(A \cap E_{n}\right)=\sum_{j \geqslant 1} \nu\left(A_{j} \cap E_{n}\right) \leqslant \sum_{j \geqslant 1} \nu\left(A_{j}\right) \tag{6.12}
\end{equation*}
$$

By Remark 6.3, let $n \rightarrow \infty$, we have

$$
\begin{equation*}
\nu(A)=\lim _{n \rightarrow \infty} \nu\left(A \cap E_{n}\right) \leqslant \sum_{j \geqslant 1} \nu\left(A_{j}\right) \tag{6.13}
\end{equation*}
$$

Remark 6.3. $E_{n}=(-n, n] \uparrow \mathbb{R}, \nu$ is additive on a semi-algebra then

$$
\begin{equation*}
\nu(A)=\lim _{n \rightarrow \infty} \nu\left(A \cap E_{n}\right) \tag{6.14}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\because E_{n} \uparrow \mathbb{R}, \therefore A \cap E \uparrow, \therefore \lim _{n \rightarrow \infty}\left(A \cap E_{n}\right)=\bigcup_{n \geqslant 1}\left(A \cap E_{n}\right)=A \cap\left(\bigcup_{n \geqslant 1} E_{n}\right)=A \tag{6.15}
\end{equation*}
$$

ν is additive,

$$
\begin{equation*}
\nu(A)=\nu\left(\bigcup_{n \geqslant 1} A \cap E_{n}\right)=\nu\left(\lim _{n \rightarrow \infty} A \cap E_{n}\right) \stackrel{\text { why }}{=} \lim _{n \rightarrow \infty} \nu\left(A \cap E_{n}\right) \tag{6.16}
\end{equation*}
$$

why, because we will check via Def 6.1 except $A=(a, b]$

1. $A=\varnothing$
2. $A=\mathbb{R}$
3. $A=(a, \infty)$
(a) left hand of why in Eq. 6.16

$$
\begin{gather*}
\because A \cap E_{n}=(a,+\infty) \cap(-n, n)=\left\{\begin{array}{cc}
(a, n) & a \geqslant-n \\
(-n, n) & a<-n
\end{array}\right. \tag{6.17}\\
\therefore \lim _{n \rightarrow \infty}\left(A \cap E_{n}\right)=(-\infty,+\infty)=\mathbb{R} \tag{6.18}
\end{gather*}
$$

by Def 6.2

$$
\begin{equation*}
\mu\left(\lim _{n \rightarrow \infty}\left(A \cap E_{n}\right)\right)=\mu(\mathbb{R})=+\infty \tag{6.19}
\end{equation*}
$$

(b) right hand of why in Eq. 6.16

$$
\begin{gather*}
\because \nu\left(A \cap E_{n}\right)=\nu\left(\left\{\begin{array}{cc}
(a, n) & a \geqslant-n \\
(-n, n) & a<-n
\end{array}\right)=\left\{\begin{array}{cc}
n-a & a \geqslant-n \\
2 n & a<-n
\end{array}\right.\right. \tag{6.20}\\
\therefore \lim _{n \rightarrow \infty} \nu\left(A \cap E_{n}\right)=\lim _{n \rightarrow \infty}\left\{\begin{array}{cc}
n-a & a \geqslant-n \\
2 n & a<-n
\end{array}=+\infty\right. \tag{6.21}
\end{gather*}
$$

So Eq 6.16 holds.
4. $A=(-\infty, b]$

Lecture 7

The Lebesgue Measure II

$\mathcal{S}=\{\varnothing, \mathbb{R},(a, b],(a, \infty),(-\infty, b]\}, \mu: a(\mathcal{S}) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$,

$$
\begin{equation*}
\mu((a, b])=b-a \tag{7.1}
\end{equation*}
$$

Theorem 7.1. μ is σ-additive on $a(\mathcal{S})$
Remark 7.1. $E_{k} \in(-N, N], \mu$ is finite and μ is continuous from below at \varnothing (i.e. $E_{k} \in a, E_{k} \downarrow$ $\left.\varnothing \Rightarrow \mu\left(E_{k}\right) \rightarrow 0\right)$, by Lemma 3.1 can imply Thm 7.1 hold.

Proof. Now we want to show that $E_{k} \downarrow \varnothing, E_{k} \in a, E_{k} \in(-N, N]$, then

$$
\begin{equation*}
\mu\left(E_{k}\right) \rightarrow 0 \tag{7.2}
\end{equation*}
$$

If not, $\exists \delta>0, \exists E_{k} \downarrow \varnothing, E_{k} \in a, E_{k} \in(-N, N]$, such that

$$
\begin{equation*}
\mu\left(E_{k}\right) \geqslant 2 \delta>0 \tag{7.3}
\end{equation*}
$$

If \exists a compact set $\left\{G_{k}\right\}$, s.t. $G_{k} \supseteq G_{k+1}, G_{k} \subseteq E_{k}$, but

$$
\begin{equation*}
\varnothing \neq \bigcap_{k \geqslant 1} G_{k} \subseteq \bigcap_{k \geqslant 1} E_{k}=\varnothing \tag{7.4}
\end{equation*}
$$

Then, we will find a sequence of compact sets $\left\{G_{k}\right\}$ by induction.
Our goal is : $E_{k} \subseteq(-N, N], \mu\left(E_{n}\right) \geqslant 2 \delta,\left(F_{k}\right)_{1 \leqslant k \leqslant M} G_{k}=\overline{F_{k}} . F_{k}$ satisfy the flowing three conditions:

1. $\overline{F_{k}} \subseteq E_{k}, \quad 1 \leqslant k \leqslant n-1$
2. $F_{k+1} \subseteq F_{k}, \quad 1 \leqslant k \leqslant n-1$
3. $\mu\left(E_{n} \backslash F_{n}\right) \leqslant \frac{\delta}{2}+\frac{\delta}{4}+\cdots+\frac{\delta}{2^{n}}=\delta$

