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Abstract—We propose a method based on the collabora-
tive Low-Rank Representation (LRR) and Sparse Subspace
Clustering (SSC) to cluster data drawn from multiple linear
subspaces in a high-dimensional space. Given a set of data
vectors, Collaborative Low-Rank and Sparse Subspace Clus-
tering (CLRS) want to seek a better representation among the
candidates that represent all vectors as affine combination of
the bases in a dictionary. Both theoretical and experimental
results show that CLRS is a promising method for subspace
segmentation.
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I. INTRODUCTION

Motion segmentation is to divide a video sequence in to
its constitant component that is more meaningful and easier
to analysis. Up to know, a broad variety of models have
been proposed to solve the motion segmentation problem,
in which subspace clustering is very efficient [1] [2] [3].

As an example, Figure 1(b) illustrates the set of image
points extracted for the first frame of the video shown in
Figure 1(a), Figure 1(c) shows the first frame of the point
trajectories to be segmented, Figure 1(d) shows the same
point trajectories segmented into two subspaces correspond-
ing to the red car and the background respectively.

Given a set of data from a union of subspaces, linear
model is a attractive choice for us, because it is easy
to compute and also effective in many areas with real
applications.

Subspace clustering is an unsupervised machine learning
method, cluster points in the dataset to their respective
subspace.

Existing works on subspace representation and clustering
can be roughly divided into four main categories: statistical
model, algebraic method, LRR model model [4] [5] and SSC
method [4] [6].

Statistical models, such as K-Subspaces and Mixture of
Probabilistic Principal Component Analysis model (MP-
PCA) [7], assume that the data subject to normal distribution.
And above all require the numbers of subspaces and the
dimensions of each subspace to be known. However, they
are sensitive to noise and outliers.

Algebraic methods, such as generalized principal compo-
nent analysis (GPCA) [8], is able to deal with subspaces

Figure 1. An example of motion segmentation [4].

of different dimensions. However, GPCA is sensitive to
outliers, and its complexity increase exponentially with
number of subspaces and their dimensions.

LRR model uses the lowest-rank representation of all data.
As a common practice in rank minimization problem, we
usually replace the rank function with the nuclear norm.
Unfortunately, there is the disadvantage when the data in
high-rank space, for example there are 100 subspaces of
dimension 5, the low-rank structure is missing.

SSC method uses the sparest representation produced
by l1−minimization to define the affinity matrix of an
undirected graph. Then subspace segmentation is performed
by spectral clustering algorithms. SSC require that each data
point in a union of subspaces only can be expressed as a
linear combination of other data points in the same subspace.
But this may cause a over spare problem.

The motivation of our study is trying to provide a new
way that can combine the advantages of low-rank and sparse.
More precisely, this paper is giving the new model CLRS
which can avoid the missing of low-rank structure and



over spare problem. CLRS seeks a better representation
which reflects the features of sparse and low rank in motion
segmentation.

The paper is organized as follows: Section II gives the
CLRS model, Section III gives the optimization, Section IV
gives the experiments, Section V gives the conclusion and
future work.

II. COLLABORATIVE LOW-RANK AND SPARSE
SUBSPACE CLUSTERING

A. Problem Formulation

Let X = [x1, x2, ..., xN ] be a matrix, each column of
which is a vector xi ∈ RD×1 corresponding to a point of
data.

The points of X are drawn from a union of n
different linear subspaces {S1, S2, ..., Sn} of dimensions
{d1, d2, ..., dn}. Then

X= [x1,x2,...,xN ] = [X1,X2,...,Xn]ΓT , (1)

where Xi ∈ RD×Ni is a matrix containing the Ni > di
points that lie in subspace Si, and Γ ∈ RN×N is an unknown
permutation matrix, which sorts the columns of X according
to which subspace they are belong to. Our task is to cluster
X into different subspace which they are belong to.

