1 Lecture 1

2 Lecture 2

3 Lecture 3

4 Lecture 4

5 Lecture 5

Measure Theory

Lectures by Claudio Landim

Notes by Yao Zhang

Instituto de Matematica Pura e Aplicada, Spring 2018

13

23

6 Lecture 6

7 Lecture 7

8 Lecture 8

9 Lecture 9

10 Lecture 10

26

29

32

35

39



Introduction
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I am responsible for all faults in this document, mathematical or otherwise; any merits of the
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Please email any corrections or suggestions to jaafar zhang@163. com.
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Lecture 1
Introduction: a Non-measurable Set

) satisfies the flowing:
0. \: P(R) = Ry U {+oc}
1. A((a,b]) =b—a
2. ACR, A+z={x+y: yec A}, VA, ACR, Vz eR:
AMA+2x)=A(4) (1.1)

w

A= UAj? AjﬂAk:@Z

j=z1

A(A) = A (Ag) (1.2)
k

Definition 1.1. z ~y, z,y e Rify—2 € Q. [z] ={y e R, y — 2z € Q}.
A = R|., only one point represents the equivalence class of €2 , like «, 3.

Q is a class of equivalence class, if 2 C R,Q C (0,1)

Q+q¢=0+¢q

QtqnQtg=o PPEC

Claim 1.1. {

Proof. Assume that Q4+ ¢NQ+g# S then,z=a+p=F+q o,fEN=>a-B=gq—peQ=
a=3=q#p,p.eceQ=(Q+q¢N(Q+p) =2]. 0

Claim 1.2. Q +¢C (-1,2),if -1 <g<1.

then we can get

Y Q49 C(-1,2) (1.3)
q€Q
—1<g<1
Claim 1.3. EC F = \(E) < A (F)

Proof. WECF F=EU(F\E), EN(F\E) =0, then A\(F) =A(E)+ A(F\E)) = AF) >
A(E). O

Then,
MY @+ | <a(-12)=3 (1.4)
??%q<1
and ,
0 A((Q+q) =00-A(Q)<3=A[ Y (Q+4q) | =0 (1.5)
q€Q

—1<g<1



Claim 1.4. (0,1)C > (Q4¢)

q€Q

—1<g<1
Proof. ¥ fixed xz € (0,1),3a € [z] N Q, o € (0,1), and we know that a —2 =¢€Q, —<g<1 =
r=a+q, z€N+q O

But, we get that:

1=X(0,1))<A{ ) _Q+q]| =0 (1.6)
qeQ

it is impossible.



Lecture 2

Classes of Subsets (Semi-algebras, Algebras and Sigma-algebras) and Set Functions

Definition 2.1. § C P (Q), § is semi-algebra if:
1. QCS
2. ABeS=ABe€S

n
3.VAe 8= A=) E;, 3E,--- ,E, €8, E;,E; (i # j) disjoint sets, n is finite number
i=1

Example 2.1. Q@ = R, § = {R,{(a,b),a <b,a,b € R}, {(—00,b],b € R},{(a,0),a € R},},
(a,b]® = (—o0,a] U[b,4+00)

Example 2.2. Q = R?
S = {R2 ,{(al,bl) X (ag,bg), a; < bi,ai,bi S R,{(foo,bﬂ X (700,[72] 7bi S R},{(al,oo) X (CLQ,OO) ,a; € R},@}

Definition 2.2. a = P (Q) is an algebra:
1. Q€a
2. ABea= A(B€a

3. Aca= A%€a
Remark 2.1. a algebra = a semi-algebra

Definition 2.3. og-algebra 8 C P (Q):
1. QCS
2. AjES,j§1:> ﬂAjES

j>1
3. AeS§= A°e§

Remark 2.2. Q,a, C P(Q), a, algebra, o € I = a = () a, is an algebra.
ael

Proof. check the followings
1. Q€a
2. ABea=ANBe€a

3. Aca= A°caq

Remark 2.3. Q,a, CP(Q),a € I,a4, o-algebra = a = () a, is a o-algebra
acl

Proof. check the followings
1. Q€a



2. Aj,j>1ca= (N 4€a
j>1

3. Aca= A°ca
O
Definition 2.4 ( minimal algebra generated by ¢). ,¢ C P (Q), a(c) is an algebra generated by c,
and a = a(c):
1. ¢cCa
2. VB is algebra, B C P (Q):
cCB=aCB (2.1)

Remark 2.4. a(c) exits, and a = a (¢) =) aa, Y, ¢ C aq, aq is an algebra.
«

Definition 2.5 ( minimal o-algebra generated by ¢). Q,¢c C P (Q), a(c) is a o-algebra generated
by ¢, and a = a(c):

1. ¢cCa

2. VB is o-algebra, B C P ():
cCB=aCB (2.2)

Remark 2.5. a(c) exits, and a = a (¢) = () aq, Yo, ¢ C aq, a is an o-algebra.
Lemma 2.1. Q, f semi-algebra f C P (2), a(f) algebra generated by f then
Aca(f)e3E e f1<j<n, A=) E (2.3)
j=1

Proof.
1. «
A=

M=

Ejv EijE(z(f)

j=1
By definition 2.1 and remark 2.6 = A € a (f)

2. =

Aca(f)= A= E,E cf
j=1

Then by remark 2.7, it will be proved easily.

Remark 2.6. £, J € a,E\JF €a,E\JF = (E°(F°)°



Remark 2.7. B = {
J

Fj, Fj Ef}, B C P(Q) then
=1

1. B algebra
2.BDf
3. B2a(f)
Proof. We only prove that B algebra, then check the following
1. Qe B
2. ABeB=ANBeB

cABeB, A= ZE]', Ejef, B= ZFk, Fy € f, then

j=1 k=1
n m
ANB= ZEJ N <2Fk>
j=1 k=1
o (2.4)
=22 BNk
j=1 k:l\ﬁe?—/
eB
3. Ae B= A€ B
n
A= Z Ej, Ej S f
j=1
By definition 2.1:
l1
Ef=) Fip, Fijef
k=1
- (2.5)
l;
Ef=> Fip, Fijef
ki=
Then, we get that
I la In
A = Z Fl,kl N Z F27k2 n---N Z kan
k=1 ko=1 kn=1
bl In (2.6)
=D D > (Fun NFap, N Fyp)
ki=lke=1  kn=1
eB
O



Definition 2.6. cCP(Q), @ €c, p: ¢ — Ry U{+oo}. p is additive if
1. u(2)=0

n n
2. F1,Fo,....E,€c, E= Z Ej cc= M(E) = Z M(Ek)
Jj=1 J=1
Remark 2.8.