Now,

1. by $E_{1} \in a$, then E_{1} can be written as

$$
\begin{equation*}
E_{1}=\sum_{j=1}^{n_{1}}\left(a_{1, j}, b_{1, j}\right] \tag{7.5}
\end{equation*}
$$

define F_{1} as

$$
\begin{equation*}
F_{1}=\sum_{j=1}^{n_{1}}\left(a_{1, j}+\varepsilon_{1}, b_{1, j}\right] \in a \tag{7.6}
\end{equation*}
$$

$\mu\left(E_{1} \backslash F_{1}\right)=m_{1} \varepsilon_{1}$.
We will pick a small enough ϵ to meet $\mu\left(E_{1} \backslash F_{1}\right) \leqslant \frac{\delta}{2}$, i.e. $m_{1} \varepsilon_{1} \leqslant \frac{\delta}{2}$, and $b_{1, j}-a_{1, j} \geqslant$ ε_{1}, i.e. $\min _{j}\left\{b_{1, j}-a_{1, j}\right\} \geqslant \varepsilon_{1}$, so we choose $0<\varepsilon_{1} \leqslant \min \left\{\frac{\delta}{2 m_{1}}, \min _{1 \leqslant j \leqslant m_{1}}\left\{b_{1, j}-a_{1, j}\right\}\right\}$.
2. We will show $\mu\left(E_{2} \cap F_{1}\right)$ have a lower positive bound, i e. $E_{2} \cap F_{1} \neq \varnothing$

$$
\begin{equation*}
2 \delta \leqslant \mu\left(E_{2}\right)=\mu\left(E_{2} \cap F_{1}\right)+\underbrace{\mu\left(E_{2} \backslash F_{1}\right)}_{\leqslant \mu\left(E_{1} \backslash F_{1}\right) \leqslant \frac{\delta}{2}} \Rightarrow \mu\left(E_{2} \cap F_{1}\right) \geqslant 2 \delta-\frac{\delta}{2}>0 \tag{7.7}
\end{equation*}
$$

by $E_{2} \cap F_{1} \neq \varnothing, E_{2} \cap F_{1} \in a$, then $E_{2} \cap F_{1}$ can be written as

$$
\begin{equation*}
E_{2} \cap F_{1}=\sum_{j=1}^{m_{2}}\left(a_{2, j}, b_{2, j}\right] \tag{7.8}
\end{equation*}
$$

Define F_{2} :

$$
\begin{equation*}
F_{2}=\sum_{j=1}^{m_{2}}\left(a_{2, j}+\varepsilon_{2}, b_{2, j}\right] \tag{7.9}
\end{equation*}
$$

choose a small enough ϵ_{2} satisfies that

$$
\begin{equation*}
F_{2} \subseteq \overline{F_{2}} \subseteq E_{2} \cap F_{1} \tag{7.10}
\end{equation*}
$$

then $F_{2} \subseteq F_{1}, \overline{F_{2}} \subseteq E_{2}$, and $F_{2} \subseteq F_{1} \Rightarrow \overline{F_{2}} \subseteq \overline{F_{1}}$, then we get that

$$
\begin{align*}
F_{2} & \subseteq \overline{F_{2}} \subseteq E_{2} \\
F_{2} & \subseteq F_{1} \tag{7.11}\\
\mu\left(E_{2} \backslash F_{2}\right) & \leqslant \frac{\delta}{2}+\frac{\delta}{4}
\end{align*}
$$

3. assume the F_{n} satisfies the three conditions as our goal above

$$
\begin{equation*}
2 \delta \leqslant \mu\left(E_{n+1}\right)=\mu\left(E_{n+1} \cap F_{n}\right)+\underbrace{\mu\left(E_{n+1} \backslash F_{n}\right)}_{\mu\left(E_{n} \backslash F\right) \leqslant \delta} \Rightarrow \mu\left(E_{n+1} \cap F_{n}\right) \geqslant \delta>0 \tag{7.12}
\end{equation*}
$$

by $E_{n+1} \cap F_{n} \neq \varnothing$ and $E_{n+1} \cap F_{n} \in a$ then

$$
\begin{equation*}
E_{n+1} \cap F_{n}=\sum_{j=1}^{k_{n+1}}\left(a_{n+1, j}, b_{n+1, j}\right] \tag{7.13}
\end{equation*}
$$

then we define F_{n+1} as

$$
\begin{equation*}
F_{n+1}=\sum_{j=1}^{k_{n+1}}\left(a_{n+1, j}+\varepsilon_{n+1}, b_{n+1, j}\right] \tag{7.14}
\end{equation*}
$$

choose a small enough ϵ_{n+1} satisfies that

$$
\begin{equation*}
F_{n+1} \subseteq \overline{F_{n+1}} \subseteq E_{n+1} \cap F_{n} \tag{7.15}
\end{equation*}
$$

then $F_{n+1} \subseteq E_{n+1}, F_{n+1} \subseteq F_{n}$, and $\overline{F_{n+1}} \subseteq \overline{F_{n}}$, let $\varepsilon_{n+1}=\frac{\delta}{k_{n+1} \cdot 2^{n+1}}$, then $\mu\left(\left(E_{n+1} \cap F_{n}\right) \backslash F_{n+1}\right) \leqslant$ $\frac{\delta}{2^{n+1}}$.

Then

$$
\begin{align*}
\mu\left(E_{n+1} \backslash F_{n+1}\right) & =\mu\left(\left(E_{n+1} \cap F_{n}\right) \backslash F_{n+1}\right)+\underbrace{\leqslant \mu\left(E_{n+1} \backslash F_{n}\right)}_{\underbrace{\leqslant \mu\left(\left(E_{n+1} \backslash F_{n}\right) \backslash F_{n+1}\right)}_{\leqslant \mu\left(E_{n} \backslash F_{n}\right) \leqslant \frac{\delta}{2}+\cdots+\frac{\delta}{2^{n}}}} \tag{7.16}\\
& \leq \frac{\delta}{2^{n+1}}+\frac{\delta}{2}+\frac{\delta}{4}+\cdots+\frac{\delta}{2^{n}}=\delta\left(1-\left(\frac{1}{2}\right)^{n+1}\right)
\end{align*}
$$

define $G_{k}=\overline{F_{k}}$, then $G_{k+1}=\overline{F_{k+1}} \subseteq \overline{F_{k}}=G_{k} G_{k}$: satisfies that
(a) $G_{k+1} \subseteq G_{k}$
(b) G_{k} compact
(c) $G_{k} \neq \varnothing$