When there is noisefree, ∀xi ∈ X can be expressed as a
linear combination of {xj}Nj=1, namely

xi =

N∑
j=1

xjzj,i, (2)

where zj,i ∈ RN×1 is a vector of coefficients corresponding

to xi. If
N∑
j=1

zj,i = 1, we call xi can be expressed as a affine

combination of {xj}Nj=1.
When there is noise, a way of modeling errors proposed

in [6] is to relax the self-expressiveness constraint to

xi =

N∑
j=1

xjzj,i + (xi −
N∑
j=1

xjzj,i) (3)

where xi −
N∑
j=1

xjzj,i is the error.

In a matrix form, the equation (3) is equivalent to

X = XZ + (X −XZ) (4)

whereZ = (zi,j)N×N , X −XZ is the matrix of errors.
To avoid the low-rank structure is missing and over sparse

problem of X . We seek a matrix to represent Z which is
called collaborative low-rank and sparse method.

B. Collaborative Low-Rank and Sparse Subspace Clustering

It is well known that, the LRR model [5] is

min
Z
rank(Z) + λ||X −XZ||l (5)

where || · ||l is a type of norms, such as || · ||0, || · ||2, || · ||2,0,
λ is a parameter which is related to noise.

The SSC model [6] is

min
Z
||Z||0 + λ||X −XZ||l, s.t. diagZ = 0 (6)

where || · ||l and λ are the same as above.
In order to reflect the feature of low rank and sparse in

motion segmentation, and to avoid the low-rank structure is
missing and over sparse problem of X . Moreover the points
of data lie in a union of 3-D affine subspaces in some real-
world, such as motion segmentation. So our model CLRS
is

min
Z
λ1rank(Z) + λ2||Z||1 + λn||X −XZ||l

s.t. diagZ = 0, 1TZ = 1T
(7)

where 1 ∈ RN×1, 1 = [1, ..., 1]T , λ1 and λ2 balance the low-
rank and sparsity of Z, λn is a parameter that is related to
the noise of data. And when λ2 = 0, CLRS looks like LRR
if without the constraint condition diagZ = 0, in the other
hand, whenλ1 = 0, CLRS is SSC model. Here diagZ = 0
can remove the trivial solution of Z when λ1 is to small.

The CLRS optimization problem above is difficult to solve
due to the problem is non-convex problem. Fortunately,
inspired by the work [9] [10], we can provide a convex
optimization:

min
Z
λ1||Z||∗ + λ2||Z||1 +

λ3
2
||X −XZ||2F

s.t. diagZ = 0, 1TZ = 1T
(8)

In order to compute easily, we set λ3

2 in (8) instead of
λn.

III. OPTIMIZATION

Now we discuss how to solve and optimize the above
problem (8). The alternating direction method of multipliers
(ADMM) [4] is an algorithm that solves convex optimization
problems by breaking them into smaller pieces, each of
which are easier to handle. In this paper, we use ADMM
to solve the optimization. We begin with a short review of
ADMM, which solves the model in the form of

min
x,y

f(x)+g(y), s.t.Ax+By = b (9)

where f : Rn → R and g : RP → R are two convex
function, and A ∈ Rm×n, B ∈ Rm×p, b ∈ Rm .



The augmented Lagrangian function for problem (9) is

L(x, y, λ) = f(x) + g(y)+ < λ,Ax+By − b > +
µ

2
||Ax

+By − b||2F
(10)

where λ ∈ Rm is lagrangian multiple term, < · > is inner
product, and µ > 0 is a penalty parameter. The ADMM
algorithm can solve problem (9) via the following iteration:

xi+1 = argmin
x

L(x, yi, λi)

yi+1 = arg min
y

(xi+1, y, λi)

λi+1 = λi + µ(Axi+1 +Byi+1 − b)

(11)

Thus, the problem (8) can be rewritten as

min
Z1,Z2,J

λ1||Z1||∗+λ2||Z2||1+
λ3
2
||X−XJ||2F

s.t. J = Z2 − diagZ2

J = Z1

1TJ = 1T

(12)

The augmented Lagrangian function of the problem (12)
is

L(Z1, Z2, J, Y1, Y2, Y3) =

λ1||Z1||∗ + λ2||Z2||1 +
λ3
2
||X −XJ ||2F+

< Y1, J − Z2 + diagZ2 > + < Y2, J − Z1 > +

< Y3, 1
TJ − 1T > +

µ

2
(||J − Z2 + diagZ2||2F+

||J − Z1||2F + ||1TJ − 1T ||2F )

(13)

where Y1 ∈ RN×N , Y2 ∈ RN×N , and Y3 ∈ R1×N are the
lagrangian multiple terms.