JA€e, p(A)<oo, A=AUG, p(A)=p(A)+p (@)= pn(@)=0 (2.7)

Remark 2.9. ¢, p:c—RyJ4o0o, ECF, F\E€c, E,Fec
F=BU(F\E), u(F) = u(E) + (F\E) (28)
L. p(E) =400, u(F) =400
2. p(E) <400, p(F\E) = p(F) — p(E)

S0,

1 (E) < i (F) (2.9)

Example 2.3. Discrete measure: Q, ¢ C P(Q), {z;, j > 1}, z; € Q, {p;, 7 > 1}, p;,; >0, A€,
define that

p(A)=> pji{z; € A} (2.10)

i>1

then p is additive

Definition 2.7. c€e P(Q), 0 € ¢, u: ¢ — Ry |J+oo, p is o-additive if
1. u(2)=0
2. EjEC, j#k,EjﬂEk:@, F= ZE]‘GC:>M(E): ZM(E]')
Jj=>1 Jj=1

Example 2.4. Q= (0,1), ¢c={(a,b], 0<a<b< 1}, p: ¢ — Ry U{+00}, define that

400 a=0
u(a,b]z{b_a "= (2.11)

n
(a,b] = >~ (aj,b;), we can get that p is NOT o-additive.
j=1
If 1 = %,l‘j > Tj41, Ty 4— 0, then
1 1
it is impossible.

Definition 2.8. Any non-negative set function p : C' — Ry U {400} which is ¢ — additive is called
a measure on C.



Lecture 3

Set Functions

Definition 3.1. ¢ C P (Q), p:c— Ry |J+oc:

1. E € c, pp continuous from below at £, if V(E,),~,, En €c¢, B, T E <En CEu, U En= E> :

n>1

1 (En) = p(E) (3.1)

n>1

2. E € ¢, pcontinuous from above at E, ifV(E,), ~,, En €c¢, En | E <E+1 CE, N E.,= E) ,
and Ing, p(En,) < 00:
1 (En) = 1 (E) (3.2)

Remark 3.1. For a sequence F1, Fo, ... of sets, we put

limsup E; = [ ) < E,),liminfEi = ( E) (3.3)

n=1 n=1

and if {F;} is such that limsup F = liminf F; we say that the sequence converges to the set

E =limsup £ = liminf E; (3.4)

Remark 3.2. 2 need Ing, p(Ey,) < oo, if not:

E,=[n,+00), u(E,) =400, E, | &, A(&)=0 (3.5)

Lemma 3.1. a C P (Q), algebra; pn: a — Ry U {400}, additive;
1. w is o-additive = u continuous at E, VE € a
2. is continuous from below = u is o-additive
3. u is continuous from above at F& p is finite = o-additive
Proof.
1.

(i) p is o-additive = p conti. from below at £ € a. F € a,E, T E, E, € a:

F,=F;

Fy, = Eb\Ey 56)
3.6

Fn — n\En—l



and we can get that

n
F;NF, =2, ZFk:En, UE :UFn (3.7)
k=1 n>1 n>1
SO
n
p(E) =) p(Fr) = lim > p(Fy) = lim pu(Ey) (3.8)
k>1 k=1

(ii) p cont. from above E € a,E, € a,E, | E, i (Ep,) < 0o = pu(E,) | p(E)

— — ~

S SN0\
// // ) / \ \\‘ \\
N )N
o\ NN Lk /"/

N > N

Gl = E’no \ETL0+1

G2 = E’no \En0+2
(3.9)

G = Eno\Eno+k
then G T En\E, G € a = 1 (G) T p(En,\E), so
0 (Eu\E) = 1 (Eng\ By 1)
N(EHO\E) = N(Eno) _N(E) (3'10)

o (Bua) = (B) = lim (1 (Buy) = 1 (1)

2. p cont. below, £ = > Ej, E, Ex € a.

k>1
Obs.
n it u(Z Ek) < u(E)
E, C EYZEY L =1 (3.11)
k=1 > k(EBk) < p(E)



then

> u(EBy) < p(E) (3.12)
k>1
F,= S Eyca, Fy1E,
k=1
> u(Br) = p(Fa) tp(B) =Y p(Ey) = p(E) (3.13)
k=1 E>1

3. pcont. at &, u () < oo, E,E; € a,E =) E.
k=1

n—1
Fo=Y Epca |E\)_ E; (3.14)
j=1

k>m

u(E)=u<§n:EkUZEk>
k=1

k>n
n
= u) B +u) B
k=1 k>n (3.15)
> () o
E>1
= > u(En)
k>1

O]

Remark 3.3. Suppose E,, o € [ is a class of subsets of X, and F; is one set of the class, then

. N Ea CEC U Ea

ael acl
2. X~ U Ea= N (X - E)
a€el a€cl
3. X— N E.= U (X —E,)
acl acl
Proof.

1. This is immediate from the definition.

2. Suppose x € X — |J E, then z € X and x is not in |J E,, that is x is not in any F,, o € I
acl ael
so that x € X — E, for every a € I, and x € () (X — E,). Conversely if x € () (X — E,),
acl acl
then for every o € I, x is in X but not in E,, so z € X but z is not in |J E,, that is

ael
re J (X —Ey).
acl



3. Similar to 2
Remark 3.3 (2) and (3) are also called as de Morgan’s Law. O

Example 3.1. (0,1),(a,b],0<a<b<1

b—a, a>0
u(a,b]—{m >0 (3.16)

w is additive but NOT o-additive

Proof. En | @, i (En,) < 00, Ep = (an,1,bp1] U+ U (an iy, bn i) s 0nyj < st

an,1 = 07 vn O
any > 0, some ng

Theorem 3.1 (Extension). f C P(Q) semi-algebra, pn: f — Ry U{oo} o-additive, then Jv :
v:ia(f) — Ry U{oo} (3.17)
such that:
1. v o-additive
2.v(A)=pu(A),VAe f
8. pispzsa(f) = RyU{+oo}, then p1 (A) = p2 (A) VA € s = (E) = p2 (E) ,VE € a(f)

Proof. Aca(f)= A=) Ej, E; € f by Lemma 2.1.
j=1

n n

v (A) Y v (E) Y n(E) (3.18)
=1 =1
we define that .
v(A)=> n(E)) (3.19)
Jj=1

n
we want to show that v (A) = > u(E}) is well-defined:
j=1

1. v is unique

(3.20)

then we will prove that

(3.21)



'.‘Eng:ZFk:Ej:Ejﬂ<ZFk> =

then

2. v is an additive, v (A) = > u(F;)
=1

Assume that

We will show that

therefore

NE

(E; N Fy)
1%/—/

k=1 cf

k=1

b
Il

k=

[y

A:ZEJ', EjEf
j=1

L ANB=0

NE

B=3 F, F,ef

k=1

v(AUB)=v(A)+v(B)

n m

CAUB=Y Ej+) F

j=1 k=1

j=1 k=1

v(AUB)=pu (Zn:Ej—i-iFk)

n

=Y u(B)+d p(F)
j=1 k=1

= v (4) +v(B)