Why $G_{k} \neq \varnothing$ because:

$$
\begin{equation*}
2 \delta \leqslant \mu\left(E_{k}\right)=\mu\left(E_{k} \backslash F_{k}\right)+\mu\left(E_{k} \cap F_{k}\right) \leqslant \delta+\mu\left(F_{k}\right) \Rightarrow \mu\left(F_{k}\right) \geq \delta \tag{7.17}
\end{equation*}
$$

Then $F_{k} \neq \varnothing \Rightarrow G_{k}=\overline{F_{k}} \neq \varnothing$.
But

$$
\begin{equation*}
\varnothing \neq \bigcap_{k \geqslant 1} G_{k} \subseteq \bigcap_{k \geqslant 1} E_{k}=\varnothing \tag{7.18}
\end{equation*}
$$

Above all, $E_{k} \in(-N, N], \mu$ is finite and μ is continuous from below at \varnothing, then Lebesgue μ is σ-additive on $a(\mathcal{S})$.

Lecture 8

Complete Measures

Definition 8.1. $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is σ-algebra, $\mu: \mathcal{F} \rightarrow \mathbb{R}_{+} \bigcup \infty$ is additive. (μ, \mathcal{F}) is complete if : $A \in \mathcal{F}$ such that $\mu(A)=0, \forall E \subseteq A$ then $E \in \mathcal{F}$.

Remark 8.1. In Def 8.1, by monotone $\mu(E)=0$.
Next, our goal is: $\overline{\mathcal{F}} \supseteq \mathcal{F}$, and $\bar{\mu}: \overline{\mathcal{F}} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}:\left\{\begin{array}{l}\left.\bar{\mu}\right|_{\mathcal{F}}=\mu, \\ (\bar{\mu}, \overline{\mathcal{F}}) \text { is complete }\end{array}\right.$
Definition 8.2. $\overline{\mathcal{F}}=\{A \cup N$, where $A \in \mathcal{F}$ and $N \subseteq E \in \mathcal{F}$, such that $\mu(E)=0\}$
Claim 8.1. $\overline{\mathcal{F}}$ is a σ-algebra.
Proof. We will check :

1. $\Omega \in \overline{\mathcal{F}}, \because \Omega=\Omega \cup \varnothing, \varnothing \subseteq \varnothing \in \mathcal{F}$
2. $A \in \overline{\mathcal{F}} \Rightarrow A^{c} \in \overline{\mathcal{F}}$
$\because A \subseteq \overline{\mathcal{F}}, A=E \cup N$ where $E \in \mathcal{F}, N \subseteq H \in \mathcal{F}$ such that $\mu(H)=0$

$$
\begin{align*}
A^{c} & =(E \cup N)^{c} \\
& =\underbrace{\left[(E \cup N)^{c} \cap H\right]}_{\subseteq H} \cup \underbrace{\left[(E \cup N)^{c} \cap H^{c}\right]}_{\underbrace{}_{\subseteq E^{c} \cap H^{c} \in \mathcal{F}}} \tag{8.1}
\end{align*}
$$

by $\operatorname{Def} 8.2, A^{c} \in \overline{\mathcal{F}}$.
3. $A_{j}=E_{j} \cup H_{j}$ where $E_{j} \in \mathcal{F}, H_{j} \subseteq W_{j}$ where $w_{j} \in \mathcal{F}, \mu\left(W_{j}\right)=0$ then $\bigcup_{j \geqslant 1} A_{j} \in \overline{\mathcal{F}}$

$$
\begin{align*}
\because \bigcup_{j \geqslant 1} A_{j} & =\bigcup_{j \geqslant 1}\left(E_{j} \cup H_{j}\right) \\
& =\underbrace{\bigcup_{j \geqslant 1} E_{j} \cup \underbrace{\bigcup_{j \geqslant 1} H_{j}}_{\subseteq \bigcup_{j \geqslant 1} W_{j} \triangleq W}}_{\mathcal{F}} \tag{8.2}
\end{align*}
$$

and $\mu(W)=\mu\left(\bigcup_{j \geqslant 1} W_{j}\right) \leqslant \sum_{j \geqslant 1} \mu\left(W_{j}\right)=0$

We want to define $\bar{\mu}$ on $\overline{\mathcal{F}}$:

$$
\begin{equation*}
\because \underbrace{\bar{\mu}(A \cup N)}_{\geqslant \bar{\mu}(A)=\mu(A)} \leqslant \bar{\mu}(A \cup E) \leqslant \underbrace{\bar{\mu}(A)+\bar{\mu}(E)}_{=\mu(A)+\mu(E)=\mu(A)} \tag{8.3}
\end{equation*}
$$

So we give the following definition.

Definition 8.3. $\bar{\mu}(A \cup N)=\mu(A)$
Proof. By the Def 8.3

1. check $\bar{\mu}$ is well defined

Assume that $A \cup N=B \cup M$, where $A, B \in \mathcal{F}, N \subseteq E \in \mathcal{F}$ where $\mu(E)=0, M \subseteq F \in$ \mathcal{F} where $\mu(F)=0$. We need to show that $\mu(A)=\mu(B)$.