We then apply ADMM method to alternatively solve
the problem(13). The resulting algorithm is summarized in
Algorithm 1.
————————————————————————
Algorithm 1 Solving Optimization (12) by ADMM
————————————————————————

Input : data X, parameter λ1,λ2,λ3 and µ
Initialize : Z1 = Z2 = J = Y1 = Y2 = 0, Y3 = 0
While not converged do
1. fix the others and update Z1 by

Z1 = arg min
Z1

λ1
µ
||Z1||∗ +

1

2
||J − Z1 +

Y2
µ
||2F (14)

2. fix the others and update Z2 by

Z2 = arg min
Z2

λ2
µ
||Z2||1 +

1

2
||J − Z2 +

Y1
µ
||2F (15)

, next

Z2 = Z2 − diagZ2 (16)

3. fix the others and update J by

J = inv(λ3X
TX + 2µIN×N + µ1N×N )(λ3X

TX − Y1
−Y2 − 1N×1Y3 + µZ1 + µZ2 + µ1N×N )

(17)

where inv(A), inverse of matrix A; IN×N ∈ RN×N is a
identity matrix; 1N×N ∈ RN×N , all elements of 1N×N are
1s; 1N×1 ∈ RN×1, all elements of 1N×1 are 1s.

4. update the multipliers

Y1 = Y1 + µ(J − Z2)

Y2 = Y2 + µ(J − Z1)

Y3 = Y3 + µ(1TJ − 1T )

(18)

6. end while
Output : Z1, Z2

————————————————————————

Fortunately, we can prove the following Lemma 1 and
Lemma 2 for the subproblems (14) and (15). Thus we give
the solutions of these two subproblems that can explicitly
expressed in the form of shrinkage.

Lemma 1 [11] Let X be a matrix of rank r, where X =
U
∑
V T , then the optimal solution of

min
A

1

2
||X −A||2F + τ ||A||∗ (19)

is given by A = Dτ = USτ (Σ)V T , where Dτ is called the
singular-value thresholding operator(SVT), which is defined
as

Sτ (x) = sign(x)max(|x− τ |, 0) =

 x− τ x > τ
x+ τ x < −τ
0 else

(20)

Comparing with (14), one can find that A = Z1,
X = J + Y2

µ . Thus Z1 in (14) can be solved by lemma 1.

Similarly, the Lemma 2 can be described as following
form, i.e.



Figure 2. Sample images from some sequences of the Hopkins 155
database with tracked points superimposed [4].

Lemma 2 [12] Let X be a matrix,then the optimal solution
of

min
A

1

2
||X −A||2F + τ ||A||1

is given by A = Sτ (x).

Therefore, Z2 in (15) also can be soft shrinkage form
according to lemma 2.

After solving the CLRS, is computed in the form of
|Z|i,j + |ZT |i,j . Finally, we use the spectral clustering
algorithms to produce the final segmentation by algorithm
2.
————————————————————————
Algorithm 2 Subspace Segmentation
————————————————————————

Input : data matrix X, number of subspaces k
1. obtain the representation by Algorithm 1
2. construct an undirected graph by using the
representation to define the affinity matrix of the graph
3. use Ncut to segment the vertices of the graph into k
clusters

————————————————————————

IV. EXPERIMENTS

In this section, we show the ability of motion segmen-
tation by applying the CLRS model (7) to Hopkins 155
dataset.

Hopkins 155: a motion segmentation dataset, there are
155 video sequences with extracted feature points and their
tracks across frames, where 120 of the videos have two
motions and 35 of the videos have three motions. Figure
2 shows that some sample images from some sequences of
Hopkins 155.