3. v(A) = pu(A), Ae f by Eq 3.19

4. v is uniqueness, we want to show that:

Suppose that p1, 2 : a(f) = Ry U{+o0},VA € f, u1, u2 additive, then

p (A) = pa (A) = p1 (B) = p2 (B), VB € a(f)

> m(Ej), Ejef

p (B) =Y m(Ej) =Y pa(Ej) = p2(B)
o =1

11

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)



Now we proof the extension of o-additive, ie: u — o additive, f semi-algebra, v — o additive, a(f) is
a algebra generated by f. we want to show that

A=) "Aj Adica(f)=v(A) =) v(4)) (3.31)

Jj=1 Jj=1

by representation of an algebra:

m mp
A= ZEj’Ej ef, Ap= ZE’“J’ EkJ ef (3.32)
j=1 =1
by Eq 3.19:
m mi
v(A)=> v(E)j), v(A) = v(Ek) (3.33)
j=1 =1
mp mpg
Ej = E]’ NA= E]’ N ZAk = Ej N Z ZEk’l = (Ej N Ek,l) (334)
k>1 k>11=1 k>11=1
therefore

v (4) =3 u(B)
j=1
=20 2 #(Fi 0 B (3.35)

j=1k>1 =1

=> iu (Ek,t)

Eq 3.35 holds because:
EkJ = Ek,l NA= Z (EkJ N Ej) (336)

and

p(Erp) =Y p(EriN Ey) (3.37)

so we can get that

v(A) =) v(Ap) (3.38)

12



Lecture 4

Caratheodory Theorem

Theorem 4.1 (Caratheodory Theorem).

oc—add p:f—RyU{+oo} fCP(Q),fis semialgebra
\ 1

o—add v:a(f)— RyU{+oo} a(f) algebra generated by f (4.1)
i i

o—add w:F(a) = RyU{+o0} F(a) is o — algebra generated by algebra a

The big picture of the proof:

1. Define the 7* outer measure:

7 = inf v(E; 4.2
it S (B) (42)
2. M o-algebra, M 2O F(a)
3.
™ M — Ry U {400} (4.3)
is o-additive, and
e =v (4.4)

4. (uniqueness) 1, pio : F (a) = Ry [J{+o0}, Qis o-finite(u1), if £; TQ, u1 (Ej) < 00,Vj, Ej € a
and 1], = p2|q then implies that
p = p2 (4.5)
Finally, we define 7 (E) = n* (E), VE € F(a) C M.
Now, let
™ P(Q) - Ry U{+o0} (4.6)
We will prove 7* is an outer measure.

And we will construct a family of subsets M

M C P(Q) (4.7)

we will also prove M satisfies the following:
1. M is a o—algebra
. MDa

. |y o—additive

B~ Lo

™o =v

Next, we will define 7* and M .

13



Step 1

Definition 4.1 (7%). #*: P(Q) - Ry U{+o0}, A€ Q, {E;,i > 1},E, € a,ACJE;, {E;i}is a
covering of A, then we define that

= inf Y v(E) (4.8)

where v : a(f) — Ry U{+o0}, is o-additive.

Definition 4.2 (Outer measure). pu: ¢ — Ry U{+o0},c C P(Q),d € ¢, u is a outer measure if
1. u(2)=0
2. (monotone) ECF, E,F €c = p(E) < pu(F)
3. (subadditive) E, E; € ¢, ECUE; = p(E) < X pu(E)
i i

Theorem 4.2. 7* in /4.1 is a outer measure.
Proof. We will check the conditions in Def 4.2.
1. check 7* (@) =0
(a) B; =2,2 C |J E; then

1>1
™ (@) = inf v(E) <Y v(E)=0 (4.9)
(b) FE; € a, {EZ‘},Q - U FE;, then
i>1

v(E) = 0= 1" (2) >0 (4.10)

2. check ECF, n* (E) < " (F)
Let’s take any covering of F:{E;},F; € a, F' C |J E; is also a covering of E, then

i>1
7 (E) = inf v(E;)) <" (F)= inf v (E; 4.11
(B) = o, D (B0 <7 () = ok, 5 (B) (411)

3. check EC |J E;, 7" (E) < ) m*(E;)
i>1 i>1
(a) 7 (E;) = oo then
™ (B) <) 7 (E) (4.12)
i>1

14



(b) 7* (E;) < oo, then

7 (E;) = inf v (H; 4.13
(B = it 3 (g (4.13)

then there 3{H;;} € a, F; C |J Hjx such that

k>1
7 (E) = inf > w(Hg) <Y v(Hi) <7 (E)+ (4.14)
{Hir}, Ei =1 =1 2
{Hx} is a covering of E, then
* * € *
7 (B) <Y w(Ha) <3 ( (Ei)+§) <> 7 (E) +e (4.15)
ik i>1 i>1
SO
(E) <Y 7 (E) (4.16)

Step 2

Definition 4.3 (Measurable set M). A set called measurable set M if A € M VE € 2, we have

that
o (B) == (B 4) + 7 (B[ A7) (4.17)

Theorem 4.3. If M definited as Def /.3, then
1. MDa

2. M is a o—algebra

Remark 4.1.
EC(ENAU(ENA) =1 (E)<7 (ENA)+ 71" (EN A9 (4.18)
so we only to check > in Eq 4.17
Proof. ©* is an outer measurable by Thm 4.1, then by subadditive of outer measure. O
Now we proof Thm 4.3.
Proof.
l.aeM
Suppose that A € a, EF € , we will show that

T (E) 27" (ENA)+ 7" (EnNA° (4.19)
assume that 7* (F) < oo, given ¢,3{FE;}, E, such that E; € a, E C |J F;, then
i>1
T (E) <) v(B) < (E)+e (4.20)



EnAca, ENAC U (E;NA), so

/ “(EN A) ZV@QA)

1>1

(BN A% Z <iﬂAC>

(4.21)

\\/

SO

T (ENA) + 7 (ENA) <Y v (EﬂA) Zu(EiﬂAc>§Zz/(Ei)<7r*(E)+e

i>1 =1 i>1
(4.22)
2. M is o-algebra.
We need to show that
(a) QeM
It is clearly that:
™ (E)=n"(ENQ)+ 7 (ENQ° (4.23)
(b) Ae M= A°eM
ot (E)=r"(ENA)+ 7 (EnNA° (4.24)