$$
\begin{equation*}
\because A \subseteq A \cup N=B \cup M \subseteq B \cup M \tag{8.4}
\end{equation*}
$$

by μ is σ-additive, then μ is monotone,

$$
\begin{equation*}
\mu(A) \leqslant \mu(B \cup F) \leqslant \mu(B)+\mu(F)=\mu(B) \tag{8.5}
\end{equation*}
$$

similarly, $\mu(B) \leqslant \mu(A)$.
2. check $\left.\bar{\mu}\right|_{\mathcal{F}}=\mu$
by $A \in \mathcal{F}, A=A \bigcup \varnothing$ then $\bar{\mu}(A \cup \varnothing)=\mu(A)$
3. check $\bar{\mu}$ is σ-additive i.e. $A_{j} \in \overline{\mathcal{F}}, A=\sum_{j \geqslant 1} A_{j} \Rightarrow \bar{\mu}(A)=\sum_{j \geqslant 1} \mu\left(A_{j}\right)$

$$
\begin{array}{r}
\because A_{j} \in \overline{\mathcal{F}}, \therefore A_{j}=E_{j} \cup N_{j} \text { where } E_{j} \in \mathcal{F}, N_{j} \subseteq H_{j} \subseteq \mathcal{F} \text { where } \mu\left(H_{j}\right)=0 \\
\therefore A=\sum_{j \geqslant 1} A_{j}=\sum_{j \geqslant 1} E_{j} \cup \sum_{j \geqslant 1} N_{j} \\
\therefore \bar{\mu}(A)=\mu\left(\sum_{j \geqslant 1} E_{j}\right)=\sum_{j \geqslant 1} \mu\left(E_{j}\right)=\sum_{j \geqslant 1} \bar{\mu}\left(A_{j}\right) \tag{8.7}
\end{array}
$$

4. check $(\bar{\mu}, \overline{\mathcal{F}})$ is complete, i.e. $\overline{\mathcal{F}}$ is $\bar{\mu}$-complete.

Assume that $A \subseteq E \in \overline{\mathcal{F}}$ where $\bar{\mu}(E)=0$. We have to show that $A \in \overline{\mathcal{F}}$.
$\because E \in \overline{\mathcal{F}} \therefore E=B \cup N$ where $B \in \mathcal{F}, N \subseteq H \in \mathcal{F}$ where $\mu(H)=0$
$A=\varnothing \cup A, \varnothing \in F, A \subseteq E \subseteq B \cup N \subseteq \underbrace{B}_{\in \mathcal{F}} \cup \underbrace{H}_{\in \mathcal{F}} \in \mathcal{F}$, so $\mu(B \cup N) \leqslant \mu(B)+\mu(N)=0$ by $\bar{\mu}(E)=\mu(B)=0, \mu(A) \leqslant \mu(B) \Rightarrow \mu(A)=0$, so $A \in \overline{\mathcal{F}}$
5. check $\bar{\mu}$ is unique. $\mu: \mathcal{F} \rightarrow \mathbb{R}_{+} \bigcup\{+\infty\}$,

And, extension $\overline{\mathcal{F}_{\mu}}=\{E \cup N$, where $E \in \mathcal{F}, N \subseteq H \in \mathcal{F}$, where $\mu(H)=0\}, \bar{\mu}: \overline{\mathcal{F}_{\mu}} \rightarrow \mathbb{R}_{+} \cup$ $\{+\infty\}$.
Assume that $\nu: \overline{\mathcal{F}_{\mu}} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$, and $\nu(A)=\bar{\mu}(A), \forall A \in \mathcal{F}$. Then we want show that $\nu(B)=\bar{\mu}(B), \forall B \in \overline{\mathcal{F}_{\mu}}$.
Let $B \in \overline{\mathcal{F}_{\mu}}, B=E \cup N$ where $E \in \mathcal{F}, N \subseteq H \in \mathcal{F}$, where $\mu(H)=0, \nu(H)=\bar{\mu}(H)=$ $\mu(H)=0$.
fix B, $\bar{\mu}(B)=\mu(E) \underbrace{=}_{b y E \in \mathcal{F}} v(E) \leqslant \nu(B)$
$\nu(B)=\nu(E \cup N) \leqslant \nu(E \cup H) \leqslant \nu(E)+\nu(H)=\nu(E)=\bar{\mu}(B)$, then

$$
\begin{equation*}
\nu(B)=\bar{\mu}(B) \tag{8.8}
\end{equation*}
$$

$\pi^{*}: \mathcal{M} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$.
Claim 8.2. \mathcal{M} is π^{*}-complete.
Proof. π^{*}-complete, i.e. $A \subseteq B, B \subseteq \mathcal{M}, \pi^{*}(B)=0 \Rightarrow A \in \mathcal{M}$
We have to show $\forall E \subseteq \Omega, \pi^{*}(E) \geqslant \pi^{*}(E \cap A)+\pi^{*}\left(E \cap A^{c}\right)$

1. $\because E \cap A \subseteq A \subseteq B \therefore \pi^{*}(E \cap A) \leqslant \pi^{*}(B)=0$
2. $\pi^{*}\left(E \cap A^{c}\right) \leqslant \pi^{*}(E)$

So, $A \in \mathcal{M}$

Lecture 9

Approximation Theorems

Goal: $\pi^{*}(A)<\infty, A \in \mathcal{M}, F \in \mathcal{F}$, where \mathcal{F} is $\sigma-$ algebra, $A \subseteq F, \pi^{*}(A)=\pi^{*}(F)$.
Theorem 9.1. $a \subseteq \mathcal{P}(\Omega)$, where a is an algebra, \mathcal{F} is a $\sigma-$ algebra generated by $a, \mathcal{F}(a)=\mathcal{F}$, we have $\mu: \mathcal{F} \rightarrow \overline{\mathbb{R}}_{+}$, where μ is a measure, and $\left.\mu\right|_{a}=v, A \subseteq \mathcal{F}, \mu(A)<\infty, \forall \epsilon>0$, there

$$
\begin{equation*}
\exists E \in a, \text { s.t. } \mu(E \backslash A)+\mu(A \backslash E)<\varepsilon \tag{9.1}
\end{equation*}
$$

Proof. $A \in \mathcal{F}, \mu(A)<\infty$, by Thm 4.1, then

$$
\begin{equation*}
\mu(A)=\pi^{*}(A)=\inf _{\left\{A_{j}\right\} \supseteq A, A_{j \in a}} \sum \nu\left(A_{i}\right) \tag{9.2}
\end{equation*}
$$

but μ here is π in Thm 4.1.
$\forall \epsilon, \exists\left\{A_{i}\right\} \quad A_{i} \in a, A \subseteq \cup A_{i}$, s.t.