We also compare CLRS with local subspace affinity
(LSA) [13], spectral curvature clustering (SCC) [14], LRR
[5] and SSC [6].

Figure 3. Clustering error(%) on Hopkins 155 dataset when λ2= 1−λ1.

Figure 4. Clustering error(%) on Hopkins 155 dataset when λ2= 1−λ1.

We apply the same preprocessing steps to described in
LSA, SCC, LRR, SSC and CLRS. We use the original 2F-
dimensional feature trajectories and we projec the data into
a 4n-dimensional subspace using PCA [4] [6] .

In CLRS, λ3= α
µz

, α is a constant, µz defined as [6],

µz = min
i

max
j 6=i
|xTi xj |,∀xi, xj ∈ X (21)

where we set α = 30000, µ = 0.01λ3, and λ1, λ2 should
be tuned. In the beginning, set λ2= 1−λ1. From Figure 3,
one can find that the lowest clustering error when λ1= 0.6,
which are with the 2F-dimensional data points and 4n-
dimensional data points obtained by PCA .

Then fix λ2= 1−λ1= 0.4. Through computing, one can
find the lowest clustering error may occur when λ1 =
0.05, 0.075, 0.1 from Figure 4.

We get optimization parameters λ1 = 0.05, λ2 = 0.40
by computing the average misclassification errors of 120
video sequences with 2 motions, 35 video sequences with 3
motions and all video sequences.

The samples result of motion segmentation with CLRS as
Figure 5 and Figure 6 .

Table I
Clustering error(%) of LSA,SCC,LRR,SSC and CLRS on the Hopkins

155 with the 2F -dimensional data points.

Algorithms LSA SCC LRR SSC CLRS
2 Motions

Mean 4.23 2.89 4.10 1.52 2.59
Median 0.56 0.00 0.22 0.00 0.00

3 Motions
Mean 7.02 8.25 9.89 4.40 2.31
Median 1.45 0.24 6.22 0.56 0.39

ALL
Mean 4.86 4.10 5.41 2.18 2.53
Median 0.89 0.00 0.53 0.00 0.00



(a) 1R2RC (b) Before segmentation

(c) After segmentation with 2F (d) After segmentation with 4n

Figure 5. An example of motion segmentation.

(a) cars10 (b) Before segmentation

(c) After segmentation with 2F (d) After segmentation with 4n

Figure 6. An example of motion segmentation.

Table II
Clustering error(%) of LSA,SCC,LRR,SSC and CLRS on the Hopkins

155 with the 4n-dimensional data points.

Algorithms LSA SCC LRR SSC CLRS
2 Motions

Mean 3.61 3.04 4.83 1.83 2.30
Median 0.51 0.00 0.26 0.00 0.00

3 Motions
Mean 7.65 7.91 9.89 4.40 1.30
Median 1.27 1.14 6.22 0.56 0.41

ALL
Mean 4.52 4.14 5.98 2.41 2.07
Median 0.57 0.00 0.59 0.00 0.00

Then we tune the parameters of each method and report
to their best results.

The average and median misclassification errors are
shown in Table I and Table II respectively.

Table I shows that we get a mean misclassification error
of 2.31% for sequences with three motions, while the best
reported is 4.40% by SSC. Table II also shows that we get
a mean misclassification error of 1.30% for sequences with
three motions, while the best reported is 4.40% by SSC.

Table II shows that we get a misclassification error of
2.07% for all sequences using CLRS model, while the best
reported is 2.41% by SSC. In summary, the CLRS model
show the superiority against existing state-of-the-art methods
for all the tested task.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel method to subspace
clustering which is based on collaborative low rank and
sparse representation. The new model can avoid effectively
the missing of low-rank structure and over sparse problem.
Comprehensive experimental comparison with the 3 motions
on a dataset of Hopkins 155 demonstrate the efficiency and
effectiveness of the CLRS model on motion segmentation.
However, the relationship between the parameter λ1 and λ2
is unclear. In the future, we believe more efforts should be
make for the theoretical explanation of the CLRS model and
parameter selection. We will compare CLRS with the newest
methods on motion segmentation in the future work.
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