(C) AZ‘EM:> UAZQM

1>1

Finite union is closed: A,B € F = A|JB € M. Let’s take E C Q. We will proof that

() > (En (AlUB))+= (En (AUB)C> (4.25)

TAeM,
o (B) =1 (EﬂA) . (EﬂAC> (4.26)
BeM
™ (E\A) = n* (E\AN B) 4+ * (E\A N B
= 1" (E\ANB) + * (E\ <A U B)) (4.27)
then
™ (E) =n* (ENA)+n* (E\AN B) 4+ n* (E\ (AU B)) (4.28)
We want to show
™ (ENA)+7* (E\ANB) > 7* (EN(AUB)) (4.29)
By 7* is subadditive, we only to show that
EN(AUB)C(ENA)U(E\ANB) (4.30)
this is because
N(AUB)={[En(AuB)|nA}| J{IEN(AUB)| N A%} (4.31)

CENA C(ENA°)NB=(E\A)N B

16



Then Eq 4.25 holds. So M is closed by finite(countable) union.
Now, we will show that countable infinite union is also closed. A; € M, we want to show
A= A4; eM, take E C Q,

i>1

™ (E) = 7 (ENA) + 7" (E N A°) (4.32)

by Eq. 4.25, V n we know that

n n
™ (E)=7" | En (UAj ) +r [ En | A
j=1 =1
! ’ (4.33)
> | En| (4] | +7" (B\A)
j=1
> holds in Eq 4.33 because (E\A) C (E\ (U Aj>>.
j=1
Now, we define
F, = A1
F2 = Al\AQ
F3 = Al\ (Ag U Ag)
(4.34)
F, = Al\ (AQ U---u Anfl)
It is clear that . .
Ua=UF (4.35)
i=1 j=1
where F; N F, = 9, F; € M.
Then Eq 4.33 can be written as
T(E)zm | EN)_Fj | + 7" (E\A) (4.36)
j=1
By Remark 4.2, we have
T(E) = [En D F| |+ (B\A)
=t (4.37)

= Zﬂ* (ENF;)+ 7" (E\A)
j=1

17



[e.@] o

n is any number in Remark 4.2 , - 7* (Eﬂ > Fj> = Y m(ENF;), by m* is
j=1 j=1

subadditive

T (E) 27 [EN)_Fj | +7° (E\A)
J
=> 7 (ENF)+x* (E\A)

j=1
> | | J(ENF) |+ (B\A) (4.38)
Jj=1
== [En||JF| ]|+ (BE\A4)
j=1
=1 (ENA)+7*(E\A)
So M is a g—algebra.
O
Remark 4.2. Vn, we have that
n n
T [EN)_F| =) 7 (EnF) (4.39)
j=1 j=1
where F; defined as Eq 4.34.
Proof. By induction
1. n =1, Eq 4.39 holds
2. Support n holds then we will proof n + 1 holds. Fy, € M, F,,+1 € M, we have that
n+1 n+1 n+1
T ENY Fj|=a"([EnN)_Fj|nFua | +7" [ | EN)_F; | nF°,,
j=1 j=1 j=1
n
=m(ENF,)+ 7 |EN) F
j=1 (4.40)
by assumption = i m*(ENFy)
j=1
n+1
=> 7 (ENF)
j=1
O

18



By Thm 4.3 we have that M D F(a).
Step 3

Theorem 4.4. 7 : M — R} U {400} is 0— additive, then

™ (A)=v(A), VAeca

Remark 4.3. Eq 4.41 is also

Eq 4.2 holds because Thm 4.3, a € M.
Proof. (Thm 4.4)
1. ™(A)=v(A), VA €a
(a) check 7* (A) < v (A)

Lets A, @, @, -
Ei E;, E3 Ej

(b) check 7* (A) > v (A)
Let’s take
Fi=E
Fy = E)\Eq

F3 = Eg\ (E1 U Ez)

F, = n\(ElLJEQU"'UEnfl)

F}'ECL,UFj:UEj,FjﬂFkZQ,Ag UF},SOA:ZFJ'QAGCL.
- - 7

J J j=1

Because v is o—additive we have that

by C Ej
v(A)=> v(FNA) <> v(E)
j=1 j=1
SO
v(A) < {é?}f,A ) v (Ej) =" (4)
j>1

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)



Then, we can get
™ (A)=v(A),VAE€a (4.48)
2. 7|y is o—additive
Suppose that A; € M, A; N Ay = &, we want to proof that
(3 4) =Y (4y) (4.49)
j=1

(a) check 7* (> A;) < > m* (A;) by 7* is an outer measure, 7* is subadditive

*
>
*

<
—_

<y (A
Z > (4)

Z

(b) check 7* (3 Aj)

<
—_

by 7* is an outer measure, 7" is monotone

n

7T* ZA] Z 7'l'>’< ZA] (450)

=1 i=1

by Remark 4.2, we have that

* ZAJ- = 7 (4;), ¥n (4.51)

SO

(DA =) w4y (4.52)

Step 4
Definition 4.4. Q is o-finite(p1) if Ej T Q, 1 (Ej) < o0, Vj, Ej € a.
Theorem 4.5 (Uniqueness). Suppose that pu, e @ F(a) — Ry U {+o0},Q is o-finite(u1), if

ialo = pia, then
p1 = p2, on F(a) (4.53)

Definition 4.5. 2, § C P (), § is a monotone class if

1.
Aj€G,j>1,ACAj = A=A =lim 4; € (4.54)
. J—00
j=1
2.
B;€5,j>1,B;2Bj.1=B=(|B;= lim B; €§ (4.55)
i1 J—00
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Theorem 4.6. G, is a monotone class, o € I, then the followings hold

1. () Ya is a monotone class
acl

2.¢cCP()=9(c)= () Sa , i.e. monotone classes generated by class c
acl

Lemma 4.1. a C P (Q) is an algebra, pu(a) is monotone class generated by algebra a, F (a) is a
o—algebra generated by algebra a, then

(a) = T (a) (4.56)
Proof. Tt will proof in the next lecture. O
Proof. (Thm 4.5) pi1, p2 : F (a) = RyU{+o0}, u1 (A) = pz (4) ,VA € a, Q o-finite, @ = | Ej, Ej €
a, 1 (E;) < oo, then py = po on JF(a). !
Fix E,,, we denote that
B,={FecTF(a),mn (ENE,) =u(ENE,)} (4.57)
We claim that
1. B, Da
2. B, is a monotone class
We proof B,, is a monotone class.
1. VA; € By, A; T A= | Aj, then
Jj=1
p1 (A5 N ER) = p2 (A; N Ey) (4.58)
By Remark 3.1
pi(A;NE,) = (ANE,), pe(AjNE,) — pe (AN EY,) (4.59)
2. VB; € B,,,B; | B= () Bj, then
j>1
p1 (BN En) = p2 (Bj N Ey) (4.60)
By Remark 3.1
pi (BjNE,) = pi (BNE),pe (BjNE,) = pe (BN E,) (4.61)
So we can get that
B, D M(a) (4.62)

where M (a) is a monotone class generated by a. Then by Lemma 4.1

M (a) = F(a) (4.63)
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And by Eq 4.57,
By (a) C F(a) (4.64)