$$
\begin{equation*}
\pi^{*}(A) \leqslant \sum_{j \geqslant 1} \nu\left(A_{i}\right) \leqslant \pi^{*}(A)+\varepsilon \tag{9.3}
\end{equation*}
$$

so

$$
\begin{equation*}
\exists m_{0}, \quad \text { s.t. } \sum_{i \geqslant m_{0}} \nu\left(A_{i}\right) \leqslant \varepsilon \tag{9.4}
\end{equation*}
$$

Let $E=\bigcup_{i=1}^{m_{0}} A_{i} \in a$, then we need to proof the following:

$$
\begin{equation*}
\pi^{*}(E \backslash A) \leqslant \varepsilon, \quad \pi^{*}(A \backslash E) \leqslant \varepsilon \tag{9.5}
\end{equation*}
$$

By Thm 4.2, $\pi^{*}(A)$ is an out-measure, $\pi^{*}(A)$ is monotone and by $\operatorname{Tmm} 4.4, \pi^{*}(A)$ is σ-additive.

$$
\begin{align*}
\therefore \pi^{*}(E \backslash A) & =\pi^{*}\left(\bigcup_{i=1}^{n_{0}} A_{i} \backslash A\right) \\
& \leqslant \pi^{*}\left(\bigcup_{i \geqslant 1} A_{i} \backslash A\right) \\
& =\pi^{*}\left(\bigcup_{i \geqslant 1} A_{i}\right)-\pi^{*}(A) \quad \text { by } \pi^{*}(A)=\mu(A)<\infty \tag{9.6}\\
& \leqslant \sum_{i \geqslant 1} \pi^{*}\left(A_{i}\right)-\pi^{*}(A) \\
& =\sum_{i \geqslant 1} \nu\left(A_{i}\right)-\pi^{*}(A) \text { by }\left.\pi^{*}\right|_{\mathcal{F}}=\mu,\left.\mu\right|_{a}=v, A_{i} \in a \therefore \pi^{*}\left(A_{i}\right)=\nu\left(A_{i}\right) \\
& \leq \varepsilon
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
\pi^{*}(A \backslash E)=\pi^{*}\left(A \backslash \bigcup_{i=1}^{n_{0}} A_{i}\right) \leqslant \pi^{*}\left(\bigcup_{i \geqslant 1} A_{i} \backslash \bigcup_{j=1}^{n_{0}} A_{j}\right) \leqslant \pi^{*}\left(\bigcup_{j \geqslant n_{0}+1}^{n_{0}} A_{j}\right) \leqslant \sum_{j \geqslant m_{0}}\left(\bigcup_{j \geqslant n_{0}+1}^{n_{0}} A_{j}\right) \leqslant \varepsilon \tag{9.7}
\end{equation*}
$$

Remark 9.1. Ω is $\sigma-$ finite (μ) (i.e. $\Omega=\bigcup_{i \geqslant 1} E_{i}$ where $\left.E_{i} \in a, \mu\left(E_{i}\right)<\infty\right), \bar{\mu}: \overline{\mathcal{F}} \rightarrow \mathbb{R}_{+} \cup$ $\{+\infty\}, A \in \overline{\mathcal{F}}, \forall \varepsilon>0, \exists E \in a$, such that

$$
\begin{equation*}
\bar{\mu}(E \backslash A)+\bar{\mu}(A \backslash E)<\varepsilon \tag{9.8}
\end{equation*}
$$

Ω is topological space (open, closed sets), \mathcal{B} is Borel σ-algebra set (the smallest σ set which contains all open, closed sets in Ω).

Definition 9.1 (Regular Measure). $\mu: \mathcal{F} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ where $\mathcal{B} \subseteq \mathcal{F}$, is a measure. Then μ is a regular measure if: $\forall A \in \mathcal{F}, \forall \epsilon>0$, there $\exists F \subseteq A \subseteq G$, where $F \in \mathcal{B}$ closed, $G \in \mathcal{B}$ open, such that:

$$
\begin{equation*}
\mu(G \backslash F) \leqslant \varepsilon \tag{9.9}
\end{equation*}
$$

Remark 9.2. $\mu<\infty$ is not necessary.
Remark 9.3. $\mu(G \backslash A) \leqslant \varepsilon$ and $\mu(A \backslash F) \leqslant \varepsilon$.
Remark 9.4. $\mathcal{B} \subseteq \mathcal{F}, \mu$ is regular $\Rightarrow \mathcal{F} \subseteq \overline{\mathcal{B}_{\mu}}$
Proof. $A \in \mathcal{F}, n \geq 1$, by μ is regular, then $\exists F_{n}, G_{n} \in \mathcal{B}, F_{n} \subseteq \mathcal{B}$, such that $\mu\left(F_{n} \backslash G_{n}\right) \leqslant \frac{1}{n}$.
Let's define $F=\bigcup_{n \geqslant 1} F_{n} \in \mathcal{B}, G=\bigcap_{n \geqslant 1} G_{n} \in \mathcal{B}$, then $F \subseteq F_{n} \subseteq A \subseteq G_{n} \subseteq G$, i.e. $F \subseteq A \subseteq G$. By

$$
\begin{equation*}
G_{n} \backslash\left(\bigcup_{k \geqslant 1} F_{k}\right)=G_{n} \cap\left(\bigcup_{k \geqslant 1} F_{k}\right)^{c}=G_{n} \cap\left(\bigcap_{k \geqslant 1} F_{k}^{c}\right)=\bigcap_{k \geqslant 1}\left(G_{n} \cap F_{k}^{c}\right)=\bigcap_{k \geqslant 1}\left(G_{n} \backslash F_{k}\right) \subseteq G_{n} \backslash F_{n} \tag{9.10}
\end{equation*}
$$

then

$$
\begin{equation*}
\mu(G \backslash F) \leqslant \mu\left(G_{n} \backslash\left(\bigcup_{k \geqslant 1} F_{k}\right)\right) \leqslant \mu\left(G_{n} \backslash F_{n}\right) \leqslant \frac{1}{n} \rightarrow 0 \tag{9.11}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
A=\underbrace{F}_{\in \mathcal{B}} \cup \underbrace{(A \backslash F)}_{\subseteq G \backslash F \in \mathcal{B}} \in \mathcal{B} \Rightarrow A \in \overline{\mathcal{B}} \tag{9.12}
\end{equation*}
$$

Theorem 9.2. \mathcal{L} is a σ-algebra generated by $a(\mathcal{S})$, where \mathcal{S} is a set which defined as in Lecture 7, i.e. $\mathcal{S}=\{\varnothing, \mathbb{R},(a, b],(a, \infty),(-\infty, b]\} \cdot \mu: \mathcal{L} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$, is Lebesgue measure, then μ is regular measure. (if $A \in \mathcal{L}$, there \exists closed, G open, $F \subseteq A \subseteq G$ such that $\mu(G \backslash F) \leqslant \varepsilon$).

