Functional Analysis

Lectures by Claudio Landim

Notes by Yao Zhang

Instituto de Matemática Pura e Aplicada, Fall 2019

1 Lecture 1	1	19 Lecture 19	19
2 Lecture 2	2	20 Lecture 20	20
3 Lecture 3	3	21 Lecture 21	21
4 Lecture 4	4	22 Lecture 22	22
5 Lecture 5	5	23 Lecture 23	23
6 Lecture 6	6	24 Lecture 24	24
7 Lecture 7	7	25 Lecture 25	25
8 Lecture 8	8	26 Lecture 26	26
9 Lecture 9	9	27 Lecture 27	27
10 Lecture 10	10	28 Lecture 28	28
11 Lecture 11	11	29 Lecture 29	29
12 Lecture 12	12	30 Lecture 30	30
13 Lecture 13	13	31 Lecture 31	31
14 Lecture 14	14	32 Lecture 32	32
15 Lecture 15	15	33 Lecture 33	33
16 Lecture 16	16	34 Lecture 34	34
17 Lecture 17	17	35 Lecture 35	35
18 Lecture 18	18	36 Lecture 36	36

Introduction

These lectures are mainly based on the book Functional Analysis by Peter Lax. Lessons 33 to 37 follow Chapter 4 of the book Applied Functional Analysis by Eberhard Zeidler, volume 108 of Springer's collection Applied Mathematical Sciences.

There are many other very good references. For instance, the books by Bachman and Narici, Brezis, Reed and Simon, Yosida.

These notes were live-TeXed, though I edited for typos and added diagrams requiring the TikZ package separately. I used the editor TeXstudio.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the material here should be credited to the lecturer, not to me.

Please email any corrections or suggestions to jaafar_zhang@163.com.

Acknowledgments

Thank you to all of my friends who will send me suggestions and corrections. My notes will be much improved due to your help.

I would like to especially thank the IMPA and Professor Landim who put their courses in website.

Linear Space Definition, Examples and Linear Span

Definition 1.1. X is a linear space over a field $\mathbb{K} \to \mathbb{R}$ or \mathbb{C} if X is a set 2 operations + and \cdot multiply by scales

Linear Spaces: Quotient Spaces and Convex Sets

Normed Linear Spaces: Definition and Basic Properties

Completing a Normed Linear Space

Finite Dimensional Linear Spaces

Examples of Normed Linear Spaces

In Infinite Dimensions the Unit Ball is NOT Compact

Zorn's Lemma

The Hahn-Banach Theorem

Convex Sets and Gauge Functions

Geometric Hanh-Banach Theorems

Dual of a Normed Linear Space

 $X, L.S. \mathbb{K} \ l : X \to \mathbb{K}$ is a linear function, $\forall x, y \in X, l \ (x + y) = l \ (x) + l \ (y), \forall \alpha \in K, \ l \ (\alpha x) = \alpha l \ (x)$ Definition 12.1. l L.F. is continuous if

$$\forall x_n \to x \Rightarrow l(x_n) \to l(x) \tag{12.1}$$

Definition 12.2. content...

Proposition 12.1. content...

Extension of Bounded Linear Functionals Closed Linear Spans

Reflexive Spaces

Hilbert Spaces

Closed Convex Subsets of a Hilbert Space

Riesz and Lax-Milgram Representation Theorems

Riesz and Lax-Milgram Representation Theorems

Orthonormal Bases

Uniform Boundedness Principle

Weak Convergence

Uniform Boundedness of Weak Converging Sequences

Weak Sequentially Compactness

 $Weak^*$ Topology

Applications of Weak Convergence

Bounded Linear Operators

Transpose of Bounded Linear Operators

Strong and Weak Convergence of Operators

Principle of Uniform Boundedness for Maps and Compositions

Open Map Principle

The Closed Graph Theorem

Examples of Bounded Linear Maps: Integral Operators

Symmetric Operators

Eigenvalues of Compact Symmetric Operators

The Fredholm Alternatives

An Application to Integral Operators