B, (a) = F () (4.65)

Finally, p1 (A) = p2 (A) ,VA € F (a), by By, = F(a), then A € B,,. B; T Q, apply Lemma 3.1 again,

we have
1 (A) = p2 (A) (4.66)
O
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Lecture 5

Monotone Classes

Definition 5.1. Given £, define M (a) C P(2) is a monotone class is

1. AjGM,AjTA(AjQAj,UAjZA)=>A€M

j=1
2. AjEM,AjiA(AjDAj, ﬂ A]:A> =AeM
j>1
Remark 5.1.

1. Fis o-filed(o-algebra) = F is a monotone class

2. Mo € P(Q), (o €1) is monotone class, then M = [| M, is a monotone class.
acl

Notation 5.1. (Smallest monotone class contain ¢) M(c) is a monotone class generated by c if

¢ C M(Q), M (c) = (| Ma (5.1)

ael

Definition 5.2. E C M(a), the set G(E) is defined as below

G(E) = {F € M(a),E\F,ENF,F\E € M(a)} (5.2)

Lemma 5.1.
1. If E€a= G(F)2M(a)
2. If E € M(a) = G(F) 2 M(a)
Proof.
1. F € a, we want to show that
(a) (E) 2 a
Take H € a € M(a), then

E\H, Eeﬂ H,H\E € § (a) (5.3)
€a a Ca

so H € G(F), thena C §(E)
(b) G(F) is a monotone class
Suppose that Hy T H, H, € §(F),
" E\Hp € M (a), E\Hy, — E\H,.. E\H € M (a) (5.4)
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“ENH,eM(a), ENHy » ENH,  ENHeM(a) (5.5)
- H\E € M (a), H,\\E — H\E, . H\E € M (a) (5.6)

By Eq 5.6, H € M(a), and by the definition 5.2, H € §(E). So §(E) is a monotone class.
We also get that G(E) D M(a).

2. E € M(a), we want to show that
(a) §(FE) is a monotone class

E € M(a), suppose Hy, € G (F),Hy t H

-+ E\H), € M (a), E\Hy, | E\H . E\H € M (a) (5.7)

Similarity:
' ENH e M(a) (5.8)
H\E € M (a) (5.9)

then we can get H € G(F), so §(E) is a monotone class.
(b) S(E) 2 a
We need to show H € a = H € §(E).
By Lemma 5.1.1, we can get that
S(H) 2 M(a) (5.10)
o E € M(a),.. E € §(H), by the Def 5.2, H\E,H N E,E\H € M(a), so we can get
a€S(E)
]
Theorem 5.1. a is a algebra, a C P(Q). F(a) is a o-algebra generated by a, M(a) is a monotone

class generated by a, then

F(a) = M(a) (5.11)

Proof. By remark 5.1, F(a) is a monotone class, by Notation 5.1 F(a) 2 a and F(a) 2 M(a).
So we have to show that
F(a) € M(a) (5.12)
We will show that
1. M(a) is a algebra
(a) QeM(a) by 2Ca
(b) E € M(a) = E° € M(a)

By Lemma 5.1.1, let E = €, then M(a) C §(Q). - E € M(a), so E € §(Q2) . By Definition
52,9(Q) ={FeM(a),E,E,& € M(a)}
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(c) E,FeM(a)=ENF €M(a)
By Lemma 5.1.2, G (E) 2 M (a), so F € §(F).
By Def 52 Fe G(E)={F e M (a), F\E,FNE,E\F € M(a)},so E(\F € M(a)
2. M(a) is a o-algebraie. A; e M(a), j =21 = |J 4 € M(a)

i>1

By M(a) is a algebra, so |J A; € M (a).

7j=1
U 4; 1 U A4; and M(a)is a monotone class, so |J A; € M (a).
j=1 j>1 j>1
So F(a) € M(a).
Above all,
F(a) = M(a) (5.13)
O
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Lecture 6

The Lebesgue Measure 1

Definition 6.1. § C P(R), we define § as below:

§ ={9,R,(a,b], (a,00),(—00,b]} (6.1)

Remark 6.1. § as above, then 8 is a semialgebra

Proof. by Def 2.1. O

Definition 6.2. p:8 — Ry |J{+o0}, additive, and

1(2) = 0,1 ((a,b]) = b — a, p ((—00,b]) = +o00, () = 4o (6.2)

Theorem 6.1. pu is additive on a semialgebra § and defined as Def 6.2, then u is o—additive, i.e.

A= "Aj=p(A)=> p(4y), AAES (6.3)

Jj=1 Jjz1

Remark 6.2. It is difficult to prove Thm 6.1 (a, b]U (¢, d] is not in the semialgebra 8. But, 8 — a(8)
with respect to u — v.

Proof.
1.

CA=Y"4;0)4 (6.4)
> j=1

By v is additive = v is monotone & subadditive,

n

3

S v(A)>v Al = Z v(4;), Vn (6.5)
j=1 j=1
v (A) ;ZV(AJ) (6.6)

2. (a) Assume that A = (a,b],A; = (a;,bj],A= )" A;, we want to show that
Jj=z1

v(A)=b—a<) (bj—a) =) v(4) (6.7)

j=1 Jj=1
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For any given € > 0, we have that
la+eb] € (a.8] = Y (ab5) € | (a5 + ) (6.8)
j=z1 j=1

By a set K is compact i.e. K is closed and bounded = Any open cover for K has a finite
subcover

[a +e, b] g U (a]ka b]k + ka> (69)
k>1

By v is additive = v is monotone & subadditive, we have

b—a—e<v(a+eld]) = (G (ajk,bjk—i- 23k>> zm:u <a]k, ik + 2;) (6.10)

k=1 k=1
so we can get that

m

b—a—c< Z( ajk+2fk)<Z(bj—aj+%):z:(b—a)+e (6.11)

k=1 Jjz1 jz1
so Eq. 6.7 holds.
(b) General case A € 8, E, = (—n,n] T R.