Proof.

1. goal: $A \in \mathcal{L}, \varepsilon>0$, there exists G open, such that $A \subseteq G, \mu(G \backslash A) \leqslant \varepsilon$.

Denote $E_{n}=[-n, n], A_{n}=A \cap E_{n}$, then $\mu\left(A_{n}\right)<\infty$. By the construction of Caratheodory Thm 4.1, there $\exists\left\{B_{n, k}\right\}_{k \geqslant 1}, B_{n, k} \in a, A_{n} \subseteq \bigcup_{k \geqslant 1} B_{n, k}$, such that

$$
\begin{equation*}
\mu\left(A_{n}\right) \leqslant \sum_{k \geqslant 1} \mu\left(B_{n, k}\right) \leqslant \mu\left(A_{n}\right)+\frac{\varepsilon}{2^{n}} \tag{9.13}
\end{equation*}
$$

By $B_{n, k} \in a, \therefore B_{n, k}=\sum_{j=1}^{l_{n, k}} I_{n, k, j} \subseteq G_{n, k}$, where $I_{n, k, j}=\left(a_{n, k, j}, b_{n, k, j}\right]$.
Then we denote $c_{n, k, j}=b_{n, k, j}+\underbrace{\delta_{n, k, j}}_{>0}, J_{n, k, j}=\left(a_{n, k, j}, c_{n, k, j}\right)$, then $B_{n, k} \subseteq G_{n, k}=\bigcup_{j=1}^{l_{n, k}} J_{n, k, j}$, then

$$
\begin{equation*}
\mu\left(G_{n, k}\right) \leqslant \sum_{j=1}^{l_{n, k}} \mu\left(I_{n, k, j}\right)+\delta_{n, k, j}=\underbrace{\sum_{j=1}^{l_{n, k}} \mu\left(I_{n, k, j}\right)}_{\mu\left(B_{n, k}\right)}+\underbrace{\sum_{j=1}^{l_{n, k}} \delta_{n, k, j}}_{\leqslant \frac{\varepsilon}{2^{2} k}} \tag{9.14}
\end{equation*}
$$

$\because B_{n, k} \subseteq G_{n, k}$, and $G_{n, k}$ open set $\therefore \mu\left(G_{n, k}\right) \leqslant \mu\left(B_{n, k}\right)+\frac{\varepsilon}{2^{n} 2^{k}} . \because A_{n} \subseteq \bigcup_{k \geqslant 1} B_{n, k}, B_{n, k} \subseteq$ $G_{n, k} \therefore A_{n} \subseteq \bigcup_{k \geqslant 1} G_{n, k}=G_{n}$.
On the other hand,

$$
\begin{equation*}
\mu\left(G_{n}\right) \leqslant \sum_{k \geqslant 1} \mu\left(G_{n, k}\right) \leqslant \sum_{k \geqslant 1} \mu\left(B_{n, k}\right)+\frac{\varepsilon}{2^{n}} \leqslant \mu\left(A_{n}\right)+\frac{2 \varepsilon}{2^{n}} \tag{9.15}
\end{equation*}
$$

$\because A_{n} \subseteq G_{n}$ open, and $\mu\left(G_{n}\right) \leqslant \mu\left(A_{n}\right)+\frac{2 \varepsilon}{2^{n}}$.
Then define $G=\bigcup_{n \geqslant 1} G_{n}$, open and $A=\bigcup_{n \geqslant 1} A_{n}, A \subseteq G$.

$$
\begin{align*}
\because \bigcup_{n \geqslant 1} G_{n} \backslash \bigcup_{k \geqslant 1} A_{k} & =\bigcup_{n \geqslant 1} G_{n} \cap\left(\bigcup_{k \geqslant 1} A_{k}\right)^{c}=\bigcup_{n \geqslant 1} G_{n} \cap\left(\bigcap_{k \geqslant 1} A_{k}^{c}\right) \tag{9.16}\\
& =\bigcap_{k \geqslant 1}\left(\bigcup_{n \geqslant 1} G_{n} \bigcap A_{k}^{c}\right) \subseteq\left(\bigcup_{n \geqslant 1} G_{n} \bigcap A_{n}^{c}\right)=\bigcup_{n \geqslant 1} G_{n} \backslash A_{n}
\end{align*}
$$

$$
\begin{align*}
\therefore \mu(G \backslash A) & =\mu\left(\bigcup_{n \geqslant 1} G_{n} \backslash \bigcup_{k \geqslant 1} A_{k}\right) \\
& \leqslant \mu\left(\bigcup_{n \geqslant 1} G_{n} \backslash A_{n}\right) \quad \text { by Eq. } 9.16 \tag{9.17}\\
& \leqslant \sum_{n \geqslant 1} \mu\left(G_{n} \backslash A_{n}\right) \\
& =\sum_{n \geqslant 1}\left[\mu\left(G_{n}\right)-\mu\left(A_{n}\right)\right] \quad \text { by } \mu\left(A_{n}\right)<\infty \\
& \leq 2 \varepsilon
\end{align*}
$$

2. goal: $A \in \mathcal{L}, \varepsilon>0$, there exists F closed, such that $F \subseteq A, \mu(A \backslash F) \leqslant \varepsilon$.