ANE, =% ANE,.
j=>1

By v is additive on a semi-algebra
V(ANE,) =Y v(AjNE,) <Y v(4) (6.12)
By Remark 6.3, let n — oo, we have

v(A) = lim v (ANE,) <Y v (4)) (6.13)

n—oo

Remark 6.3. E, = (—n,n] T R, v is additive on a semi-algebra then

v(A) = lim v(ANE,) (6.14)
n—o0
Proof.
E,tR, . ANET. lim (ANE,) = |J(ANE,) =An (U En> =A (6.15)
oo n=1 n=>1
v is additive,
. wh
:V<UAﬂEn> :u<nh_>rro10AﬁEn) Uﬂh_}nolou(AﬂE) (6.16)
n>1

why , because we will check via Def 6.1 except A = (a, b
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1. A=9o
2. A=R
3. A= (a,00)
(a) left hand of why in Eq. 6.16
AnE Y (CRO N
SANE, = (a,+00)N(—n,n) {(—n,n) 4 —n
li_)m (ANE,) = (—o00,+0) =R
by Def 6.2
1 (11131010 (AN En)) =p(R) = +o0
(b) right hand of why in Eq. 6.16
N B (a,m) a=-n\ [n—a a>-n
'V(AHE")_U<{(—n,n) a<-n) | 2n
. . n—a az-n__
A ) = Jim {750 02 T e
So Eq 6.16 holds.
4. A = (—00,b]

28

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)



Lecture 7

The Lebesgue Measure 11
8 ={2,R, (a,0], (a,00), (=00,b]}, p: a(8) = Ry U{+oo},

n((@b)=b—a (7.1)

Theorem 7.1. p is o-additive on a(8)

Remark 7.1. E;, € (—N, NJ, p is finite and p is continuous from below at @ (i.e. Ey € a, Ey, |
@ = p(Fx) — 0), by Lemma 3.1 can imply Thm 7.1 hold.

Proof. Now we want to show that Ey, | &, Fy, € a, Ex, € (—N, N], then
p(Eg) =0 (7.2)
If not, 36 > 0, 3E% | &, Ex € a, Ey € (—N, N], such that
1 (By) =26 > 0 (7.3)

If 3 a compact set {Gy}, s.t. G 2 Giy1,Gr C Ey, but

o# (G Er=2 (7.4)

E>1 k>1

Then, we will find a sequence of compact sets {Gy} by induction.
Our goal is : Ej, C (=N, N|, p(En) = 26, (Fi) < /Gr = F}.. Fy, satisfy the flowing three conditions:
1. [, CE, 1<k<n-1
1<

2. Fiy1 C Fy, kEk<n-1
S'ﬂ(En\Fn)\%‘F =+ - +in:5
Now,

1. by E1 € a, then F; can be written as

B = Z (al 'k bl,]] (7 5)
j=1
define Fj as
ni
Fy = Z (al,j + €1, bl,j] ca (7.6)
j=1
,U,(El\Fl) =miél.
We will pick a small enough e to meet p(F1\F1) < % 1.e. mie; < g, and by —ai; >
e1,t.e. min{by; —ay j} > €1, so we choose 0 < g1 < {25 min {b1; —a1;}
J T1<<my
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2. We will show p (Eo N F1) have a lower positive bound , ie. Es N F} # &

1)
2(5<,U,(E2):/L(EQQF1)+ ,LL(EQ\Fl) :>/L<E20F1) >26—->0 (7.7)
—— 2

<u(Bl\F1)<$

by Fo N Fy # @, Eo N F| € a, then Fs N F} can be written as

mso
EsnNFy = Z (agyj, bQJ} (78)
j=1
Define F5 :
mo
Fy = Z (agyj + €9, bg,j] (79)
j=1
choose a small enough e, satisfies that
Fy gEgEgﬂFl (710)

then Fy C Fy, Fy, C Ey, and Fy C Fy = F» C Fy, then we get that

F, CF, C B>
B € Fy (7.11)
o 6
E\Fy) < =+ =
p (E2\F2) 5 1
3. assume the Fj, satisfies the three conditions as our goal above
20 < p(Bng1) = p (Bnp1 V) + p (Bppi\Fn) = p(Epy1 N FR) 20 >0 (7.12)
—_——
w(En\F)<6
by Ent1 N F, # @ and E,+1 N F, € a then
kn+1
Enp1 N Fy =Y (ant1bny1 ] (7.13)
j=1
then we define F), 11 as
kn+1
Fup1 =Y (an415 +nt1; bt ) (7.14)
j=1
choose a small enough €, satisfies that
Fn+1 - Fn+1 c En-l—l N Fn (715)

then Fy, 11 C Epq1, Fpq1 € Fy,and Fpq © Ev let epq1 = ﬁf@@-{—l) then ((EnJrl N Fn) \FnJrl) <

_6
2n+1'
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Then

o (Enp 1\ Frnt1) = 0 (Bps1 0 Fu) \Fog1) + o (B 1\ Fr) \Fr1)
< 19 (En—i-l\Fn)
—_——

<H(En\Fr)<§+-+ (7.16)

SPE R G 60
—ontl T2 g 2n 2
define G}, = Fy, then Gy = Fpp1 C Fp = Gy Gy, : satisfies that
(a) Grr1 € Gi

(b) Gj compact
(C) Gy, 7é %)
Why G} # @ because:
20 < p(Eg) = p(Ep\Fg) + p (Ep N Fy) <0+ p(Fg) = p(Fy) =6 (7.17)

But
@#ﬂGkgﬂEk:Q (7.18)

k>1 k>1

Above all, Ey, € (=N, N], p is finite and p is continuous from below at &, then Lebesgue u is
o-additive on a(8). O
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Lecture 8

Complete Measures

Definition 8.1. F C P(Q) is o-algebra, p : F — R4 (Joo is additive. (u, F) is complete if : A € F
such that u(A) =0, VE C A then E € J.

Remark 8.1. In Def 8.1, by monotone u (E) = 0.

ﬁ|ff7: K,

Next, our goal is: F O F, and 1 : F — Ry U {+00}: {(,u F) is complete

Definition 8.2. F = {AU N, where A € Fand N C E € F, such that ju(E) = 0}

Claim 8.1. JF is a o-algebra.
Proof. We will check :
1. QeT, " Q=QuUo,oCaecT
2. AeF= AT
wACTF,A=EUN where E€J, NCH €T such that u(H) =0
A°=(EUN)°
=[(EUN)*NH|U[(EUN)“N H*]

(8.1)
cH E‘NN°NH®
—_—
CECNHCeT
by Def 8.2, A¢ € F.
3. Aj = E;UH; where E; € F,H; CW; where w; € F,u(W;)=0then |J A; € F
j>1
U4, =B uE)
j>1 j>1

-Urv UH (8.2)

j>1 j>1

SN~ S~——
F cy w;aw
i1
and,u(W):u<U Wj> <2 u(W;)=0
j>1 j>1
O
We want to define i on J :
F(AUN) <T(AUE) < Ji(A) +7(E) (8.3)
—— —
2n(A)=p(A) =p(A)+u(E)=p(A)

So we give the following definition.
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Definition 8.3. T (AUN) = u(A)
Proof. By the Def 8.3
1. check 7 is well defined

Assume that AUN = BU M, where A,B € F N CFE € F where u(E) =0, M C F €
F where p (F) = 0. We need to show that p(A) = u(B).