By above $1, \exists H, A^{c} \subseteq H$, H open set, $\mu\left(H \backslash A^{c}\right) \leqslant \varepsilon$, then $F=H^{c} \subseteq A, F$ closed .
Finally,

$$
\begin{equation*}
\mu(A \backslash F)=\mu\left(A \cap F^{c}\right)=\mu(A \cap H)=\mu\left(H \cap\left(A^{c}\right)^{c}\right)=\mu\left(H \backslash A^{c}\right) \leqslant \varepsilon \tag{9.18}
\end{equation*}
$$

Remark 9.5. \mathcal{F}_{σ} : countable union closed sets, \mathcal{G}_{σ} : countable injection open sets. $\forall A \in \mathcal{L}$ there $\exists R \in \mathcal{F}_{\sigma}$ and $S \in \mathcal{G}_{\sigma}$, such that

$$
\begin{equation*}
R \subseteq A \subseteq S, \quad \mu(S \backslash R)=0 \tag{9.19}
\end{equation*}
$$

Lecture 10

Integration: Measurable and Simple Functions

We now assume given $(\Omega, \mathcal{F}, \mu)$ where Ω is a space, \mathcal{F} a σ-field of subsets of Ω and μ a measure on \mathcal{F}.

Before defining such an operator \mathcal{J}, we examine the sort of properties \mathcal{J} should have before we would be justified in calling it an integral. Suppose that \mathcal{A} is a class of functions $f: \Omega \rightarrow \overline{\mathbb{R}}$, and $\mathcal{J}: \mathcal{A} \rightarrow \mathbb{R}$ defines a real number for every $f \in \mathcal{A}$. Then we want \mathcal{J} to satisfy:

1. $f \in \mathcal{A}, f(x) \geqslant 0$, all $x \in \Omega \Rightarrow \mathcal{J}(f) \geqslant 0$, that is \mathcal{J} preserves positivity
2. $f, g \in \mathcal{A}, \alpha \in \mathbb{R} \Rightarrow \alpha f+g \in \mathcal{A}$ and

$$
\begin{equation*}
\mathcal{J}(\alpha f+g)=\alpha \mathcal{J}(f)+\mathcal{J}(g) \tag{10.1}
\end{equation*}
$$

that is \mathcal{J} is linear on \mathcal{A}.
3. \mathcal{J} is continuous on \mathcal{A} in some sense, at least we would want to have $\mathcal{J}\left(f_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ for any sequence decreasing with $f_{n}(x) \rightarrow 0$ for all x in Ω.

These conditions are satisfied by the elementary integration process, but the Riemann integral does not satisfy the following strengthened form of 3 .

- 3^{\prime} If $\left\{f_{n}\right\}$ is an increasing sequence of functions in \mathcal{A}, and

$$
\begin{equation*}
f_{n}(x) \rightarrow f(x) \text { for all } x \in \Omega \tag{10.2}
\end{equation*}
$$

then $f \in \mathcal{A}$ and $\mathcal{F}\left(f_{n}\right) \rightarrow \mathcal{F}(f)$ as $n \rightarrow \infty$

(a) Riemann integral

(b) Lebesgue integration

Figure 1: Integration

1. Riemann integral

$$
\begin{equation*}
\int f \approx \sum f\left(x_{j}\right)\left|I_{j}\right| \tag{10.3}
\end{equation*}
$$

2. Lebesgue integration

$$
\begin{equation*}
I(f) \approx \sum y_{k} \mu\left(A_{k}\right)=\sum_{k} y_{k} \mu\left(f^{-1}\left(J_{k}\right)\right) \tag{10.4}
\end{equation*}
$$

where $A_{k}=f^{-1}\left(J_{k}\right)$.

In defining measurability we will want to consider functions

$$
\begin{equation*}
f: \Omega \rightarrow \mathbb{R} \cup\{-\infty, \infty\}=\overline{\mathbb{R}} \tag{10.5}
\end{equation*}
$$

It is possible to define the class of Borel sets \mathcal{B} in $\overline{\mathbb{R}}$ in terms of this topology. However, we adopt the simple procedure of defining the class

$$
\begin{equation*}
\overline{\mathcal{B}}=\{A \cup B, A \in \mathcal{B}, B \subseteq\{-\infty, \infty\}\} \tag{10.6}
\end{equation*}
$$

Proposition 10.1. $\overline{\mathcal{B}}$ is a σ-algebra.

Definition 10.1. A function $f: \Omega \rightarrow \overline{\mathbb{R}}$ is said to be \mathcal{F}-measurable if and only if

$$
\begin{equation*}
f^{-1}(A) \in \mathcal{F} \tag{10.7}
\end{equation*}
$$

for all $A \in \overline{\mathcal{B}}$.
If there is only one σ-field \mathcal{F} under discussion we may say that f is a measurable function.
Remark 10.1.

$$
\begin{equation*}
\mathcal{F} \subseteq \mathcal{G} \tag{10.8}
\end{equation*}
$$

Lemma 10.1. $(\Omega, \mathcal{F}, \mu) f: \Omega \rightarrow \overline{\mathbb{R}}, f$ is measurable each of the following conditions is necessary and sufficient:

1. $f^{-1}((-\infty, x]) \in \mathcal{F}, \forall x \in \mathbb{R}$, i.e. $\{\omega \in \Omega, f(\omega) \leqslant x\} \in \mathcal{F}$
2. $f^{-1}((-\infty, x)) \in \mathcal{F}, \forall x \in \mathbb{R}$, i.e. $\{\omega \in \Omega, f(\omega)<x\} \in \mathcal{F}$
3. $f^{-1}([x, \infty)) \in \mathcal{F}, \forall x \in \mathbb{R}$, i.e. $\{\omega \in \Omega, f(\omega) \geq x\} \in \mathcal{F}$
4. $f^{-1}((x, \infty)) \in \mathcal{F}, \forall x \in \mathbb{R}$, i.e. $\{\omega \in \Omega, f(\omega)>x\} \in \mathcal{F}$

Proof. We only proof (1) in Lemma 10.1

1. $\Rightarrow(-\infty, x] \in \overline{\mathcal{B}}$

2 . \Leftarrow If we suppose that the condition is satisfied, and put

$$
\begin{equation*}
\mathcal{C}=\left\{A \in \overline{\mathcal{B}}, f^{-1}(A) \in \mathcal{F}\right\} \tag{10.9}
\end{equation*}
$$

then
(a) \mathcal{C} is a σ-algebra
(b) $\mathcal{C} \supseteq \mathcal{G}=\{(-\infty, x], x \in \mathbb{R}\}$
by $a \& b$,

$$
\begin{equation*}
\mathcal{C} \supseteq \mathcal{F}(\mathcal{G}) \supseteq \overline{\mathcal{B}} \tag{10.10}
\end{equation*}
$$

then \mathcal{C} is a σ-algebra.