" CACAUN=BUMCBUM (8.4)
by p is o—additive, then u is monotone,
p(A) S p(BUF) < p(B)+p(F) =p(B) (8.5)
similarly, pu (B) < pu(A).
2. check il = p
by AcF, A=AJ@ then t (AU D) = p(A)
3. check i is o—additive i.e. A; € F, A= A; =1 (A) = u(4y)

Jj=1 Jj=1
"+ A; €T3, Aj = E;UN, where E; € F, N; C Hj C F where u(H;) =0 (8.6)
A= Aj = E; U > N;
i>1 i>1 531
A = [ B =S uE) = ny) (8.7)
j=1 Jj=1 j=z1

4. check (ﬁ, ?) is complete, i.e. F is fi-complete.
Assume that A C E € F where 1 (E) = 0. We have to show that A € F.
wEe€TF . E=BUNwhere B€F, NCH € F where u(H) =0

= CEC C < =

A=0UA @€ FFACECBUNC E;U Ia; eF,sou(BUN) < pu(B)+p(N)=0by
S €

F(E)=p(B)=0,u(A) < p(B)=pu(A)=0,s0 A€TF

5. check @ is unique. p : F — Ry | {+o0},

And, extension F, = {EUN, where E € §,N C H € F, where u(H) =0}, i: F, - Ry U
{400}.

Assume that v : F, — Ry U{+oc}, and v (A) = i (A),VA € §F. Then we want show that
v(B)=nu(B),VB e J,.

Let B € 5,,B=EUN where E€F, N CH €, where u(H) = 0,v(H) = fi(H) =

w(H)=0.
fix B, (B) = u(E) = v(E)<v(B)

by E €F
v(B)=v(EUN)<v(EUH)<v(E)+v(H)=v(F)=n(B), then

v (B) = 7i(B) (8.8)
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™ M — Ry U {+00}.

Claim 8.2. M is 7*-complete.
Proof. m*-complete, i.e. AC B BCM,7m*(B)=0=>AecM
We have to show VE C Q, 7* (E) > 7" (ENA) + 7" (E'N A°)
1. "ENACACB . 7m*(ENA) <7 (B)=0
2. ™ (ENA°) <7 (E)
So, AeM
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Lecture 9
Approximation Theorems
Goal: ™ (A) < 00,A € M, F € F, where F is 0 — algebra, A C F,7* (A) = 7* (F).

Theorem 9.1. a C P(Q2), where a is an algebra, F is a c—algebra generated by a, F(a) = F, we
have p : F — Ry, where p is a measure, and pl, = v, A C F, u(A) < oo, Ve > 0, there

JE €a, sit. p(E\A)+p(A\E) <e (9.1)

Proof. A€ F, u(A) < oo, by Thm 4.1, then

pA)=r ()= i34 (9.2)

but p here is 7 in Thm 4.1.
VE,E{AZ} A; €a, ACUA;, s.t.

T (A) <D v(A) <t (A)+e (9.3)
j=1
SO
Imo, st Y v(A)<e (9.4)
=>mo

mo
Let E = |J A; € a, then we need to proof the following:
i=1
7" (E\A) <e, 7 (A\F)<e (9.5)

By Thm 4.2, 7* (A) is an out-measure, 7* (A) is monotone and by Tmm 4.4, 7 (A) is o-additive.

*(B\A) = 7* (UA \A)

* (U AZ-\A>
121

= (U Ai) —7(4) by 7 (A) = p(4) <oo (9.6)
i>1
<) ot (4) — 7 (A)
i>1
=3 v (A =7 (A) by g = g e = 0, Ai € am (A = v (A))
=1
<e¢
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On the other hand,

™ (A\E) = n* (A\GAZ) <7 (UAZ-\@AJ-) <7r*( 0 Aj) <Y ( EJ Aj) <e (97

121 Jj=1 Jjzno+l jzmo \j=no+l

O]

Remark 9.1. Q is o—finite(u) (i.e. Q@ = |J E; where E; € a,u(E;) < o), 7 : F — R U
i>1

{+o0}, A€ F,Ve > 0,3E € a, such that

T (E\A) + T (A\E) < e, (9.8)

(2 is topological space (open, closed sets), B is Borel o-algebra set (the smallest o set which contains
all open, closed sets in ).

Definition 9.1 (Regular Measure). p: F — Ry U{oo} where B C ¥, is a measure. Then p is a
regular measure if: VA € F,Ve > 0, there 3F C A C G, where F' € B closed, G € B open, such that:

p(G\F) <e (9.9)

Remark 9.2. ;1 < oo is not necessary.
Remark 9.3. ¢ (G\A) < e and p(A\F) <e.

Remark 9.4. B CF, pis regular = FC TTH
Proof. A€ F,n>1, by p is regular, then 3F,, G, € B, F,, C B, such that u (F,\Gp) < %
Let’s define F= |J F, € B, G= ()G, €B,then FCF, CACG,CG,ie. FCACG. By

n=>1 n=1

G\ (U Fk) =GpN (U Fk) =GnN (ﬂ Fk> =) (GuNF) =) (Gu\Fx) C Gu\F,,  (9.10)

k>1 k>1 k>1 k>1 k>1
then
1
w@F) <p e\ | UF || <n@\m) <=0 (9.11)
k>1 "
Finally,
A= _F U(A\F) eB=A4€B (9.12)
=~

——
€8 cG\FeB
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Theorem 9.2. L is a o-algebra generated by a(8), where 8 is a set which defined as in Lecture 7,
i.e. § ={9,R,(a,b],(a,00),(—00,b]}. p: L— Ry U{co}, is Lebesgue measure, then p is reqular
measure. (if A € L, there 3F closed, G open, FF C A C G such that u (G\F) < ¢).

Proof.
1. goal: A € L,e > 0, there exists G open, such that A C G, u(G\A) < e.

Denote E,, = [-n,n], A, = AN E,, then p(A,) < co. By the construction of Caratheodory
Thm 4.1, there H{ By x}y~q Buk € a, Ay € U Bk, such that

k>1
e
p(An) <D (Bug) < p(An) + 5 (9.13)
k>1
ln,k
By Bn,k ca, .. Bn,k = Z In,k,j - Gmk, where In,k,j — (an,k,jvbn,k,j]-
j=1

ln,k
Then we denote ¢p i j = bpkj + Onkj> Inkj = (AnkjsCnk,j)s then By € G = U Jnkjs
S~~~ Jj=1

>0
then
ang ln,k ln,k
1 (Grge) <Y1 Tnkg) + e = D Ungeg) + D One (9.14)
j=1 j=1 j=1
—_———— f
#(Bn.k) SzagF

Bn,k - Gn,k, and Gn,k open set .. ,U(Gn,k’) < M(Bn,k) + ﬁ An - U Bn,kan,k -

k>1
k>1
On the other hand,
€ 2e
p(Gn) <Y1 (Gog) < Y (Bug) + o < p(An) + oo (9.15)
k>1 k>1
" Ay C Gpoopen, and j1(Gy) < p(An) + 2.
Then define G = |J Gy, openand A= |J An, A CG.
n>1 n>1
U\ JA=Gn [ UA ] =UG.n |4
n>1 k>1 n=1 k>1 n=1 k>1 (916)
=N <U GnﬂA;) C (U GnﬂA2> = J Gn\4,
k>1 \n>1 n=1 n>1
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1 (G\A) = (Lﬂ%uJAJ

n>1 k>1
<u (U Gn\An> by Eq.9.16
2t (9.17)
<D n(Ga\Ay)
n>1
= Z [0 (Gn) — 1 (An)] by p(An) < oo
n=1
< 2e
2. goal: A € L,e > 0, there exists F closed , such that F' C A, u(A\F) <e
By above 1, 3H, A° C H, H open set, i (H\A®) < ¢, then F = H° C A, F closed .
Finally,
p(A\F) = p(ANF) = p(ANH) = p(HN(A)) = p(H\AY) <e. (9.18)
0

Remark 9.5. F,: countable union closed sets, G,: countable injection open sets. VA € £ there
JdR € ¥, and S € G,, such that

RCACS, u(S\R)=0. (9.19)
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Lecture 10

Integration: Measurable and Simple Functions
We now assume given (Q, F, u) where 2 is a space, F a o—field of subsets of Q and p a measure on
F.

Before defining such an operator J, we examine the sort of properties J should have before we would
be justified in calling it an integral. Suppose that A is a class of functions f: 2 - R,and J: A - R
defines a real number for every f € A. Then we want J to satisfy:

1. feA, f(z)>0,all z € Q= I(f) >0, that is J preserves positivity
2. f,g €A, aeR=af +gc Aand

J(af+g)=al(f)+I(g) (10.1)

that is J is linear on A.

3. J is continuous on A in some sense, at least we would want to have J (f,) — 0 as n — oo for
any sequence decreasing with f, (z) — 0 for all  in Q.

These conditions are satisfied by the elementary integration process, but the Riemann integral does
not satisfy the following strengthened form of 3.

e 3 If {f,} is an increasing sequence of functions in A, and
fn(x) — f(z) for all z €N (10.2)

then f € A and F(f,) = F(f) asn — o

1
J

l)\' \»’l > ak L
X br=1"4
&L
i
(a) Riemann integral (b) Lebesgue integration

Figure 1: Integration

1. Riemann integral

/ F S F )l (10.3)

2. Lebesgue integration

() =Y e (Ae) =D ywp (F71 (k) (10.4)
k

where A = f=1(Jg).
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In defining measurability we will want to consider functions
f: Q= RU{-0,00} =R (10.5)

It is possible to define the class of Borel sets B in R in terms of this topology. However, we adopt
the simple procedure of defining the class

B={AUB,AcB,BC {0000} (10.6)

Proposition 10.1. B is ao-algebra.

Definition 10.1. A function f: Q — R is said to be F—measurable if and only if

ffA)es (10.7)
for all A € B.
If there is only one o—field J under discussion we may say that f is a measurable function.

Remark 10.1.
FCG (10.8)

Lemma 10.1. (Q,F, ) f:Q — R, f is measurable each of the following conditions is necessary
and sufficient:

1. f7H((~o00,z]) €F, V2 €R, de. {weQ, f(w) <2} eF
2. f1((~o0,2)) €F, Vx €R, ie. {weQ, f(w)<z}eT
3 fl(r,0) €F, VxR, e {weQ, f(w)>x}eF
4. f1((z,0) €F, V2 €R, de. {weN, f(w)>a}eTF
Proof. We only proof (1) in Lemma 10.1

1. = (—o0,z] €B

2. < If we suppose that the condition is satisfied, and put

C={AeB, f'(A)eTF} (10.9)
then
(a) €is a o-algebra
(b) €2 G ={(—00,z],z € R}
by a&b , B
COF(5) DB (10.10)

then C is a o-algebra.
e ReCfT(R)={weQ flweR}=Q€eTF
e AcC=A°cC f 1 (A)eTF, sofL(A)e f L (AeT
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e AjeC= |J A4, €C, then
i1

U4 | = r'm)es (10.11)
) ‘_gg—j’
O

Given (2,3, u) as above. If Q = U E; and the sets E; are disjoint (E; N Ey = &, j # k), then
FEq, Es, ..., E, are said to form a (flnlte) dissection of §2. They are said to form an C-dissection if, in

addition E €eFi=1,2,...,n).

Definition 10.2 (Simple Function). A function f: Q — R is called F-simple if it can be expressed
as

n
f=> ¢lg, ¢;eR (10.12)
j=1
where 1g;, — R,
1, we L}
wi g, (w) = {0 W¢E (10.13)

and Z Ej =Q, Ey :Q\ (ZlEj> ceF
J:

j=1

If there is only one o—field F under discussion we will talk of simple function rather than F-simple
functions.

fFr A =YE €T, AcB, f: Q= Ry, f Z cjlg,, By € F, {E1, ..., By} partition of Q.
k,cp. Jj=1

1) =3 en(E) (10.14)
where c¢; > 0.

If f=3 dilp,.
k=1

Proposition 10.2. Ejo N Fio # &, then

Zc],u deu F) (10.15)
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Proof.

=Uu (i (Ej N Fk)> (10.16)

then
n n m
ZCJ.U(EJ) = chﬂ(EJﬂFk)
]_1 jzl k=1
=) dpp (E; N Fy) (10.17)
j=1k=1
= dpp(Fy)
k=1

Proposition 10.3.

1. f: Q — R, measurable then there erists (fn)n>1, fn stmple functions, such that f, 2 0, f, T

f
2. 1(f) =lim I(fy)

3. f: Q — R measurable, f* = max(f,0), f~ = max(—f,0), f*,f~ measurable then
f=f"—f", then
I(H)y=1(f")—1(f) (10.18)

Example 10.1. Q = (0,1], B,A\, E=QNQ, f =1gc,ie. f simple, then

I(f)=A(E)=1 (10.19)
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