- $\overline{\mathbb{R}} \in \mathcal{C}, f^{-1}(\overline{\mathbb{R}})=\{\omega \in \Omega, f(\omega) \in \overline{\mathbb{R}}\}=\Omega \in \mathcal{F}$
- $A \in \mathcal{C} \Rightarrow A^{c} \in \mathcal{C}, f^{-1}(A) \in \mathcal{F}$, so $f^{-1}\left(A^{c}\right) \in f^{-1}(A)^{c} \in \mathcal{F}$
- $A_{j} \in \mathcal{C} \Rightarrow \bigcup_{j \geqslant 1} A_{j} \in \mathcal{C}$, then

$$
\begin{equation*}
f^{-1}\left(\bigcup_{j \geqslant 1} A_{j}\right)=\bigcup_{j} \underbrace{f^{-1}\left(A_{j}\right)}_{\in \mathcal{F}} \in \mathcal{F} \tag{10.11}
\end{equation*}
$$

Given $(\Omega, \mathcal{F}, \mu)$ as above. If $\Omega=\bigcup_{i=1}^{n} E_{i}$ and the sets E_{i} are disjoint $\left(E_{j} \cap E_{k}=\varnothing, j \neq k\right)$, then $E_{1}, E_{2}, \ldots, E_{n}$ are said to form a (finite) dissection of Ω. They are said to form an \mathcal{C}-dissection if, in addition $E_{i} \in \mathcal{F}(i=1,2, \ldots, n)$.

Definition 10.2 (Simple Function). A function $f: \Omega \rightarrow \mathbb{R}$ is called \mathcal{F}-simple if it can be expressed as

$$
\begin{equation*}
f=\sum_{j=1}^{n} c_{j} 1_{E_{j}}, c_{j} \in \mathbb{R} \tag{10.12}
\end{equation*}
$$

where $1_{E_{j}}, \Omega \rightarrow \overline{\mathbb{R}}$,

$$
\omega \mapsto 1_{E_{j}}(\omega)= \begin{cases}1, & \omega \in E_{j} \tag{10.13}\\ 0, & \omega \notin E_{j}\end{cases}
$$

and $\sum_{j=1}^{n} E_{j}=\Omega, E_{0}=\Omega \backslash\left(\sum_{j=1}^{n} E_{j}\right) \in \mathcal{F}$.
If there is only one σ-field \mathcal{F} under discussion we will talk of simple function rather than \mathcal{F}-simple functions.
$f^{-1}(A)=\sum_{k, c_{k}} E_{k} \in \mathcal{F}, A \in \overline{\mathcal{B}}, f: \Omega \rightarrow R_{+}, f=\sum_{j=1}^{n} c_{j} 1_{E_{j}}, E_{j} \in \mathcal{F},\left\{E_{1}, \ldots, E_{n}\right\}$ partition of Ω.

$$
\begin{equation*}
I(f)=\sum_{j=1}^{n} c_{j} \mu\left(E_{j}\right) \tag{10.14}
\end{equation*}
$$

where $c_{j} \geqslant 0$.
If $f=\sum_{k=1}^{m} d_{k} 1_{F_{k}}$.
Proposition 10.2. $E_{j^{\circ}} \cap F_{k^{\circ}} \neq \varnothing$, then

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j} \mu\left(E_{j}\right)=\sum_{k=1}^{n} d_{k} \mu\left(F_{k}\right) \tag{10.15}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\mu\left(E_{j}\right) & =\mu\left(E_{j} \cap\left(\sum_{k=1}^{m} F_{k}\right)\right) \\
& =\mu\left(\sum_{k=1}^{m}\left(E_{j} \cap F_{k}\right)\right) \tag{10.16}\\
& =\mu\left(E_{j}\right)=\sum_{k=1}^{m} \mu\left(E_{j} \cap F_{k}\right)
\end{align*}
$$

then

$$
\begin{align*}
\sum_{j=1}^{n} c_{j} \mu\left(E_{j}\right) & =\sum_{j=1}^{n} \sum_{k=1}^{m} c_{j} \mu\left(E_{j} \cap F_{k}\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{m} d_{k} \mu\left(E_{j} \cap F_{k}\right) \tag{10.17}\\
& =\sum_{k=1}^{m} d_{k} \mu\left(F_{k}\right)
\end{align*}
$$

Proposition 10.3.

1. $f: \Omega \rightarrow \overline{\mathbb{R}}_{+}$measurable then there exists $\left(f_{n}\right)_{n \geqslant 1}$, f_{n} simple functions, such that $f_{n} \geqslant 0, f_{n} \uparrow$ f
2. $I(f)=\lim _{n} I\left(f_{n}\right)$
3. $f: \Omega \rightarrow \overline{\mathbb{R}}$ measurable, $f^{+}=\max (f, 0), f^{-}=\max (-f, 0), f^{+}, f^{-}$measurable then $f=f^{+}-f^{-}$, then

$$
\begin{equation*}
I(f)=I\left(f^{+}\right)-I\left(f^{-}\right) \tag{10.18}
\end{equation*}
$$

Example 10.1. $\Omega=(0,1], \mathcal{B}, \lambda, E=\mathbb{Q} \cap \Omega, f=1_{E^{c}}$, i.e. f simple, then

$$
\begin{equation*}
I(f)=\lambda\left(E^{c}\right)=1 \tag{10.19}
\end{equation*}
$$

